EMERSUB 16, LLC

2020 OPERATIONS, MAINTENANCE, AND MONITORING REPORT – HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM

FORMER KOP-FLEX FACILITY SITE 7565 HARMANS ROAD, HANOVER, MARYLAND BROWNFIELD MASTER INVENTORY #MD0286

JULY 30, 2021

2020 OPERATIONS, MAINTENANCE, AND MONITORING REPORT – HYDRAULIC CONTAINMENT AND TREATMENT SYSTEM

FORMER KOP-FLEX FACILITY SITE 7565 HARMANS ROAD, HANOVER, MARYLAND BROWNFIELD MASTER INVENTORY #MD0286

EMERSUB 16, LLC

PROJECT NO.: 31401545.010 DATE: JULY 30, 2021

WSP SUITE 300 13530 DULLES TECHNOLOGY DRIVE HERNDON, VA 20171

TEL.: +1 703 709-6500 FAX: +1 703 709-8505 WSP.COM

TABLE OF CONTENTS

EXECUTIVE SUMMARY1			
	1	INTRODUCTION3	
	1.1	Purpose of this Report	
	1.2	Summary of Current Groundwater Conditions 3	
	1.3	System Description	
	1.4	Cleanup Standards 4	
	2	SYSTEM OPERATION AND PERFORMANCE MONITORING	
	2.1	System Runtime and Downtime	
	2.2	Operational and Process Monitoring Data 6	
	2.2.1	Overview of Treatment System Operation	
	2.2.2	Treatment System Monitoring and Performance7	
	2.2.3	Recovery Wells	
	2.3	Waste Management9	
	2.3.1	Routine System Activities9	
	2.3.2	Resin Cleaning Waste9	
	2.4	Resin Fouling9	
	2.4.1	Background9	
	2.4.2	Resin Cleaning	
	2.4.3	Post-Cleaning 1,4-Dioxane Breakthrough Sampling10	
	2.4.4	Characterization of Organic Constituent Foulants	
	2.4.5	Metals Foulant Evaluation11	
	2.4.6	Pre-treatment Technology Evaluation	
	2.5	System Maintenance	
	2.5.1	Routine Maintenance Activities	
	2.5.2	Non-Routine Maintenance Activities	
	2.6	Groundwater Monitoring Activities 14	
	2.6.1	Groundwater Levels	
	2.6.2	Groundwater Samples	
	2.7	Groundwater Monitoring Results and Evaluation 15	
	2.7.1	Groundwater Levels	

2.7.2	Groundwater Quality	16
2.8	Assessment of Cleanup Progress	17
3	CONCLUSIONS	19
REFERENCES		
ACRONYMS 21		

FIGURES FIGURE 1 HYDRAULIC CONTAINMENT SYSTEM SCHEMATIC FIGURE 2 HISTORICAL INFLUENT CONCENTRATIONS FIGURE 3 CUMULATIVE MASS REMOVAL MASS RECOVERY PER WELL FIGURE 4 GROUNDWATER RECOVERY WELL RESULTS (2020) FIGURE 5 HYDRAULIC CONTAINMENT SYSTEM AND MONITORING FIGURE 6 WELL LOCATIONS FIGURE 7 WATER TABLE CONTOUR MAP (MAY 2020) FIGURE 8 PIEZOMETRIC SURFACE CONTOUR MAP FOR THE LOWER PORTION OF THE SHALLOW ZONE OF THE LOWER PATAPSCO AQUIFER (MAY 2020) FIGURE 9 POTENTIOMETRIC SURFACE CONTOUR MAP FOR THE DEEPER PORTION OF THE LOWER PATAPSCO AQUIFER (MAY 2020) FIGURE 10 WATER TABLE CONTOUR MAP (NOVEMBER 2020) FIGURE 11 PIEZOMETRIC SURFACE CONTOUR MAP FOR THE LOWER PORTION OF THE SHALLOW ZONE OF THE LOWER PATAPSCO AQUIFER (NOVEMBER 2020) FIGURE 12 POTENTIOMETRIC SURFACE CONTOUR MAP FOR THE DEEPER PORTION OF THE LOWER PATAPSCO AQUIFER (NOVEMBER 2020) FIGURE 13 SAMPLING RESULTS FOR THE MONITORING WELLS SCREENED IN THE SHALLOW UNCONFINED PORTION OF THE LOWER PATAPSCO AQUIFER (2020) FIGURE 14 SAMPLING RESULTS FOR THE MONITORING WELLS SCREENED IN THE DEEPER CONFINED PORTION OF THE LOWER PATAPSCO AQUIFER (2020) FIGURE 15 1.1-DCE ISOCONCENTRATIONS DURING GROUNDWATER EXTRACTION FOR THE SHALLOW UNCONFINED PORTION OF THE LOWER PATAPSCO AQUIFER (MAY 2020) FIGURE 16 1.1-DCA ISOCONCENTRATIONS DURING GROUNDWATER EXTRACTION FOR THE SHALLOW UNCONFINED PORTION OF THE LOWER PATAPSCO AQUIFER (MAY 2020) FIGURE 17 1,4-DIOXANE ISOCONCENTRATIONS DURING GROUNDWATER EXTRACTION FOR THE SHALLOW UNCONFINED PORTION OF THE LOWER PATAPSCO AQUIFER (MAY 2020)

FIGURE 18

1,1-DCE ISOCONCENTRATIONS DURING
GROUNDWATER EXTRACTION FOR THE DEEPER
CONFINED PORTION OF THE LOWER PATAPSCO
AQUIFER (MAY 2020)

FIGURE 19

1,4-DIOXANE ISOCONCENTRATIONS DURING
GROUNDWATER EXTRACTION FOR THE DEEPER
CONFINED PORTION OF THE LOWER PATAPSCO
AQUIFER (MAY 2019)

TABLES

., .5220	
TABLE 1	HISTORICAL INFLUENT RESULTS
TABLE 2	HISTORICAL EFFLUENT RESULTS – NPDES PERMIT CONSTITUENTS
TABLE 3	HISTORICAL EFFLUENT RESULTS – 1,4-DIOXANE
TABLE 4	SUMMARY OF SYSTEM DISCHARGE AND MASS REMOVAL
TABLE 5	SUMMARY OF RECOVERY WELL FLOW RATES
TABLE 6	SUMMARY OF RECOVERY WELL VOLUMES
TABLE 7	2020 RECOVERY WELL SAMPLING RESULTS
TABLE 8	HISTORICAL GROUNDWATER SAMPLE RESULTS – RECOVERY WELLS
TABLE 9	GROUNDWATER SAMPLE TREND EVALUATION
TABLE 10	MAY 2020 FOULANT CHARACTERIZATION SAMPLING RESULTS
TABLE 11	JULY 2020 FOULANT CHARACTERIZATION SAMPLING RESULTS
TABLE 12	DECEMBER 2020 TREATMENT SYSTEM METALS SAMPLING RESULTS
TABLE 13	WELL CONSTRUCTION
TABLE 14	HISTORICAL WATER LEVEL MEASUREMENTS IN
	MONITORING WELLS AND RECOVERY WELL PIEZOMETERS
TABLE 15	2020 MONITORING WELL SAMPLING RESULTS
TABLE 16	HISTORICAL GROUNDWATER SAMPLE RESULTS – MONITORING WELLS

APPENDICES

APPENDIX A LABORATORY REPORTS FOR SYSTEM SAMPLING

APPENDIX B RESIN CLEANING AND FOULANT ANALYSIS

DOCUMENTATION

APPENDIX C METALS FOULANT EVALUATION

APPENDIX D PRE-TREATMENT TECHNOLOGY EVALUATION

APPENDIX E LABORATORY REPORTS FOR GROUNDWATER

MONITORING

EXECUTIVE SUMMARY

WSP USA Inc. (WSP) has prepared this Operations, Maintenance, and Monitoring (OM&M) Report to assess the performance of the groundwater corrective measures implemented at the Former Kop-Flex Facility Site (Site) located at 7555 Harmans Road in Hanover, Maryland. This report describes the operation (including maintenance activities) and effectiveness of the hydraulic containment and treatment system (System) in mitigating groundwater quality impacts to the aquifer system for the reporting period of January 1, 2020 through December 31, 2020. WSP is submitting this report on behalf of EMERSUB 16, LLC, a subsidiary of Emerson Electric Co. The Site is currently owned by Harmans Road Associates, LLC, a subsidiary of Catalent Cell & Gene Therapy (Catalent).

The following Response Action Objectives (RAOs) with respect to groundwater were previously developed for the Site and continue to be used to gauge progress towards cleanup goals (WSP 2015a):

- controlling migration of groundwater with volatile organic compounds (VOCs) exceeding applicable human health criteria beyond the Former Kop-Flex property boundary
- reducing concentrations of VOCs in the aquifer system
- restricting groundwater use on the Site to prevent potential exposure to VOCs present at concentrations above applicable human health criteria

The System runtime was approximately 78% during the 2020 calendar year. Periods of downtime included scheduled and unscheduled shutdown events, routine maintenance, and replacement of System equipment. System shutdowns were described in the quarterly Corrective Measures Progress Reports submitted to the U.S. Environmental Protection Agency (EPA) in accordance with Administrative Order on Consent, Docket No. RCRA-03-2016-0170 CA, Section IV.C.3 (Consent Order) and are also described in this report. There was an extended, planned shutdown of the System from February 25 through March 17 to conduct cleaning of the specialty resin used to treat extracted groundwater. There were also a few unanticipated extended (1- to 2-week) System shutdowns due to malfunctioning equipment.

Repairs and improvements to address System down-time included replacement of the caustic pump head assembly with an updated model for the pH adjustment system and re-configuration of the water softener drain line to prevent failure of the water softener control valve. Transfer pump P-100B and its variable frequency drive (VFD), which stopped functioning during November 2019, were replaced during September 2020 to ensure transfer pump redundancy and minimize potential downtime for the System. Additionally, various components of the boiler feedwater tank level switch were replaced to ensure proper functioning during the resin regeneration process. The drain valves at the base of both resin vessels, which developed leaks following the resin cleaning, were also replaced during September 2020.

Based on the 2020 operational data, the System processed approximately 27.7 million gallons of groundwater extracted from the five recovery wells. Since System start up in March 2017 through the end of December 2020, the System has treated approximately 121.5 million gallons of water. Using the influent and effluent VOC and 1,4-dioxane concentrations and the volume of recovered groundwater, it is calculated that approximately 68.06 pounds (lbs) of Site-related VOCs and 31.51 lbs of 1,4-dioxane were recovered from the aquifer during 2020. The removal efficiency of the resin media was 100% for VOCs and a minimum of 95.8% for 1,4-dioxane. A total of approximately 514 lbs of Site-related VOCs and 1,4-dioxane have been removed since initiation of corrective measures through the end of the 2020 calendar year.

There were no National Pollutant Discharge Elimination System (NPDES) discharge permit exceedances during the reporting period. There was a single incident (November 2020) of the effluent sample exceeding the site-specific cleanup level for 1,4-dioxane (15 micrograms per liter [μ g/L]). The exceedance was deemed to represent a short-term anomaly that was probably caused by a brief "slug" of water with relatively high contaminant concentrations entering the System. WSP and EMERSUB 16 notified the EPA and Maryland Department of the Environment (MDE) of the 1,4-dioxane concentration above the site-specific cleanup level in the November 2020 sample, and WSP implemented preventative measures to prevent the potential recurrence of a 1,4-dioxane exceedance in the effluent. Analysis of the treated water (i.e., effluent), excluding the November 2020 sample, indicated non-detect concentrations of VOCs and non-detect to low levels of 1,4-dioxane, with detected concentrations ranging from 2.0 μ g/L to 6.3 μ g/L. The 1,4-dioxane concentrations in the samples reflected a continued increase in the rate of breakthrough for the resin, a condition that was initially identified during sampling conducted in December 2018 and was further investigated during 2019. The reduction in the resin's 1,4-dioxane adsorptive capacity is caused by a buildup of organic constituents at the resin sorption sites that is not removed during steam regeneration. WSP completed a cleaning of the resin during February-March 2020, which involved removing the resin material from the System

treatment vessels and washing it with a heated caustic solution to remove the buildup of foulants. The cleaning resulted in improved 1,4-dioxane treatment capacity, as evidenced by the monthly sampling results, but did not return the resin to its original treatment capacity. Additionally, the rate of breakthrough for 1,4-dioxane has continued to increase during the year of System operation since the resin cleaning event. WSP has undertaken efforts to research methods to pre-treat the extracted groundwater to remove the organic foulants prior to treatment by the specialty resin.

The groundwater monitoring data indicates the three RAOs are being achieved. Evaluation of the 2020 groundwater level and groundwater quality data indicates the capture zones created by pumping from the recovery wells encompasses the extent of impacted groundwater within the shallow and deep zones of the Lower Patapsco Aquifer (LPA) onsite. Water level contour maps depicting hydraulic head conditions in the shallow (unconfined) zone of the LPA show a well-developed cone of depression centered around the shallow recovery wells. The potentiometric surface contour map for the deep (leaky confined) zone of the LPA shows an elongated hydraulic sink along the southern property boundary in response to continuous groundwater withdrawals from the deep recovery wells. Groundwater quality data gathered in 2020 exhibits generally decreasing trends in VOC and 1,4-dioxane concentrations. The decrease in concentrations is most noticeable in monitoring wells near the limits of the plume areas, suggesting that the System is reducing the extent of contaminant impacts within the aquifer system. The pumping rates in the recovery wells are set to enable plume containment and maximum mass recovery.

The long-term groundwater monitoring program will remain unchanged to continue to evaluate achievement of the groundwater RAOs. During the second quarter of 2021, WSP will also conduct pilot testing of a treatment technology for removing organic foulants from the extracted groundwater. The test results will be used to support decisions on the best approach for maintaining the resin's adsorption capacity for 1,4-dioxane and other Site contaminants.

1 INTRODUCTION

1.1 PURPOSE OF THIS REPORT

On behalf of EMERSUB 16, LLC, a subsidiary of Emerson Electric Co., WSP USA Inc. (WSP) is submitting this Annual Operations, Maintenance, and Monitoring (OM&M) Report describing the activities conducted during the 2020 reporting period (January 1, 2020 through December 31, 2020) as part of the corrective measures at the Former Kop-Flex Facility Site (Site) located at 7555 Harmans Road in Hanover, Maryland. The Site is identical to the area described as the "Facility" in the Consent Order. This report is being submitted in accordance with Section 14.2 of the October 2015 Response Action Plan (RAP), Revision 2 (WSP 2015a), which requires the submission of OM&M reports to the Maryland Department of the Environment (MDE) on an annual basis. The annual OM&M Report for calendar year 2019 was submitted to the U.S. Environmental Protection Agency (EPA) and MDE in July 2020.

1.2 SUMMARY OF CURRENT GROUNDWATER CONDITIONS

The aquifer at the Site is comprised of the Lower Patapsco Aquifer (LPA) of the Atlantic Coastal Plain aquifer system. The primary water-bearing zones in the LPA consist of a shallow (unconfined) zone and deep (confined) zone which are separated by a leaky confining unit of variable thickness. The direction of groundwater movement in the shallow zone mimics the general surface topography and is largely influenced by local surface water features, with flow to the west toward Stony Run. Groundwater flow in the deep zone is to the south and east, consistent with the regional groundwater flow in the LPA in this portion of the coastal plain aquifer system. Additional details regarding the Site's hydrogeologic setting are provided in the October 2015 RAP, Revision 2 (WSP 2015a) and subsequent amendments to this document.

Groundwater sampling results confirm the existence of Site-related contaminants in both the shallow and deep portions of the LPA beneath the former Kop-flex property. The Site-related volatile organic compounds (VOCs) in groundwater consist of 1,1,1-trichloroethane (TCA) and its degradation products 1,1-dichloroethane (DCA) and 1,1-dichloroethene (DCE); and other chlorinated ethenes including cis-1,2-DCE, trichloroethene (TCE), and tetrachloroethene (PCE). Additionally, 1,4-dioxane, an additive historically used in commercial formulations of 1,1,1-TCA, is present in groundwater.

The installation of the hydraulic containment and treatment system (System) discussed in this report was completed in February 2017 to contain the groundwater plumes in both zones of the LPA. The contaminant plume in the deep confined portion of the LPA extends offsite to the south-southeast from the former Kop-Flex property. Groundwater conditions in the off-property area are described in a separate offsite groundwater monitoring report.

1.3 SYSTEM DESCRIPTION

Pursuant to the requirements under the EPA Consent Order (Section VI.B.1.a.) and RAP, a System has been installed at the Site to control the migration of chlorinated VOCs and 1,4-dioxane in groundwater. The System involves the continuous extraction and treatment of affected groundwater at the Site. Groundwater is extracted from a network of three shallow recovery wells (RW-1S through RW-3S), screened within the shallow zone of the LPA, and two deep recovery wells (RW-1D and RW-2D), screened in the deep zone of the LPA. The extracted groundwater is routed via underground piping to the System building. Treatment equipment is comprised of an equalization tank to regulate flow, bag filters for suspended solids removal, synthetic resin (AMBERSORBTM 560) for the removal of VOCs and 1,4-dioxane, a metering pump for the addition of caustic soda for pH adjustment, and two in-line aerators to increase dissolved oxygen levels in the water. The treated water is discharged to the nearby stream, Stony Run, in accordance with the requirements specified in State Discharge Permit Number 15-DP-3442 and National Pollutant Discharge Elimination System (NPDES) Permit MD 0069094 (Permit) issued by the MDE. Samples of the treated effluent are collected monthly for the analysis of VOCs and other parameters (including 1,4-dioxane), in accordance with the Permit and RAP. The installation of the System was completed in February 2017, with continuous, full-scale operation beginning on March 10, 2017. Figure 1 includes a schematic diagram of the System.

There are two synthetic resin vessels, identified as T-1100 and T-1200, which are arranged in series. They operate in a lead-lag configuration until the lead vessel reaches its adsorption capacity for the contaminants, which is based on the volume of water processed by the vessel. When the lead vessel has processed the pre-determined volume of water, the lag vessel is switched into the lead position, and the contaminant-loaded lead vessel is temporarily taken out of operation for regeneration. The loaded vessel is regenerated onsite using steam process equipment, including a boiler and steam superheater to remove the adsorbed constituents from the resin. The steam containing the desorbed constituents is discharged to the atmosphere through the steam reheater. Once the regeneration process is completed, the regenerated vessel is returned to operation as the lag vessel, and the cycle is repeated.

1.4 CLEANUP STANDARDS

The groundwater cleanup levels for the VOCs detected in the groundwater are based on the MDE Cleanup Standards (Cleanup Standards) for Type I/II Aquifers, except as noted for 1,4-dioxane, and are listed in the table below.

Compound	Cleanup Standard (micrograms per liter [µg/L])
1,1,1-TCA	200
1,1-DCA	2.8*
1,1-DCE	7
1,2-DCA	5
Chloroethane	2,100*
TCE	5
Cis-1,2-DCE	70
1,4-Dioxane	15**

^{*} The standards for 1,1-DCA and chloroethane reflect the current numerical criteria promulgated by MDE, which were updated and issued in October 2018.

^{**} The cleanup criterion for 1,4-dioxane, which is not included in the MDE Cleanup Standards, was determined from an evaluation of calculated risk-based concentrations in groundwater. Based on this evaluation, an alternate, property-specific cleanup criterion of 15 μ g/L was established for 1,4-dioxane at the Site.

2 SYSTEM OPERATION AND PERFORMANCE MONITORING

2.1 SYSTEM RUNTIME AND DOWNTIME

During the reporting period from January 1, 2020 through December 31, 2020, the System operated approximately 78% of the time. Some downtime was related to the completion of routine maintenance activities, such as changing bag filters, cleaning strainers, or testing the high-sump alarm, in accordance with WSP's OM&M Manual (WSP 2018). Additional nonroutine System shutdowns associated with unexpected events and System maintenance, and the scheduled resin cleaning event occurred as described below.

- The System experienced multiple brief (a few hours) manual shutdowns to conduct maintenance to various System components. The System also experienced a few short (a few hours to 2 days) automatic shutdowns due to malfunctioning of the pH adjustment system, requiring manual adjustment onsite by a System operator.
- The System automatically shut down on December 26, 2019 due to malfunctioning of the caustic anti-siphon valve for the pH adjustment system. The System was restarted on January 6, 2020 following replacement of the valve.
- The System automatically shut down on January 20, 2020 due to malfunctioning of the pH adjustment system. The
 System was restarted on January 22, 2020 following replacement of the caustic pump tubing and effluent ball valve.
- From February 25 through March 17, 2020 there was an extended, scheduled System shutdown to clean the specialty resin used to treat extracted groundwater as described in Section 2.4.2.
- The System automatically shut down on March 28, 2020 due to a high-high differential pressure alarm for resin vessel T-1100. The System was restarted on March 30, 2020 following cleaning of the T-1100 and T-1200 effluent wye strainers, which were clogged with resin material.
- On April 5, 2020 the pressure transducer deployed in well RW-1D, which controls the operation of the variable frequency drive (VFD) for the submersible pump installed in the well, started to malfunction. The pressure transducer failed on April 10, 2020. The RW-1D pressure transducer was replaced and normal operation of the submersible pump resumed on April 22, 2020.
- On April 6, 2020, the System operator discovered that caustic soda had leaked onto the floor of the treatment building due to a rupture in the caustic pump tubing. Upon discovery of the caustic leak, the operator manually shut down the System to contain the leak, evaluate the situation, and conduct any necessary System repairs. Based on System data, the leak likely started on April 5 and resulted in the building floor sump filling with caustic soda, rendering the sump pump inoperable. The leak also caused some minor damage to the caustic pump head assembly. The operator used water to dilute the caustic spill and clean the floor, and all liquid was contained and diverted to the System equalization tank for processing. The operator replaced the caustic pump tubing and restarted the system later in the day on April 6, 2020. A new sump pump was installed in the floor sump on April 10, 2020.
- The System automatically shut down on April 29, 2020 due to a problem with the tubing connection fitting for the caustic pump. The System was restarted on May 11, 2020 following replacement of the fitting and entire caustic pump head assembly, which was damaged by the caustic leak discovered on April 6.
- The System automatically shut down on May 21, 2020 due to a high-high level alarm for the equalization tank. The alarm was caused by excessive back pressure on the System transfer pump due to high differential pressure across resin vessel T-1100, which had just been regenerated, combined with an elevated differential pressure across the bag filters. The System was restarted on May 22, 2020 after cleaning the T-1100 effluent wye strainer and changing the bag filters.
- On May 29, 2020, the System was manually shut down after hardness was detected in the soft water supply to the boiler.
 The System was restarted on June 12, 2020 following replacement of multiple components of the water softener control valve and brine regeneration of the water softener resin.
- The System automatically shut down on June 23, 2020 due to an interruption to the regeneration of resin vessel T-1100 caused by malfunctioning of the boiler feedwater tank level switch. The System was restarted on June 24, 2020 following repair of the level switch. The System automatically shut down again on July 18, 2020 due to an interruption

to the regeneration of resin vessel T-1100 caused by another problem with the boiler feedwater tank level switch. The System was restarted on July 24, 2020 following replacement of an electrical component of the level switch. The System operator manually shut down the System on August 10, 2020 after the regeneration of resin vessel T-1200 was interrupted due to a malfunction of the boiler feedwater tank level switch. The System was restarted on August 12, 2020 following replacement of the mechanical float component of the level switch.

- On September 4, 2020 the regeneration of resin vessel T-1200 was interrupted by a steam reheater error. The System operator was unable to troubleshoot the alarm condition and manually shut down the System later that day. The System was restarted on September 10, 2020 following a manual reset of the steam reheater burner.
- The System automatically shut down on September 11, 2020 due to a System human-machine interface (HMI) malfunction. The System was restarted on September 14, 2020 following a manual reset of the HMI.
- The System automatically shut down on September 19, 2020 due to a high-high differential pressure alarm for resin vessel T-1100. The System was restarted on September 21, 2020 following cleaning of the effluent wye strainers for both resin vessels.
- On September 21, 2020 the RW-1D submersible pump stopped operating due to a pump VFD fault. The RW-1D pump was restarted on September 23, 2020 following a manual reset of the pump VFD.
- The System automatically shut down on September 22, 2020 due to an interruption to the regeneration of resin vessel T-1200. The System was restarted on September 23, 2020 after switching the boiler transfer pump from primary to secondary. The System shut down again on September 29, 2020 due to an interruption to the regeneration of resin vessel T-1200 while the primary boiler transfer pump was in operation. The System was restarted later that day after again switching to the secondary transfer pump. (It was eventually determined that the operation of the check valve at the effluent end of the primary boiler transfer pump was affecting pump performance, and the effluent check valves for both pumps were replaced in early 2021). The boiler operated using only the secondary transfer pump from September 29, 2020 through the remainder of 2020.
- On October 17, 2020 the RW-1D submersible pump again stopped operating due to a pump VFD fault. The RW-1D pump was restarted on October 19, 2020 following a manual reset of the pump VFD. This same problem reoccurred on October 24, 2020. The RW-1D pump was restarted on October 28, 2020 following another manual reset of the VFD.

When fully operational, the groundwater withdrawal rate for the System ranged from approximately 67 gallons per minute (GPM) to 75 GPM, with an average rate of 71 GPM during the reporting period. The design flow rate for the System was approximately 80 GPM (WSP 2015a). Based on the System effluent totalizer, approximately 27.7 million gallons of groundwater was treated and discharged to Stony Run via Outfall 001 from January 1, 2020 through December 31, 2020. Information on the groundwater extraction rates for the shallow and deep recovery wells is provided in Section 2.2.3.

2.2 OPERATIONAL AND PROCESS MONITORING DATA

2.2.1 OVERVIEW OF TREATMENT SYSTEM OPERATION

During System operation, water samples were regularly collected for chemical analysis to monitor and evaluate VOC and 1,4-dioxane concentrations in the System influent (Table 1) and effluent (Tables 2 and 3). Total constituent of concern (COC) concentrations (VOCs + 1,4-dioxane) for the System influent were generally consistent during the reporting period, with the highest System influent concentration (554 μ g/L) detected in the sample collected during April 2020, and the lowest concentration (404 μ g/L) detected in the sample collected during January 2020 (Figure 2). The relatively high total COC concentration in the April 2020 influent sample was due to an elevated concentration of 1,4-dioxane (260 μ g/L), more than twice the concentration of 1,4-dioxane detected in all other influent samples collected during 2020 (110 μ g/L).

Analysis of the treated water (i.e., effluent) indicated non-detect concentrations of VOCs and, excluding the November 2020 sample, non-detect to very low levels of 1,4-dioxane, with concentrations above the detection limit ranging from $2.0 \,\mu\text{g/L}$ to $6.3 \,\mu\text{g/L}$. There was a single incident (November 2020) of an effluent sample having a 1,4-dioxane concentration (43 $\,\mu\text{g/L}$) exceeding the Site-specific cleanup goal of 15 $\,\mu\text{g/L}$. A thorough assessment of the System operational data did not identify any operational issues that would have resulted in reduced 1,4-dioxane removal efficiency at the time of the November sampling event. Subsequent System effluent samples collected on December 3 and December 15, 2020 had 1,4-dioxane

concentrations of $2.0 \,\mu\text{g/L}$ and $2.2 \,\mu\text{g/L}$, respectively, an order of magnitude below the level in the November sample. Based on evaluation of the System operation and subsequent effluent sample results, the elevated 1,4-dioxane concentration in the November 2020 sample was determined to represent a short-term anomaly that was probably caused by a brief "slug" of water with relatively high contaminant concentrations entering the System. To prevent potential recurrence of this incident, a regeneration "reset", whereby the System is shut down and both resin vessels are regenerated prior to System restart, was completed during early 2021 and will be done semiannually. WSP notified the USEPA and MDE in early January 2021 of the 1,4-dioxane concentration in the November 2020 sample, and the results of its incident evaluation and planned corrective measures.

Samples of the treated effluent were collected for the analysis of other parameters, in addition to VOCs and 1,4-dioxane, in accordance with the Permit. The analytical results for all samples indicate compliance with the effluent limitations specified in the Permit (Table 2).

2.2.2 TREATMENT SYSTEM MONITORING AND PERFORMANCE

The System treatment equipment performance was monitored by collecting and analyzing influent and effluent water samples from in-line sample ports located at the treatment building. The System effluent samples also fulfilled the monitoring requirements specified in the Permit. The samples were analyzed for VOCs using EPA SW-846 Test Method 8260B (for influent samples) or EPA Method 624 (for effluent samples) and 1,4-dioxane using modified EPA SW-846 Test Method 8260B with Selected Ion Monitoring (SIM). Lab analysis was conducted by the Phase Separation Science, Inc. laboratory located in Catonsville, Maryland.

The historical VOC and 1,4-dioxane results for the System influent and effluent samples are summarized in Tables 1, 2, and 3. Certified laboratory analytical reports for the January 2020 through December 2020 influent and effluent samples are included in Appendix A. Influent VOC and 1,4-dioxane results were compared to the Cleanup Standards, as stated in Section 1.4 of this document. Based on the analytical results, 1,1-DCA, 1,1-DCE, and 1,4-dioxane were the only constituents detected above their respective Cleanup Standard in the influent samples. Other chlorinated VOCs detected in the System influent, albeit not above the Cleanup Standards, included 1,1,1-TCA, 1,2-DCA, chloroethane, TCE, and cis-1,2-DCE. For the non-exceeding COCs, 1,1,1-TCA and chloroethane were detected at the highest concentrations in the influent samples, with the chlorinated ethenes TCE and cis-1,2-DCE, and 1,2-DCA present at very low concentrations ($< 2 \mu g/L$). The total VOC concentrations in the influent ranged from 290 $\mu g/L$ (January 2020) to 331 $\mu g/L$ (July 2020). The 1,4-dioxane concentrations in the influent ranged from 110 $\mu g/L$ (January, July, and November 2020) to 260 $\mu g/L$ (April 2020).

Figure 2 plots the historical concentrations of total VOCs and 1,4-dioxane in the System influent from start-up (March 2017) through the end of 2020. This plot shows a generally decreasing trend for influent concentrations during the initial 6 months of operation. Influent concentrations slightly increased from late 2017 through the first half of 2018 primarily as a result of higher levels of VOCs in the extracted groundwater. Total VOC concentrations have gradually decreased since the fourth quarter of 2018, which is reflected by the two lowest influent concentrations for total VOCs and 1,4-dioxane being recorded during the January 2020 and November 2020 sampling events. The total VOC and 1,4-dioxane concentrations are below anticipated concentrations used for the design of the System. Based on the measured influent concentrations, the corresponding resin loading rate should require two regenerations per week. However, the regeneration frequency was increased to three times per week in April 2019 based on increasing detections of 1,4-dioxane in the System effluent.

No VOCs were detected above the method reporting limits in the effluent samples collected during 2020. Based on these sampling results, the VOC removal efficiency during the reporting period was 100%. The 1,4-dioxane concentrations in the effluent water samples ranged from below the method reporting limit of 1.0 μ g/L (seven samples) to 43 μ g/L (November 2020). As discussed in Section 2.2.1, the elevated concentration of 1,4-dioxane in the November 2020 sample was likely a short-term anomaly. If this single incident is excluded, the highest concentration of 1,4-dioxane was detected in the effluent sample collected during September 2020 (6.3 μ g/L). This sample was collected on a Monday just prior to initiating regeneration of the lead resin vessel. System regenerations are currently initiated three times per week on Monday, Wednesday, and Friday. The concentration in the September 2020 sample is therefore considered representative of the current longest loading cycle - Friday to Monday, or approximately 72 hours - for the System between media regenerations. Based on the sampling results, the removal efficiency for 1,4-dioxane was a minimum of 95.8% during 2020. (Based on the characteristics of the 1,4-dioxane breakthrough curve, the effluent concentration represents a maximum concentration and not the average concentration for the monitoring period. As a result, actual removal efficiency is greater than 95.8%.) Removal

efficiencies for 1,4-dioxane during 2017, 2018, and 2019 were estimated at 100%, 99.5%, and a minimum of 93.3%, respectively.

During the 2020 reporting period, the System removed an estimated 68.06 pounds (lbs) of the primary chlorinated VOCs: 1,1-DCE, 1,1-DCA, and 1,1,1-TCA, and 31.51 lbs of 1,4-dioxane (Table 4). The average flow rate (in GPM) for the System effluent provided in Table 4 was determined based on fully operational days. Figure 3 plots the historical mass removal of the primary chlorinated VOCs and 1,4-dioxane by the System from start-up (March 2017) through December 2020. As shown in this plot, mass removal of the primary COCs has exhibited a consistent increasing trend since System start-up.

2.2.3 RECOVERY WELLS

GROUNDWATER PUMPING RATES

The monthly average extraction rates and total volume withdrawn for each recovery well are provided in Table 5 and Table 6, respectively. Data for each recovery well is collected weekly by the certified System operator from a flowmeter located at the wellhead. Higher extraction rates, averaging around 30 GPM during normal System operation, were set at each of the deep recovery wells compared to each of the shallow recovery wells, which averaged around 2 to 5 GPM, to ensure capture of the southward migrating plume in the confined portion of the aquifer. For the shallow recovery wells, a higher extraction rate was established in RW-1S because of the higher VOC levels in the extracted groundwater at this location (Figure 4). The average combined flow rate determined from the summation of the individual recovery well extraction rates (Table 5) includes data from nonoperational and partially operational days. Most of the recovery wells saw a significant decrease in average annual extraction rate during 2020 due to the multiple and sometimes prolonged shutdowns of the System described in Section 2.1.

MASS REMOVAL AT GROUNDWATER EXTRACTION POINTS

WELL DISCHARGE SAMPLING

In accordance with the Groundwater Monitoring Plan (WSP 2015b), water samples were collected from the shallow and deep recovery wells during the weeks of May 10, 2020 and November 22, 2020. Groundwater discharge from each recovery well was collected via sampling ports located in the well head piping. The valve for the sampling port was opened to deliver a low flow stream of water to fill the sample bottles. Initially, a small amount of water was purged from the sampling port and collected in a 5-gallon bucket. After approximately one minute, field parameters (pH, conductivity, turbidity, and temperature) were measured for the well discharge using a multi-parameter water quality meter to confirm the extracted groundwater reflected the known hydrogeochemical conditions in the aquifer. A groundwater sample was then collected for laboratory analysis of VOCs by EPA SW-846 Test Method 8260D and 1,4-dioxane using modified EPA SW-846 Test Method 8260D SIM by the Pace Analytical Services laboratory in Huntersville, North Carolina. The purge water generated from the recovery well sampling was processed through the System.

SAMPLE RESULTS

The May and November 2020 recovery well analytical results are presented in Table 7, and historical sampling data is presented in Table 8. Results for the 2020 recovery well samples are also included in Figure 5 to support the trends shown in Figure 4. The sampling data is used to assess contaminant mass recovery at the groundwater extraction points in the shallow and deep portions of the aquifer. Figure 4 shows the trends in total VOC and 1,4-dioxane concentrations for each well and its average pumping rate. Based on the 2020 data, the total VOC and 1,4-dioxane concentrations have remained fairly constant in all wells although levels of chlorinated VOCs consistently decreased in the RW-3S discharge during the 2020 reporting period. As mentioned above, RW-1S discharge has the highest total VOC and 1,4-dioxane concentrations, and therefore the highest pumping rate, for the shallow recovery well network. Concentrations of VOCs and 1,4-dioxane between RW-1D and RW-2D are fairly similar, and therefore the well pumps are set at similar pumping rates.

Mann-Kendall statistical evaluations were conducted on the historical (2017 through 2020) recovery well sampling results for 1,1-DCA, 1,1-DCE, and 1,4-dioxane concentrations. A 95% confidence limit was used for determining a statistically significant trend in the data (Table 9). Most shallow recovery wells exhibited decreasing trends with regards to these constituents. The exception is recovery well RW-3S. Even though RW-3S generally has the lowest VOC concentrations of the shallow recovery wells, the well exhibited increasing trends for all constituents during the 2017 through 2020 period. The

increasing trends in the well discharge are believed to be the result of pumping-induced transport of residual dissolved constituents present in the thick sequence of shallow fine-grained (silt and clay) deposits in this portion of the Site. RW-3S concentrations will be evaluated with respect to the historical data during 2021 to determine if the increasing trends continue or if the concentration increases in 2019 through early 2020 were a transient condition. Deep recovery well RW-1D exhibited no trends for 1,1-DCA and 1,1-DCE; however, the well exhibited an increasing trend for 1,4-dioxane. In contrast, deep well RW-2D had decreasing trends for all constituents.

2.3 WASTE MANAGEMENT

2.3.1 ROUTINE SYSTEM ACTIVITIES

Bag filters for the removal of suspended solids from the treatment system influent were regularly changed out with new bag filters. The frequency of bag filter replacement increased from monthly at the beginning of 2020 to weekly by the end of 2020. Spent bag filters were managed offsite as non-hazardous waste (general trash). Disposable materials from the groundwater and System sampling activities (e.g., gloves) were also managed offsite as non-hazardous waste.

2.3.2 RESIN CLEANING WASTE

The spent caustic solution containing desorbed organics from the resin cleaning (Section 2.4.2) was containerized, neutralized, and transported to an approved offsite wastewater treatment facility. (Documents pertaining to the offsite disposal of the organic-rich cleaning solution are provided in Appendix B.) In addition, the high pH, organic-rich water produced during the post-cleaning regenerations of each vessel was handled in the same manner. Most of the wastewater was managed as a non-hazardous waste. However, approximately 5,000 gallons had to be managed as a characteristically hazardous waste (D002) due to a pH slightly above the regulatory threshold level of 12.5 standard units.

The amount of hazardous wastewater generated during this one-time event would necessitate the System's generator status be temporarily changed from small quantity to large quantity. Since the production of this high pH wastewater constitutes an episodic generation of a hazardous waste, EMERSUB 16 and WSP contacted MDE to confirm that it would not be regulated as a large quantity generator under the Code of Maryland Administrative Regulations. MDE responded on August 3, 2020, that EMERSUB 16 will retain its conditionally exempt small quantity generator status provided that in the future it does not exceed the large quantity generator thresholds for hazardous and acute hazardous waste.

2.4 RESIN FOULING

2.4.1 BACKGROUND

In response to increasing detections of 1,4-dioxane in the System effluent, WSP worked with the treatment system vendor (Emerging Compound Treatment Technologies [ECT2]) to investigate the reduction in 1,4-dioxane removal efficiency and identify a solution for regaining the treatment resin loading capacity. The investigation concluded that this reduced treatment efficiency is caused by the fouling of the resin material via the buildup of trace concentrations of adsorbed organic constituents over time that are not completely removed during the steam regeneration process. Given this determination, WSP increased the frequency of the steam regenerations in 2019 to ensure 1,4-dioxane concentrations in the treated water remain below the Site cleanup goal, while developing a plan for restoring System treatment capacity.

Bench-scale testing of approaches to chemically remove the organic constituents fouling the treatment resin was completed by ECT2 in early September 2019. Based on evaluation of the test results, the selected cleaning procedure was identified as removal of the treatment resin from the vessels and "washing" the material with a heated caustic solution. The cleaned resin material would then be placed back into the vessels and the System returned to normal operation.

2.4.2 RESIN CLEANING

ECT2 retained Recirculation Technologies, LLC (RTI), a vendor specializing in the cleaning and maintenance of regenerable resins used for water treatment, to perform the onsite ex-situ cleaning of the resin. In preparation for the resin cleaning activities, the System was shut down on February 25, 2020 to allow for the steam regeneration of both resin vessels to remove any Site-related VOCs and 1,4-dioxane from the media.

The resin cleaning was completed over the weekend of February 28, 2020 through March 1, 2020. On February 28th, the resin was removed from the vessels and transferred to separate tanks on RTI's mobile cleaning trailer. The resin was cleaned by adding heated caustic solution to the tanks, agitating the mixture for one hour using compressed air, and then transferring the "spent" caustic solution to a double-walled frac tank for subsequent management and disposal. This process was repeated a total of four times for the resin from each vessel, after which the cleaned resin was returned to its original vessel. Subsequent analysis of samples of the pre- and post-cleaned resin, as well as the observed color change in the high pH water in contact with the media, suggests that the cleaning process was successful at removing the majority of adsorbed organic compounds as well as very fine sediment from the resin (Reports prepared by RTI of the ex-situ resin cleaning activities and results are included in Appendix B).

During the week of March 2nd, the cleaned resin in each vessel was regenerated twice to desorb additional organic carbon foulants and remove residual caustic from the media. The condensate and rinse water generated during these regeneration events was transferred to the double-walled frac tank because of the elevated pH and brownish color of the water, which indicated the continued removal of organic constituents from the resin at relatively high concentrations. Following the completion of the back-to-back regenerations for each vessel, controlled operation of the System began on March 11, 2020. Given the continued presence of residual caustic on the resin, it was determined that muriatic acid would need to be temporarily added to the System effluent to lower the pH to within the discharge permit limits. Manual operation of the System was conducted intermittently from March 11th through March 17th, to allow for the controlled addition of the acid to ensure compliance with the effluent limitations. Normal, automated operation of the System, with caustic addition for pH adjustment, resumed on the afternoon of March 17, 2020.

2.4.3 POST-CLEANING 1,4-DIOXANE BREAKTHROUGH SAMPLING

Beginning in late April and resuming in mid-May 2020, WSP collected treated water samples from the lead resin vessel to evaluate 1,4-dioxane breakthrough of the cleaned resin material. Copies of the certified laboratory analytical reports for these samples are provided in Appendix B. Graphical analysis of the sampling data indicated the cleaned resin exhibited a significant (approximately 7x) increase in the amount of water processed before reaching the site-specific cleanup level of 15 μ g/l compared to the pre-cleaned material (Figure 1 in Appendix B). However, the adsorptive capacity of the treated resin did not achieve that of the "virgin" material.

2.4.4 CHARACTERIZATION OF ORGANIC CONSTITUENT FOULANTS

As part of the continuing evaluation of the resin fouling, WSP conducted additional sampling to characterize the nature of the organic foulants in the groundwater from the impacted portion of the aquifer system. This foulant characterization involved assessing the levels of natural organic matter and petroleum-related constituents by collecting samples of the extracted groundwater from influent and effluent points in the System along with samples from the unimpacted portions of the LPA.

On May 14, 2020, samples of the extracted groundwater from the shallow and deep recovery wells, effluent from the lead resin vessel, and the System effluent were collected from sampling ports along the water conveyance lines for the System. In addition, groundwater samples were collected from the background monitoring wells for the shallow (MW-01) and deep (MW-27D) portions of the LPA using the low-flow purge and sample procedure All samples were analyzed for the following constituents:

- extractable petroleum hydrocarbons, diesel range organics (DRO), with and without silica gel treatment, using Standard Method 8015C;
- hexane extractable material (HEM), with and without silica gel treatment, using EPA Method 1664B;
- total organic carbon (TOC) using Standard Method 5310B;

- fulvic acid; and
- humic acid

Analytical results for the May 2020 foulant characterization samples are summarized in Table 10. A copy of the certified laboratory analytical report for the samples is included in Appendix B. Extractable petroleum hydrocarbons, as DRO, were not detected in the any of the monitoring well or process water samples except for the background sample and duplicate from deep monitoring well MW-27D. The non-detect levels in the silica gel treated samples from this well suggest the diesel range constituents are petroleum degradation products. The non-detect results for HEM also indicate the general lack of petroleum-related constituents in the portion of the aquifer system targeted for groundwater extraction. Detectable concentrations of TOC, which is typically used as a measure of natural organic matter (NOM), along with compounds that are representative of NOM - fulvic acid and humic acid - were found in all collected samples. Overall, the May 2020 sampling data confirm the organic constituents fouling the resin material consist almost exclusively of NOM and not petroleum hydrocarbons or petroleum degradation products.

On July 30, 2020, another round of samples of the extracted groundwater from the shallow and deep recovery wells, effluent from the lead resin vessel, and System effluent, together with a sample of the condensate from the steam regeneration process, were collected to further assess the levels of the NOM foulants in the System water. All samples were analyzed for TOC using Standard Method 5310C and dissolved organic carbon (DOC) using EPA Method 415.1. Analytical results for these foulant characterization samples are summarized in Table 11. A copy of the certified laboratory analytical report for the samples is included in Appendix B. As with the previous (May 2020) samples, low concentrations of TOC and/or DOC were detected in all collected samples. Using the TOC results, the organic carbon concentrations were around 1 milligram per liter (mg/L) in the water from the shallow recovery wells and less than 0.5 mg/L in water extracted from the deep wells. The relatively high TOC concentration in the shallow recovery well sample may reflect the greater VOC and 1,4-dioxane levels in the groundwater withdrawal from the shallow zone compared to the deep zone (see the recovery well sample data in Table 7). The effluent from the lead treatment vessel and System effluent had lower TOC concentrations (less than 0.5 mg/L), which would be consistent with the removal of both site-related contaminants and NOM by the resin media. The regeneration condensate had the highest concentrations of TOC (9.2 mg/L) and DOC (9.0 mg/L) in the samples collected from the System. The detection of relatively high levels of organic carbon in the condensate indicates the desorption of some portion of the NOM foulants during the steam regeneration process. However, this NOM-containing condensate from the steam regeneration process is ultimately pumped to the System equalization tank and processed through the treatment resin with extracted groundwater.

2.4.5 METALS FOULANT EVALUATION

Starting in late 2019, WSP and the System operation and maintenance subcontractor have noted an increase in the loading of the bag filters that remove solids from the groundwater before treatment by the resin to remove VOCs and 1,4-dioxane. Bag filters are replaced on a monthly basis, unless differential pressure readings indicate the need for more frequent replacement. While the frequency of bag filter replacement was monthly from System startup in early 2017 through late 2019, the frequency steadily increased to weekly by late 2020.

Given the increase in solid material removed from the extracted groundwater, System samples were collected on December 15, 2020 at the following locations to assess metal concentrations in the process flow:

- before the bag filters (VSP-2),
- after the bag filters and before the first resin vessel (VSP-3),
- between the resin vessels (T-1200 Lead Ef), and
- after the resin vessels (Effluent VSP-4)

Samples were analyzed for hardness and total and dissolved aluminum, copper, iron, lead, nickel, and zinc using EPA-approved test methods to identify metal precipitants that could explain the increased solids loading to the bag filters and/or indicate potential fouling of the resin media.

Analytical results for the December 2020 samples are summarized in Table 12. A copy of the certified laboratory analytical report for the metals foulant evaluation is included in Appendix C. The analytical results did not identify any metals in groundwater as potential System foulants. In addition, the data showed no indication that metals precipitation could be occurring within the System treatment components or process piping. These results indicate that the increased loading of the

bag filters is likely due to higher levels of suspended sediment/particulates in the extracted groundwater entering the treatment system.

Concentrations of dissolved and total aluminum in the effluent sample were non-detect, whereas those in the three upstream samples ranged from 120-185 μ g/L for dissolved aluminum and 126-182 μ g/L for total aluminum. Aluminum tends to remain dissolved in water at low and high pH but will precipitate out of solution within intermediate pH ranges (pH of approximately 5 to 9 standard units [SU]). The pH of the influent groundwater typically measures around 5 SU, and caustic soda is added to the treated groundwater to raise the pH of the effluent to a setpoint of 7.5 SU. It is believed that the addition of caustic soda for pH adjustment of the System effluent causes aluminum to precipitate out of the treated groundwater in the post-treatment effluent piping with no impact to System treatment performance.

2.4.6 PRE-TREATMENT TECHNOLOGY EVALUATION

During the fall of 2020, WSP worked with two vendors – Calgon Carbon and ECT2 - to evaluate treatment technologies that could remove natural organic carbon from the influent, thereby preventing fouling of the resin media. This initial phase of the evaluation involved the completion of bench-scale isotherm studies of two proven technologies – granular activated carbon (GAC; Calgon Carbon) and ion exchange (ECT2) – for removing these constituents.

WSP collected two (2) 5-gallon unpreserved samples of the untreated System influent groundwater on October 15, 2020 for the bench-scale testing. Each 5-gallon sample was containerized in a closed head polyethylene pail and shipped unpreserved overnight to each of the two vendors for completion of the isotherm studies.

The GAC isotherm study was inconclusive due to the non-detect levels of natural organic carbon indicator compounds – tannins and lignins – in the influent. Evaluation of the test results for the ion exchange isotherm study identified three resins that were successful in removing the natural organic carbon (ECT2 presentation summarizing the ion exchange isotherm test results is provided in Appendix D). Based on these results, WSP planned to implement a small-scale pre-treatment pilot test using one of the ion exchange resins during the spring of 2021.

2.5 SYSTEM MAINTENANCE

2.5.1 ROUTINE MAINTENANCE ACTIVITIES

During the 2020 reporting period, WSP subcontracted the weekly OM&M of the System to a local contractor, S&S Technologies, Inc. of Elkton, Maryland. Subcontractor oversight was provided by WSP engineer Ms. Shannon Burke, working under the direction of Mr. Steve Kretschman, P.E., the engineer of record for the System. OM&M activities were conducted in accordance with the current version of the OM&M Manual, dated May 2018.

Routine OM&M activities performed during the reporting period included the following:

- regeneration of the resin
- replacement of bag filters
- cleaning of the resin vessel wye strainers
- cleaning and recalibration of the inline pH probe
- recording instrumentation readings (flow, pressure, temperature)
- system-wide leak inspections
- steam boiler system inspections and testing

In conjunction with the inspection and testing of the boiler system, a local water treatment contractor (Chem-Aqua, Inc.) completed monthly checks of the boiler water chemistry. Quarterly mechanical inspections and maintenance of the steam boiler components were performed by another local contractor (Tate Engineering Systems, Inc.).

In addition to the routine tasks, annual OM&M activities were performed on July 27, 2020 and included the following:

cleaning and inspection of well vaults and piping tee-boxes

- recovery well water level transducer accuracy check
- system-wide manual exercising of ball valves
- system-wide wye strainer removal and cleaning

Based on the annual inspection findings, it was determined there are no leaks for any of the System components and cleaning of the inside of the flow equalization tank was not necessary.

2.5.2 NON-ROUTINE MAINTENANCE ACTIVITIES

PH ADJUSTMENT SYSTEM

There were multiple System shutdowns throughout 2020 associated with the pH adjustment system, resulting in increased site visits for inspection and replacement of various components. The problems with the pH adjustment system were related to wear on components used to add caustic soda into the treated water pipeline. During January 2020, WSP replaced the caustic anti-siphon valve, which is installed at the point where caustic solution enters the treated effluent water piping, and the ball valve and check valve located on the piping at the effluent end of the caustic pump. WSP also replaced the roller assembly for the caustic pump with the slightly used part from the sequestrant pump, which was briefly used during the first few months of System operation in 2017.

Following the caustic soda leak on early April 6, 2020, WSP replaced the entire caustic pump head assembly, caustic pump tubing, and tubing connection fittings. The caustic pump is closely inspected by a System operator at least once per month for signs of wear and the tubing is replaced as necessary. There have been only a few, minor System shutdowns associated with the pH adjustment system since mid-2020.

DIFFERENTIAL PRESSURE ACROSS RESIN VESSEL T-1100

After the resin cleaning event in late February 2020, there was a temporary recurring problem of high differential pressure across resin vessel T-1100 triggering shutdown of the System. This problem was isolated to one part of the T-1100 vessel and occurred immediately following steam regeneration of the vessel and could be corrected by manual cleaning of the wye strainer on the effluent side of the vessel. The effluent wye strainers are used to catch loose resin material from the vessels. It is believed that the process of disturbing - i.e., removing and then replacing – the resin during the resin cleaning event is the reason for this problem. The final occurrence of this problem was on September 19, 2020, when the System shut down due to a high-high differential pressure alarm for resin vessel T-1100. The problem has not recurred since the System was restarted on September 21, 2020, following cleaning of the T-1100 and T-1200 effluent wye strainers.

RECOVERY WELL RW-1D

Each recovery well has a dedicated pressure transducer that monitors water level in the well and controls the function of the recovery well pump VFD. The pressure transducer deployed in well RW-1D started to malfunction on April 5, 2020 and failed on April 10, 2020. The RW-1D pressure transducer was replaced on April 22, 2020 and there have been no issues with the new unit.

Following the regeneration of a resin vessel, the System shuts down for a few seconds to allow for reconfiguration of the System flow path when the cleaned vessel is brought back on-line. During September and October 2020, there was a recurring fault for the RW-1D pump VFD, whereby the RW-1D pump failed to restart immediately following the completion of a regeneration. When this issue occurred, the RW-1D pump was restarted via a manual reset of the pump's VFD.

The problems noted above were limited to recovery well RW-1D and did not affect the operation of the other shallow or deep wells comprising the hydraulic containment system. The extraction of COC-impacted groundwater continued to occur while repairs were affected to bring RW-1D back on-line.

WATER SOFTENER CONTROL VALVE

On May 29, 2020, hardness was detected in the soft water supplied to the System boiler for steam production and rinse water during the resin regeneration process. Since hard water (*i.e.*, water with high concentrations of dissolved minerals, particularly calcium and magnesium) is known to cause issues with steam boiler performance and steam quality, resin

regeneration, and thus System operation, could not be continued until the hard water issue had been addressed. The System was shut down and the water softener was subsequently inspected by the subcontractor responsible for monitoring and maintaining the boiler water chemistry (Chem-Aqua, Inc.). This inspection discovered that corrosion and deposition of material in the water softener drain line, which was composed of carbon steel and incompatible with the brine used to regenerate the water softener resin, had caused excessive back pressure on the water softener control valve, resulting in its failure. The carbon steel drain line for the water softener was replaced with polyvinyl chloride piping. The subcontractor also replaced various components of the water softener control valve. The System was restarted on June 12, 2020 following maintenance to the control valve and brine regeneration of the water softener resin. Hardness has not been detected in the soft water supply since repairs were made to the control valve.

STEAM BOILER

The boiler feedwater tank has a level switch that controls a solenoid valve that allows soft water to enter the boiler feedwater tank. Failure of this level switch halts steam production as there is no feedwater to the steam boiler. The electrical component of the level switch failed on July 18, 2020 and was replaced on July 24, 2020. Shortly after completing these repairs, the mechanical float component of the switch failed on August 10, 2020 and was replaced on August 12, 2020. There have been no problems with the new level switch components. Operation of the level switch will be monitored as part of the routine System O&M activities and components repaired or replaced as necessary.

During September 2020, there were two instances when the System shut down due to an interruption to the regeneration process. After performing some troubleshooting, it was determined the effluent check valve for the primary boiler transfer pump was likely creating back pressure, reducing pump efficiency, and therefore in need of replacement. The boiler operated using only the secondary transfer pump from September 29, 2020 through early 2021. The primary boiler transfer pump has been operating normally since replacement of the effluent check valves for both boiler transfer pumps in February 2021.

TRANSFER PUMP P-100B

On November 21, 2019, the System automatically shut down due to the failure of transfer pump P-100B. The System was restarted the following day on November 22 using redundant transfer pump P-100A and continued to operate using only P-100A through September 2020. During the resin cleaning event in late February 2020, ECT2 determined that both the liquid end of the transfer pump and the pump VFD had been affected during their normal operation and required replacement. On September 16, 2020, the liquid end of transfer pump P-100B and the pump VFD were replaced by the System operator (S&S Technologies, Inc.), and the new VFD was programmed by programming consultant Doddridge Controls, Inc. There have been no problems with the operation of the new P-100B transfer pump or VFD.

RESIN VESSEL DRAIN VALVES

Following the resin cleaning event, the drain valves at the base of both resin vessels developed leaks. The T-1100 and T-1200 vessel drain valves were replaced on September 16, 2020. The new valves have not shown any signs of leakage.

2.6 GROUNDWATER MONITORING ACTIVITIES

A total of 21 monitoring wells have been installed to collect groundwater levels and groundwater quality samples at the Site (Figure 6). Details regarding well construction are provided in Table 13. All monitoring wells, along with the co-located piezometers for the recovery wells, were utilized in the groundwater level monitoring program. Groundwater samples were collected from select monitoring wells as part of the monitoring program for the corrective measures.

2.6.1 GROUNDWATER LEVELS

In mid-May and late November 2020, groundwater level measurements were collected from all monitoring wells and recovery well piezometers. The depth to groundwater (to the nearest 0.01 foot) was measured from the reference point on the monitoring well or piezometer casing using an electronic water level meter.

2.6.2 GROUNDWATER SAMPLES

SAMPLING PLAN

In accordance with the Groundwater Monitoring Plan (WSP 2015b), groundwater quality samples were collected from the onsite monitoring wells during the week of May 10, 2020 for the annual sampling event. The selected monitoring wells included 13 shallow (unconfined) zone monitoring wells (MW-01, MW-03, MW-04, MW-05R, MW-09, MW-16, MW-18, MW-20, MW-38R, MW-39, MW-42, MW-43, and MW-44) and 8 deep (confined) zone wells (MW-1D, MW-16D, MW-21D, MW-22D, MW-23D, MW-27D, MW-40D, and MW-41D). Groundwater quality samples were collected the week of November 22, 2020 for the semiannual sampling event. The semiannual event included the same wells as the annual event but excluded 4 monitoring wells located in unaffected areas of the Site. The excluded wells consisted of two in the shallow unconfined zone (MW-03 and MW-44) and two in the deep confined zone (MW-27D and MW-41D). Monitoring well MW-42 had a construction problem (well cap had been removed causing the previously deployed passive sampling device to fall) and MW-16D was inaccessible during the November 2020 field sampling activities. After replacing the well cap and installing a new sampling device, monitoring well MW-42 was sampled on January 6, 2021. Monitoring well MW-16D was sampled on December 8, 2020.

MONITORING WELL SAMPLING PROCEDURE

Groundwater samples were collected from the monitoring wells using HydraSleeve samplers. A single, 2-foot long HydraSleeve sampler was attached to a weighted nylon line and set in each well to collect a sample in the middle of each well screen. The nylon line was secured at the well head to ensure the sampler remained at the selected deployment depth. During the sampling activities, the pre-deployed and equilibrated HydraSleeve sampler was removed from the well, and the collected water transferred to the appropriate containers for laboratory analysis. After sample collection, any remaining water was used to measure field parameters (pH, conductivity, turbidity, and temperature) via a multi-parameter water quality meter. Field parameter data was not obtained if there was insufficient water following sample collection. A new HydraSleeve sampler was then deployed after collecting each sample. The collected monitoring well samples were analyzed for VOCs using EPA SW-846 Test Method 8260D and 1,4-dioxane using modified EPA SW-846 Test Method 8260D SIM by the Pace Analytical Services laboratory in Huntersville, North Carolina. Excess water generated from the monitoring well sampling activities was containerized and processed through the System.

2.7 GROUNDWATER MONITORING RESULTS AND EVALUATION

2.7.1 GROUNDWATER LEVELS

Groundwater level monitoring is conducted to gather data to evaluate the hydraulic response to remedial pumping in both the shallow and deeper zones of the LPA. Current and historical monitoring well and piezometer depth to water measurements and calculated groundwater elevations are presented in Table 14. Water level contour maps depicting the water table and hydraulic head conditions in the sandy deposits in the shallow zone of the LPA and the deeper confined zone of the LPA are provided in Figures 7, 8, and 9 for the May 2020 monitoring event, and Figures 10, 11, and 12 for November 2020. Information on the hydraulic head distribution and gradients along the groundwater surface and lower, sand-dominated portion of the shallow zone are discussed separately below.

The water table contour maps (Figures 7 and 10) indicate a generally northwest groundwater flow direction in the shallow zone of the LPA, with a localized depression in the groundwater surface around well MW-38R. The May 2020 contour map indicates this hydraulic sink extends southward to the vicinity of well MW-5R. The lowering of the groundwater surface in this area is related to groundwater pumping from recovery wells RW-1S and RW-2S immediately to the east. The slight mounding effect around wells MW-04 and MW-09 most likely reflects enhanced recharge to the groundwater system associated with the stormwater management area in the east-central portion of the Site.

The most pronounced drawdown within the shallow zone of the LPA occurred within the predominately sand deposits in the vicinity of the recovery wells. In this area, a well-developed cone of depression exists near RW-2S and extends to the north

toward wells MW-39 and MW-43, and south towards MW-44 (Figures 8 and 11). Based on the spatial head variations, groundwater in the upper portion of the unconfined zone will tend to migrate downward through the clayey deposits in the western portion of the Site and serve as inflow to the shallow recovery well system.

The potentiometric surface contour maps for the deep confined zone of the LPA generated from the May and November 2020 water level data are provided in Figures 9 and 12, respectively. The head distribution indicates the southward movement of groundwater in this portion of the LPA, with the development of an elongated depression in the potentiometric surface along the entire southern property boundary in response to groundwater withdrawals from the deep recovery wells. The easternmost portion of this hydraulic sink, as depicted by the head contours, indicates greater drawdown in the area around recovery well RW-2D, which is consistent with potentiometric surface maps from previous monitoring rounds. Evaluation of the head distribution indicates drawdown of the potentiometric surface extending south onto the adjoining Williams Scotsman property towards monitoring well MW-24D. Additionally, comparison of the groundwater elevations in monitoring wells MW-01D, MW-21D, and MW-41D indicate an upward component of flow from the lower-most portion of the sand deposits comprising this zone toward the depth interval screened by the recovery wells. Monitoring well MW-41D has a higher groundwater elevation and is screened in the lower-most portion of the deep zone compared to monitoring wells MW-01D and MW-21D. This indicates an upward component of groundwater flow from the lower portion of the confined sand unit to MW-01D and MW-21D, which are located next to recovery wells RW-2D and RW-1D, respectively.

2.7.2 GROUNDWATER QUALITY

OVERVIEW

Groundwater sample collection from the monitoring wells is conducted to monitor the VOC and 1,4-dioxane concentrations in the LPA underlying the Site. The May and November 2020 monitoring well analytical results are presented in Table 15. Historical analytical results of select site-specific constituents are presented in Table 16, and statistical trend evaluations are presented in Table 9. The certified laboratory analytical reports for the monitoring well samples are included in Appendix E.

Concentrations for the primary COCs detected in samples from the shallow and deep monitoring wells are provided in Figures 13 and 14, respectively. Iso-concentration maps for select VOCs and 1,4-dioxane were prepared from the analytical data from the annual (May 2020) monitoring event and are presented in Figures 15 through 17 (shallow zone of the LPA) and Figures 18 and 19 (deep zone of the LPA). The shallow zone iso-concentrations maps were developed using data from monitoring wells screened at depths of less than 45 feet in the western and eastern portions because this is the primary interval for contaminant transport in these areas of the Site. Therefore, data from monitoring wells MW-18, MW-20, and MW-39 were not included in the shallow zone iso-concentration maps based on their well screen depths. In addition to the onsite wells, results from offsite monitoring wells MW-24D, MW-45, and MW-46D are presented on the iso-concentration maps to help provide context with regards to the extent of VOC-affected groundwater. (The results from these offsite wells are described in more detail in the 2020 Offsite Groundwater Monitoring Report submitted to MDE and EPA on May 6, 2021.) The lowest iso-concentration contour values were based on the applicable Cleanup Standards. Although the recovery well data was not directly used to create the iso-concentration contours, these results were used to check and, if deemed appropriate, adjust the contour lines based on the zone of inflow for each recovery well.

SHALLOW ZONE OF LOWER PATAPSCO AQUIFER

As described in Section 2.7.1, groundwater flows in a generally northwestward direction in the shallow zone of the LPA beneath the former Kop-Flex facility. For this portion of the aquifer, the highest concentrations of VOCs (well MW-16) and 1,4-dioxane (well MW-20) were detected in monitoring wells situated hydraulically upgradient of the shallow recovery wells. Additional exceedances of the Cleanup Standards were found in eastern (upgradient) monitoring wells MW-04 (1,1-DCE, 1,1-DCA, and 1,4-dioxane), MW-09 (1,1-DCE and 1,4-dioxane), and MW-20 (1,1-DCE, 1,1-DCA, and 1,2-DCA). Data for the western (downgradient) monitoring wells indicates Site-related contaminants at levels above the Cleanup Standards in samples from wells MW-38R and MW-44 (1,1-DCA and 1,4-dioxane) and MW-43 (1,1-DCE, 1,1-DCA, and 1,4-dioxane).

Overall, 1,1-DCE and 1,4-dioxane concentrations in the groundwater samples have decreased an average of approximately 70% from their historic maximum concentrations, while 1,1-DCA has decreased 58% (Table 9). Mann-Kendall statistical trend evaluations were conducted on the sampling results for 1,1-DCA, 1,1-DCE, and 1,4-dioxane at monitoring wells with equal to or greater than 50% detections and 4 or more sample results. A 95% confidence limit was used for the statistical calculation (Table 9). Most monitoring wells screened in the shallow unconfined portion of the LPA across the Site exhibited

no trends or decreasing trends with regards to these constituents. Monitoring well MW-16, which typically has the highest VOC concentrations, exhibited decreasing trends for both 1,1-DCE and 1,4-dioxane. The exception is well MW-20, which exhibited increasing trends for 1,1-DCA and 1,4-dioxane.

The concentrations of 1,1-DCE, 1,1-DCA, and 1,4-dioxane exhibit similar general distributions within the shallow water-bearing zone, with the respective plumes extending to the west underneath the loading dock area and south building toward the recovery wells. The upgradient portion of the plume extends a short distance onto the Williams-Scotsman property. Historically, concentrations below the Cleanup Standards have been found to the east of the Kop-Flex Site (MW-45), and along the southern (MW-01), and western (MW-03 and MW-42) Site boundaries, thereby largely defining the extent of the affected groundwater.

DEEP CONFINED ZONE OF LOWER PATAPSCO AQUIFER

Groundwater in the deep zone of the LPA flows in a southward direction across the former Kop-Flex property (see Section 2.7.1). Given the general flow paths in this portion of the aquifer, monitoring wells located upgradient of the deep recovery wells - MW-16D and MW-23D - had the highest VOC and 1,4-dioxane concentrations above the Cleanup Standards (Figure 14). However, it should be noted the concentrations of these constituents in samples from MW-24D on the adjoining Williams-Scotsman property had noticeably higher levels than those detected in any of the onsite wells. (The results from this offsite well are described in more detail in the 2020 Offsite Groundwater Monitoring Report submitted on May 6, 2021.)

Additional exceedances above the Cleanup Standards were found in samples from monitoring wells MW-01D for 1,1-DCE, 1,1-DCA, and 1,4-dioxane and MW-21D for 1,1-DCE. Groundwater samples collected from the wells located near the plume boundaries in the southeastern (MW-22D) and southwestern (MW-40D) portions of the Site did not have any contaminants exceeding the Cleanup Standards during the May 2020 sampling event; however, the MW-22D sample during the November 2020 sampling event did have a slight exceedance of the 1,1-DCE level. Monitoring well MW-41D is the deepest well in the confined zone of the LPA onsite and helps define the lower boundary of the VOC plumes onsite. During the May 2020 sampling event, the sample from MW-41D had no detections of chlorinated VOCs or 1,4-dioxane.

Since initiation of remedial pumping, 1,1-DCE and 1,1-DCA concentrations have decreased an average of 74% from their historic maximum concentrations in samples from the deep monitoring wells, and 1,4-dioxane has decreased 73% on average (Table 9). Mann-Kendall statistical trend evaluations were also conducted on 1,1-DCA, 1,1-DCE, and 1,4-dioxane data from wells screened in the deep confined zone of the LPA (Table 9). Most of the monitoring wells were found to have decreasing trends for at least one of these constituents. Monitoring well MW-16D exhibited a decreasing trend for all primary COCs.

Figures 18 and 19 provide the May 2020 iso-concentration maps for 1,1-DCE and 1,4-dioxane in the deep zone of the LPA. The iso-concentration maps show groundwater concentrations above the Cleanup Standards across the entire eastern portion of the Site, with the highest concentrations extending from the north warehouse area downgradient towards the south Site boundary and eventually offsite. The width of the COC-affected groundwater is defined by the sample results below their respective standards at well MW-22D to the east and wells MW-27D and MW-40D to the west.

2.8 ASSESSMENT OF CLEANUP PROGRESS

Groundwater in the shallow zone of the LPA flows in a generally northwestward direction in the onsite area. Since the start-up of the hydraulic containment system in March 2017, the concentrations of 1,1-DCA, 1,1-DCE, and 1,4-dioxane indicate that the shallow recovery wells are capturing the contaminant plume within the shallow (unconfined) zone of the LPA downgradient of the source areas. The effective containment of the plume is also indicated by the hydraulic influence in the western portion of the Site and groundwater quality results at or below the Cleanup Standards in the downgradient wells. Overall, the groundwater beneath the south warehouse still contains 1,1-DCE, 1,1-DCA, and 1,4-dioxane concentrations above their respective Cleanup Standards, although the concentrations have decreased for these constituents since the initiation of remedial pumping. The following changes in COC concentrations at monitoring well MW-16 indicate this trend in the groundwater quality:

- 1,1-DCE decrease from 26,200 μg/L (December 2016) to 1,130 μg/L (November 2020);
- 1,1-DCA decrease from 6,420 μg/L (December 2016) to 1,560 μg/L (November 2020); and
- 1,4-dioxane decrease from 1,450 μ g/L (December 2016) to 84.2 μ g/L (November 2020)

The exceptions include monitoring wells MW-20, MW-38R, and MW-44, where concentrations have increased for certain COCs since the initiation of remedial pumping. The increase of COC concentrations at these wells is most likely related to facilitated transport of dissolved mass in response to pumping from the recovery wells. The VOCs present in these wells are captured by the hydraulic containment system. The levels of contaminants will be closely monitored in these areas of the Site to ensure the continued System effectiveness.

For the deep zone of the LPA, groundwater flows in a southward direction across the former Kop-Flex property. The groundwater inflow area for the deep recovery wells appears to encompass the inferred width of the VOC plume in the deep (confined) zone of the LPA in the southern portion of the Site. This determination is based on the flow paths in response to the hydraulic gradients created during pumping. Overall, the groundwater beneath the eastern portion of the Site contains 1,1-DCE and 1,4-dioxane concentrations above their respective Cleanup Standards, although the concentrations have decreased for these constituents since the initiation of remedial pumping. The COC concentrations at monitoring well MW-16D indicate this trend, where between December 2016 (baseline sampling event) and December 2020, 1,1-DCE decreased from 254 μ g/L to 127 μ g/L and 1,4-dioxane decreased from 202 μ g/L to 105 μ g/L. While concentrations of site contaminants still exceed the Cleanup Standards in some wells, the data indicates that remedial pumping in both the shallow and deep zones of the LPA are removing contaminant mass from the aquifer, thereby making progress toward actively improving groundwater quality of the aquifer.

3 CONCLUSIONS

The groundwater monitoring data indicate that the Site is progressing towards attainment of the Response Action Objectives (RAOs) and conditions for issuance of a Certificate of Completion for the groundwater response action, as specified in Section 16.2 of the October 2015 RAP. Groundwater pumping at the recovery wells is achieving effective onsite capture of the plumes in the impacted portions of the aquifer system, thereby preventing further offsite migration of Site-related contaminants. Based on evaluation of the groundwater monitoring data, the hydraulic containment system is functioning as designed and in accordance with the engineering design requirements. Given that concentrations of VOCs and 1,4-dioxane remain above the Cleanup Standards in the onsite area, the continued operation of the System is deemed necessary during 2021.

Analysis of treated effluent samples indicate the System is completely removing VOCs and a minimum of 95.8% of the 1,4-dioxane from the extracted groundwater. As in 2018 and 2019, there were no exceedances of the effluent limits specified in the NPDES Permit during the 2020 operational period. There was a single exceedance of the 1,4-dioxane Site cleanup goal, which was believed to represent a short-term anomaly most likely caused by a brief "slug" of water with relatively high contaminant concentrations entering the System. Samples of the treated water will continue to be collected and analyzed pursuant to the monitoring requirements specified in the Permit.

During the spring of 2021, WSP will conduct pilot testing of the ion exchange treatment technology to remove organic carbon constituents from extracted groundwater prior to treatment by the specialty resin. Pending evaluation of the results of the small-scale pilot test, full-scale System pre-treatment may be implemented to prevent fouling of the specialty resin and maintain the System's removal efficiency for 1,4-dioxane and other Site contaminants.

During 2021, groundwater monitoring will continue to be performed semi-annually to further assess the hydraulic response to remedial pumping and changes in COC concentrations in the impacted aquifer. The data collection activities will be conducted in accordance with the monitoring program specified in the 2015 Groundwater Monitoring Plan (WSP 2015b).

REFERENCES

- WSP. 2015a. Response Action Plan Revision 2.0. October 2.
- WSP. 2015b. Groundwater Monitoring Plan Revision 1.0. September 17.
- WSP. 2018. Operation, Maintenance & Monitoring Manual Revision 3.0. May 24.

ACRONYMS

 μ g/L micrograms per liter COC constituent of concern

DCA dichloroethane
DCE dichloroethene

DOC dissolved organic carbon
DRO diesel range organics

ECT2 Emerging Compound Treatment Technologies
EPA United States Environmental Protection Agency

GAC granular activated carbon

GPM gallons per minute

HEM hexane extractable material HMI human-machine interface

lbs pounds

LPA Lower Patapsco Aquifer

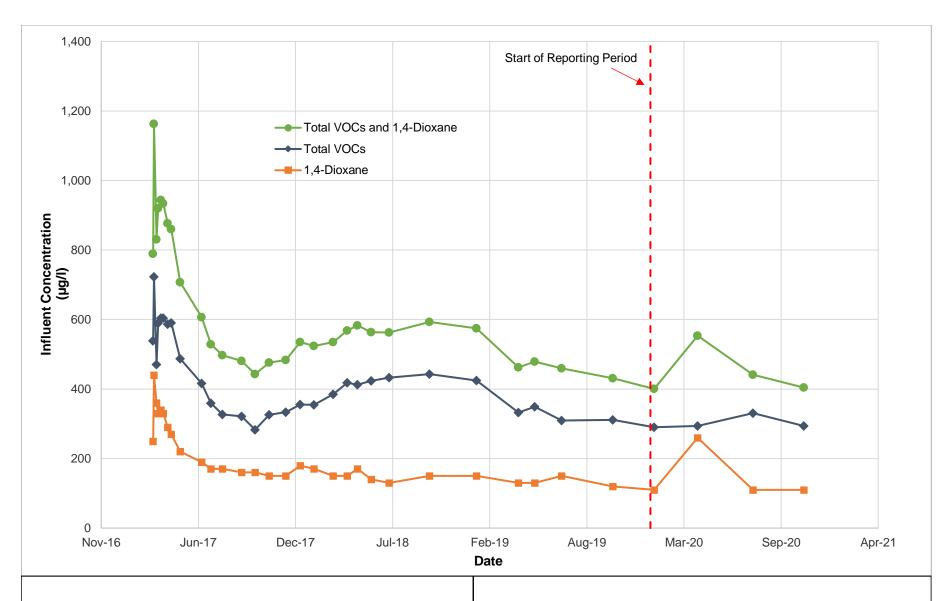
MDE Maryland Department of the Environment

mg/L milligrams per liter
NOM natural organic matter

NPDES National Pollutant Discharge Elimination System

OM&M operations, maintenance, and monitoring

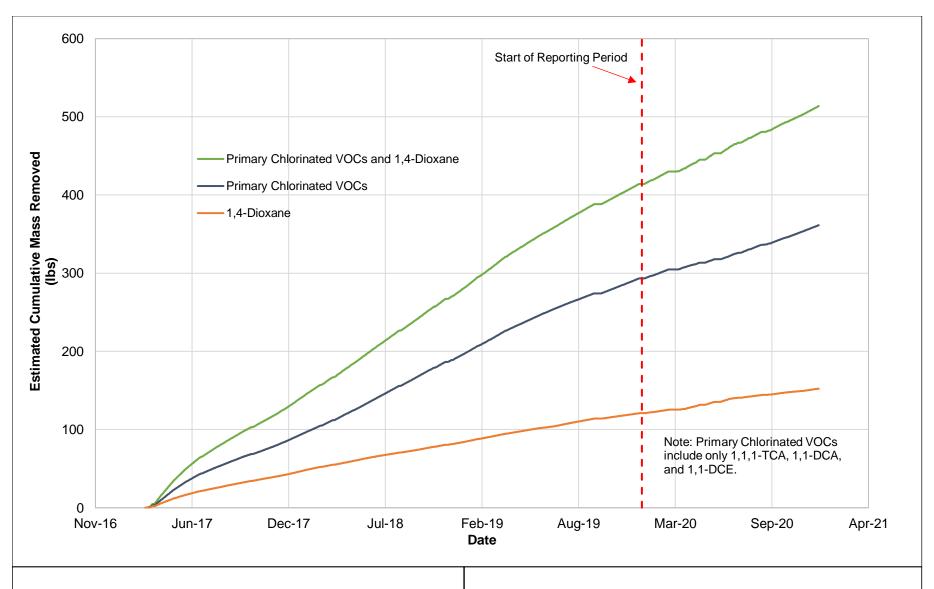
PCE tetrachloroethene


RAO Response Action Objective RAP Response Action Plan

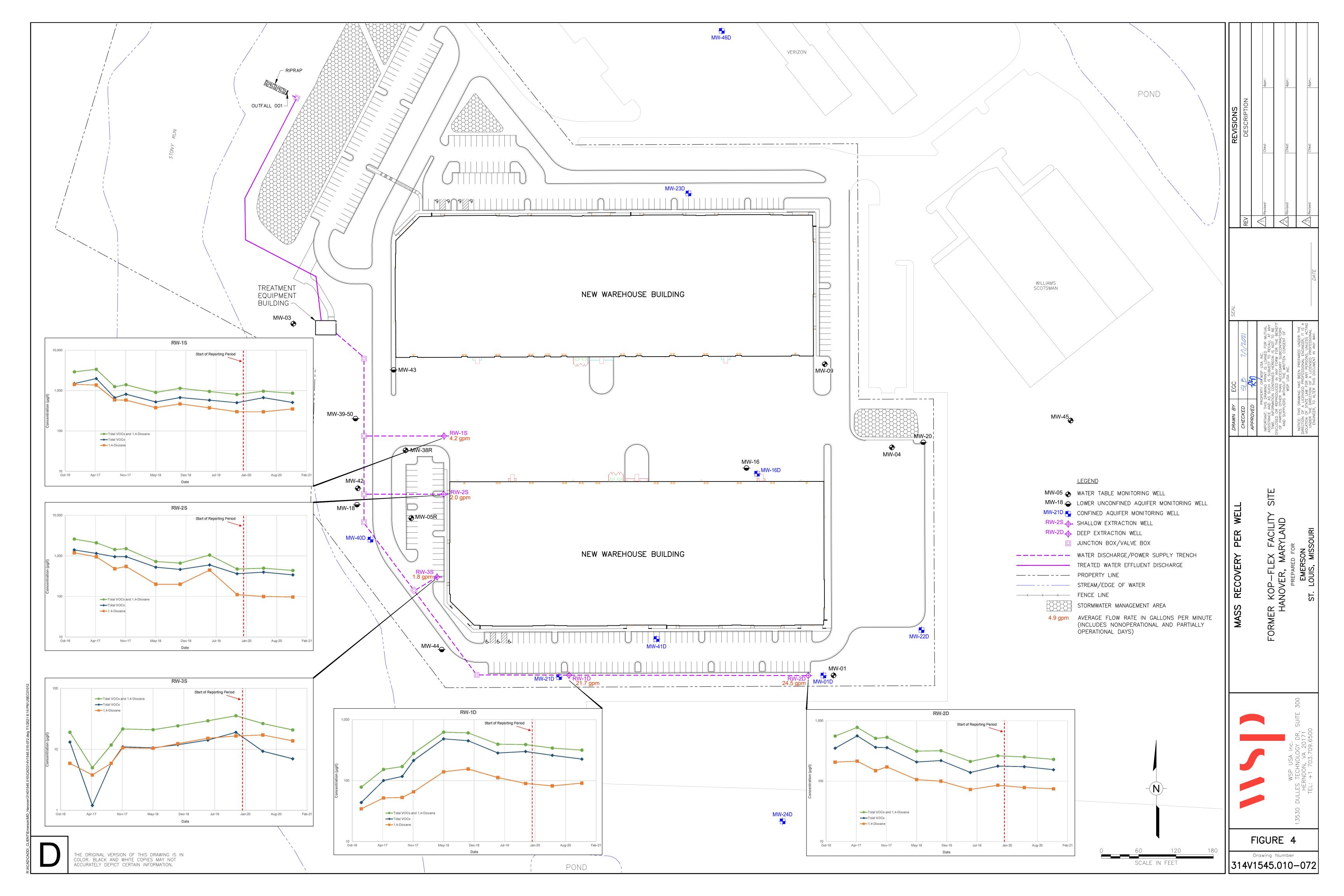
RTI Recirculation Technologies, LLC

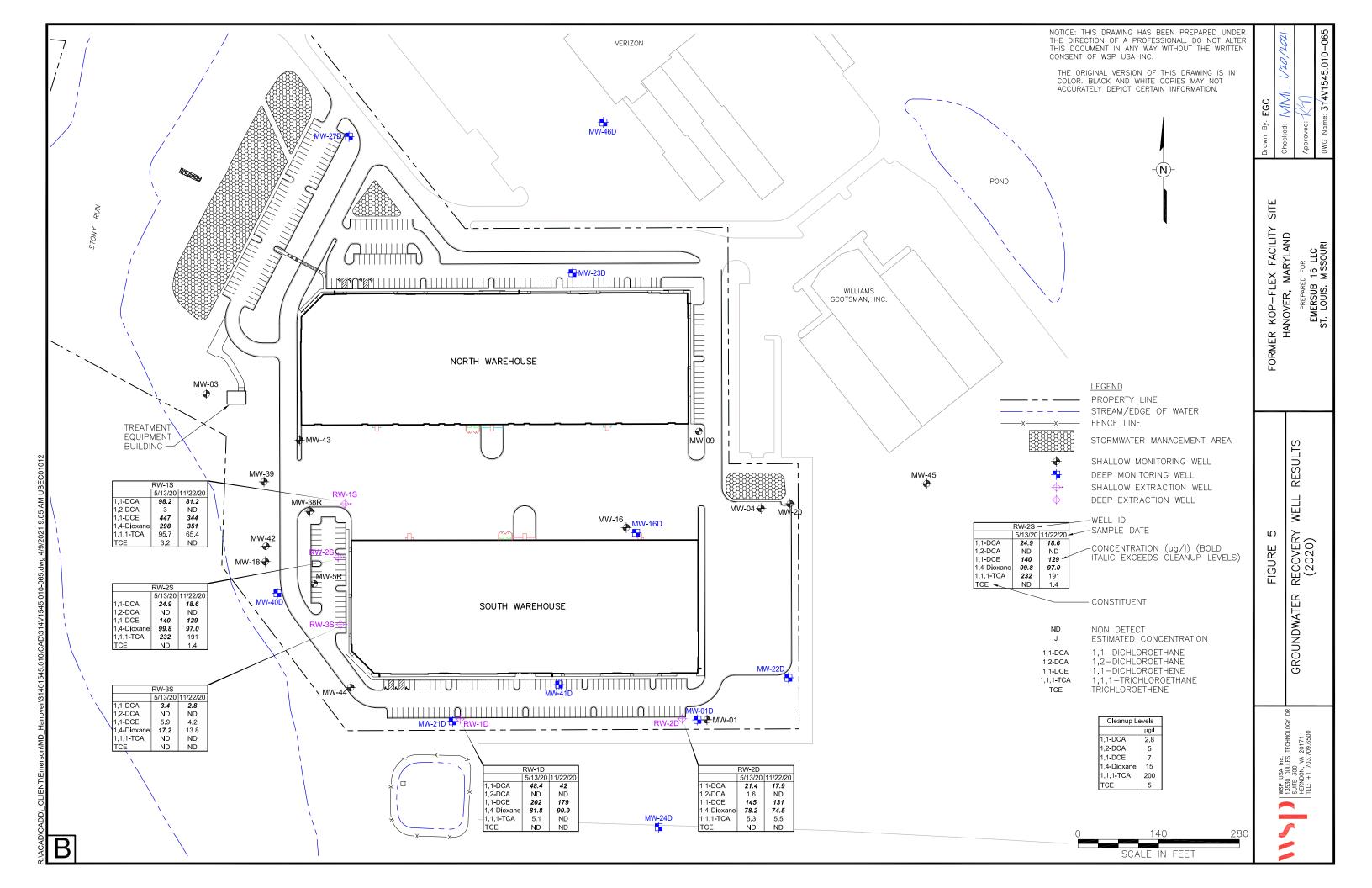
SIM Selected Ion Monitoring

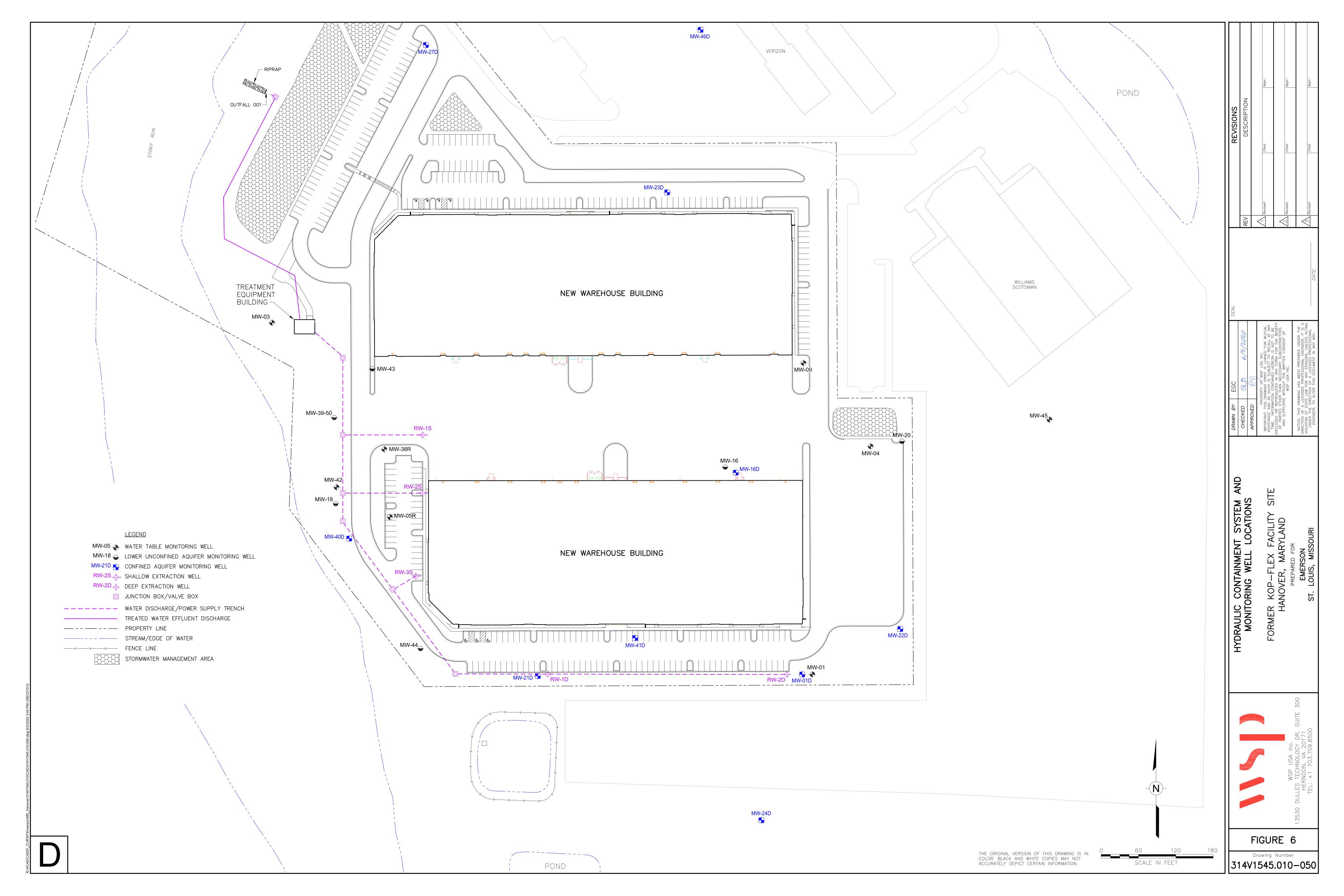
SU standard unit
TCA trichloroethane
TCE trichloroethene
TOC total organic carbon
VFD variable frequency drive
VOC volatile organic compound

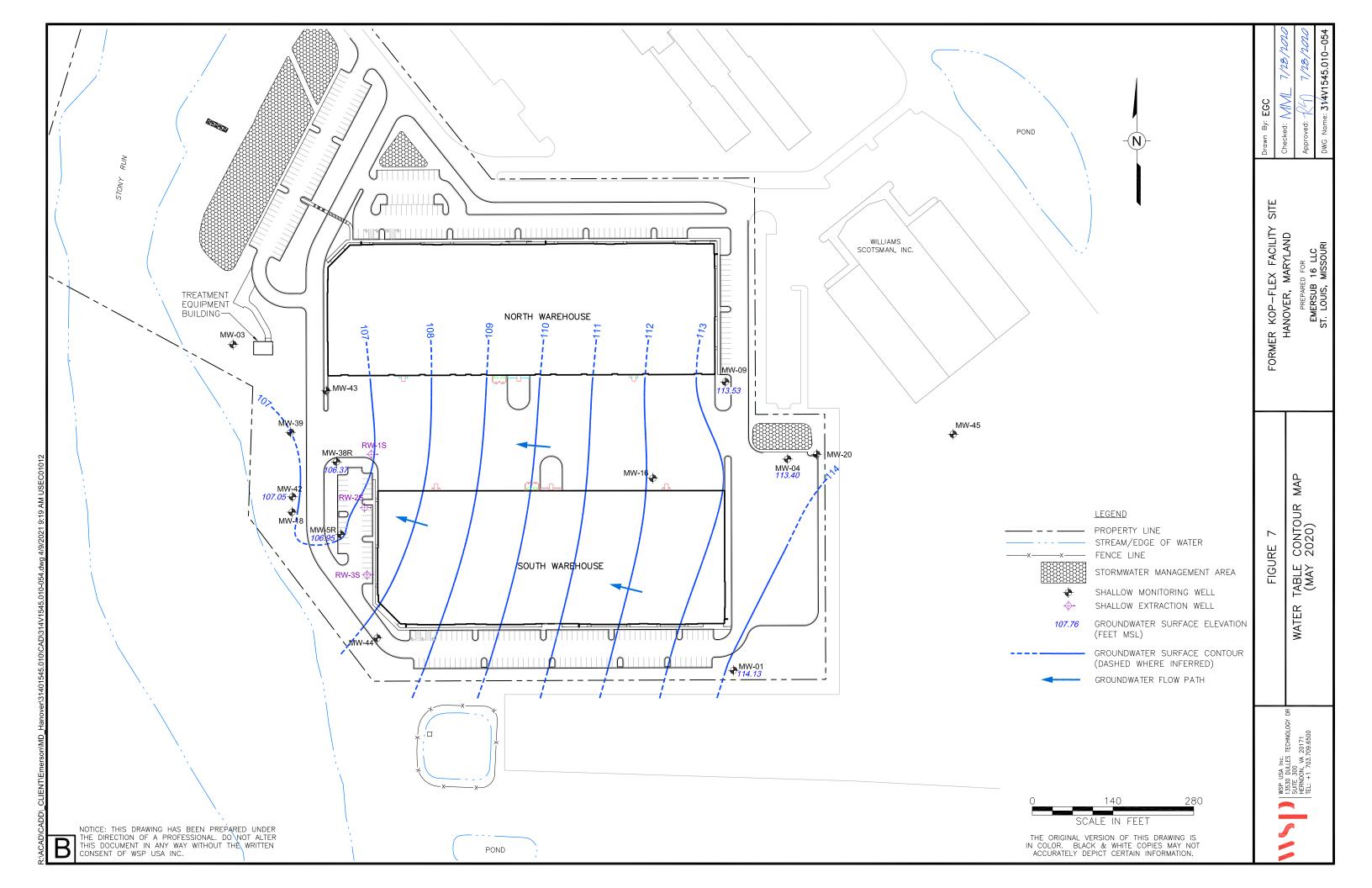

FIGURES

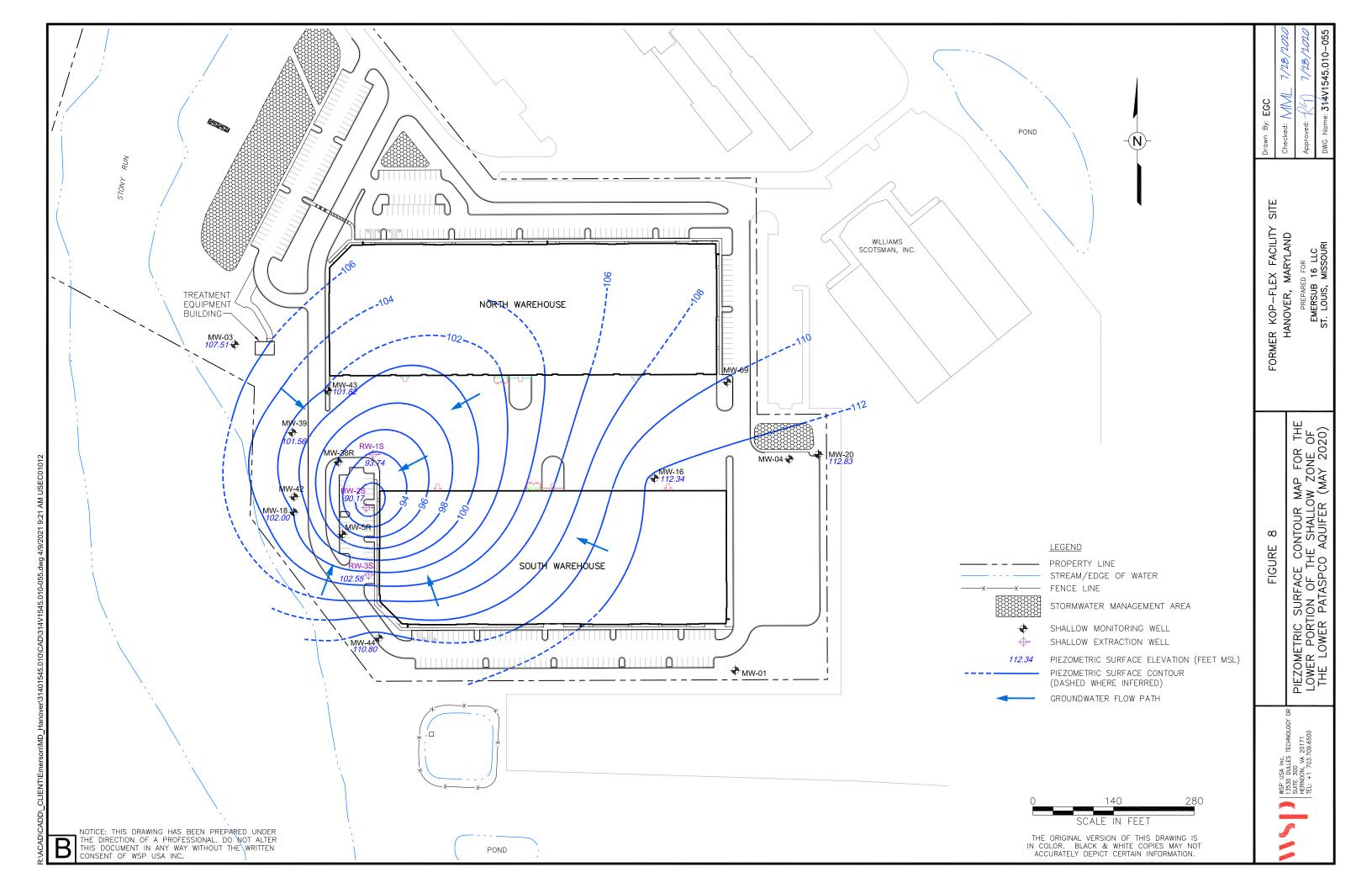
WSP USA Inc. 13530 Dulles Technology Drive Suite 300 Herndon, Virginia 20171 703-709-6500

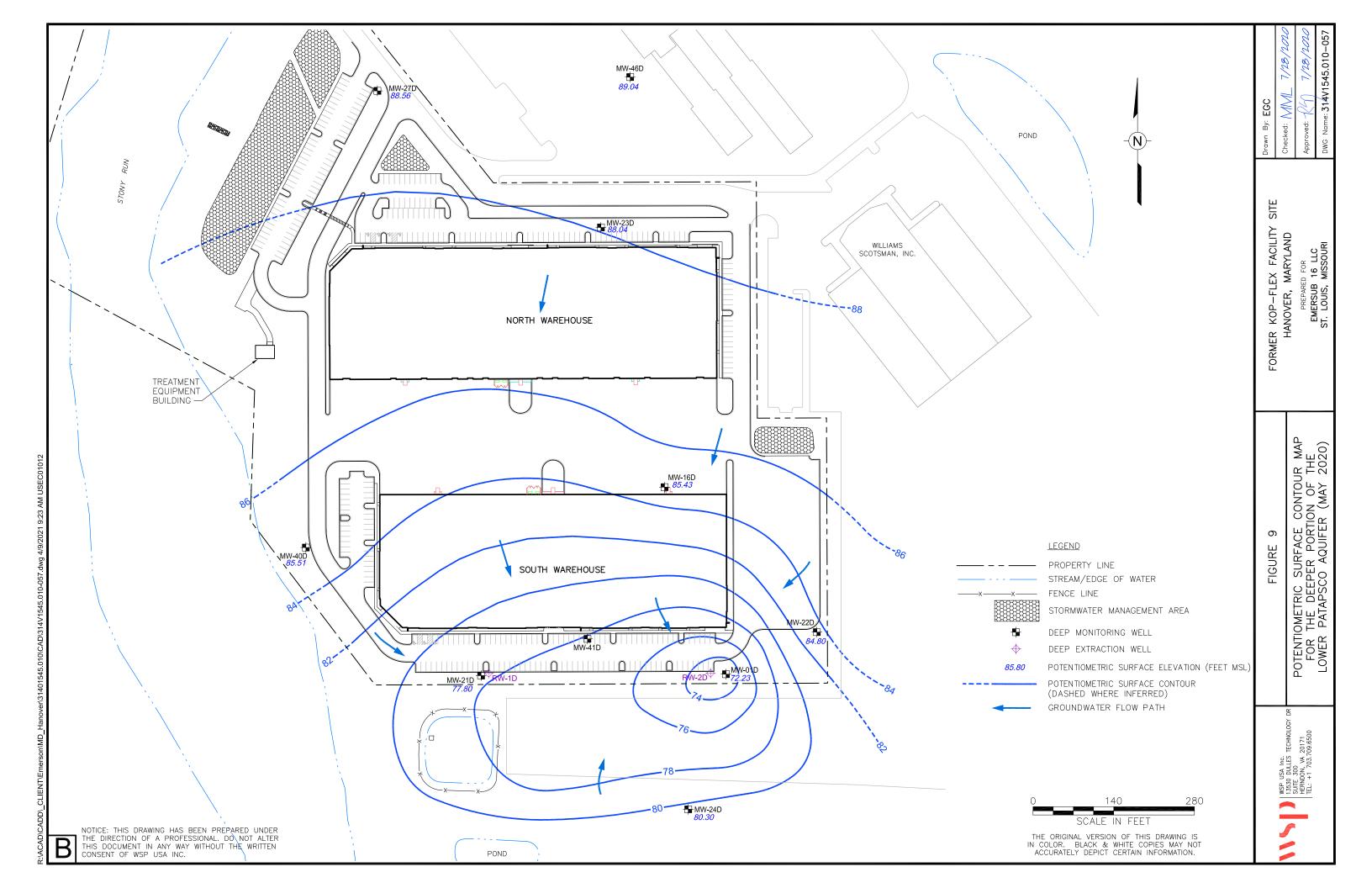

Figure 2 Historical Influent Concentrations Former Kop-Flex Facility Site Hanover, Maryland

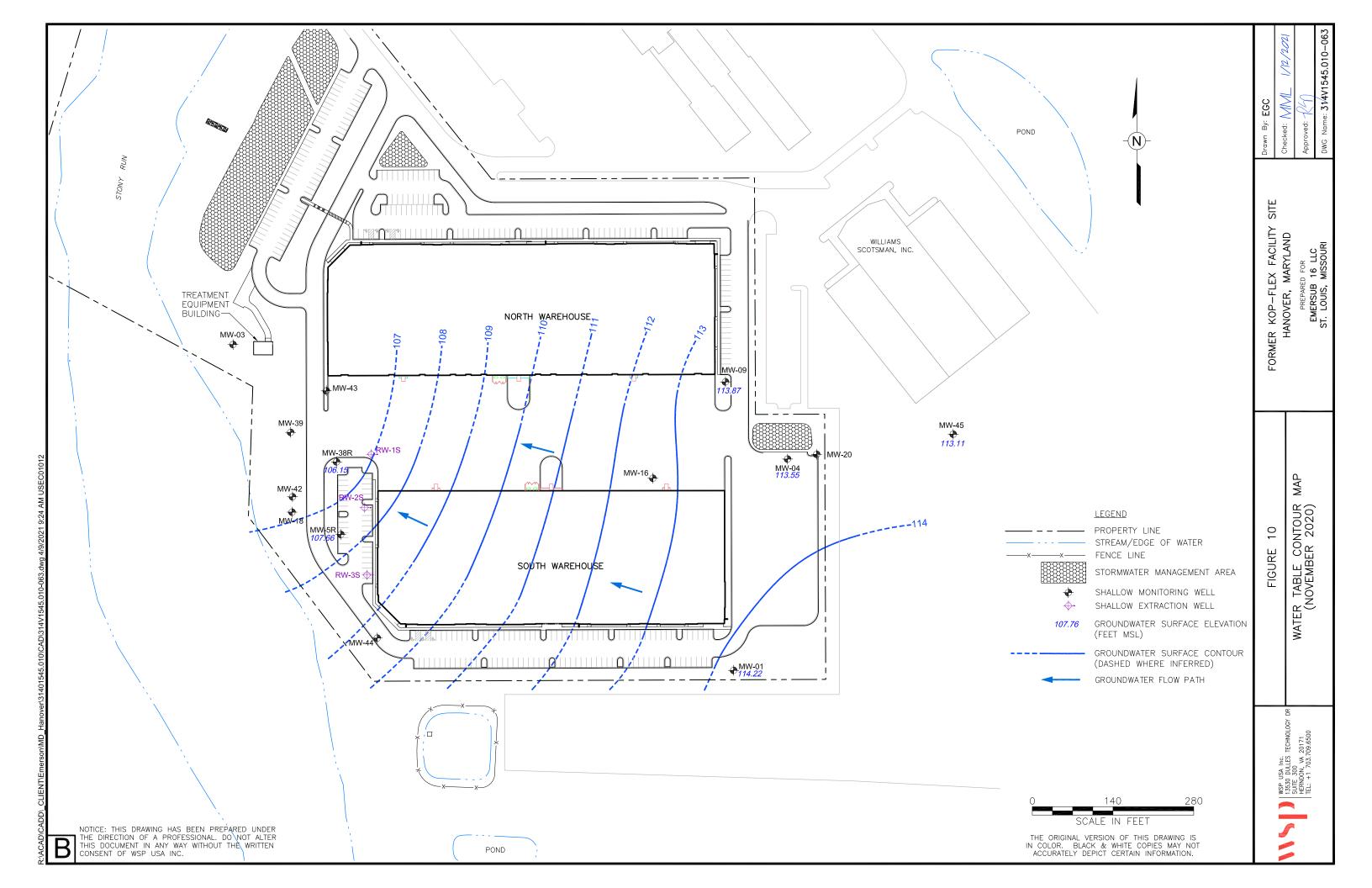


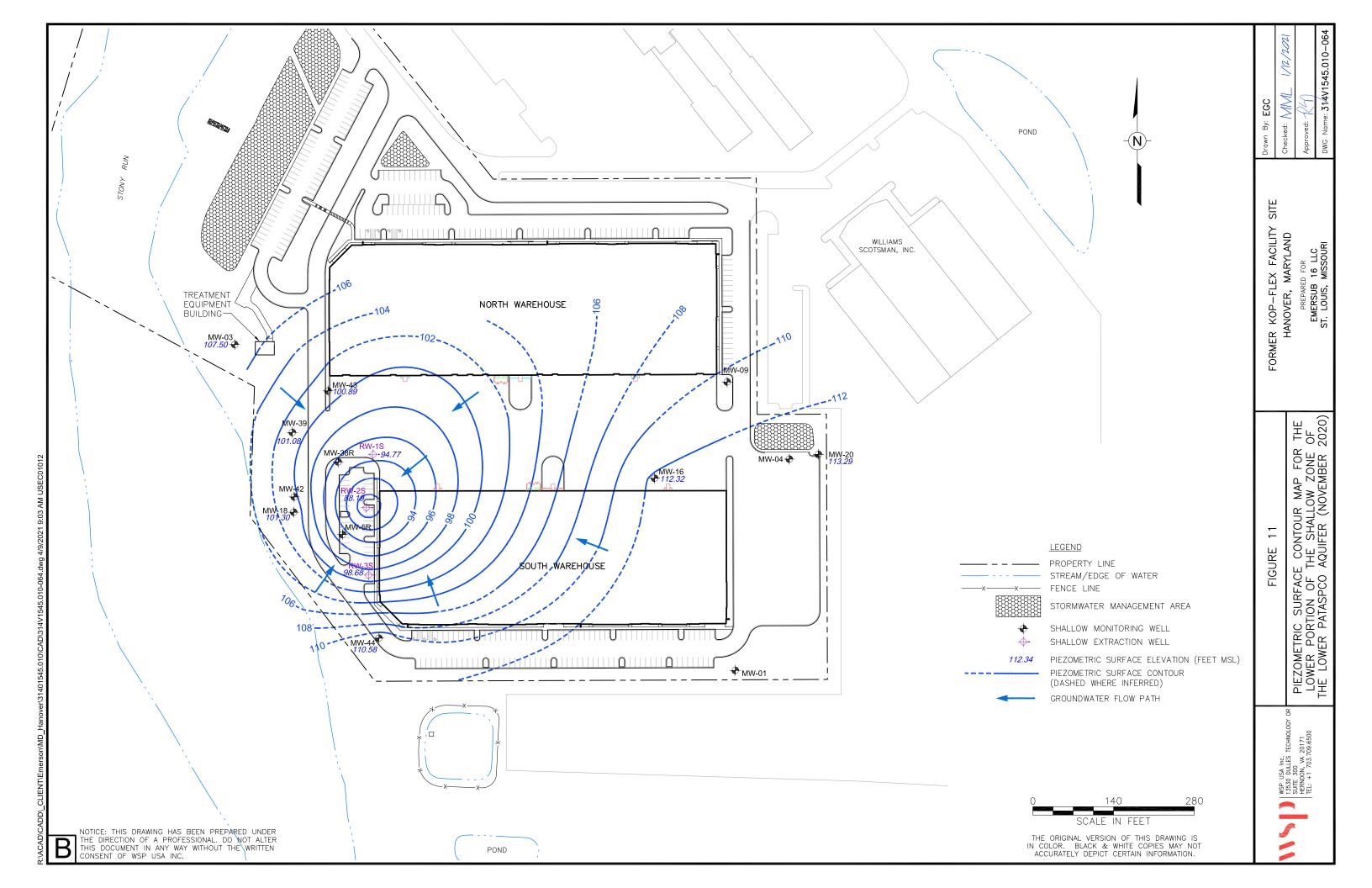


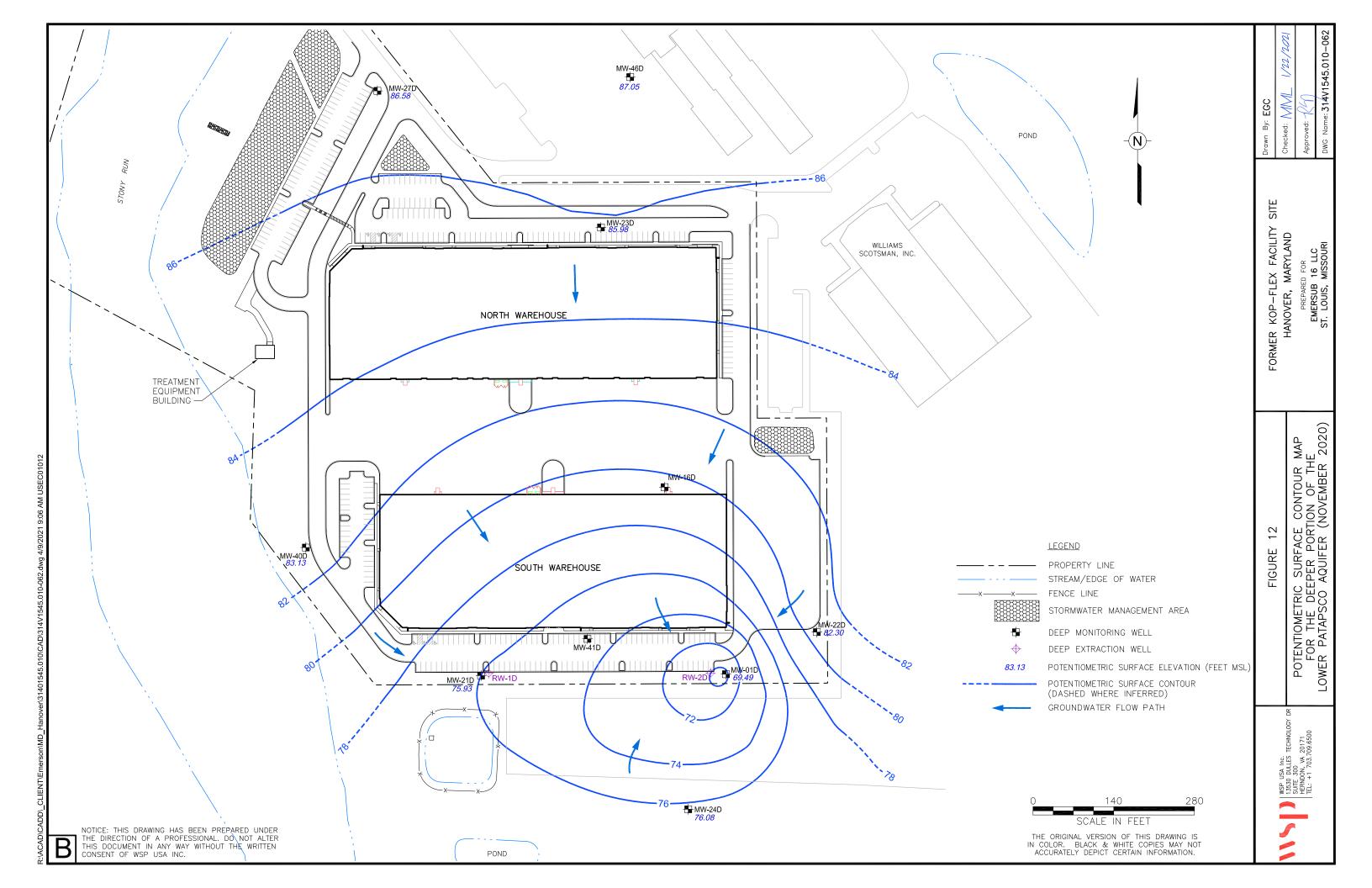

WSP USA Inc. 13530 Dulles Technology Drive Suite 300 Herndon, Virginia 20171 703-709-6500

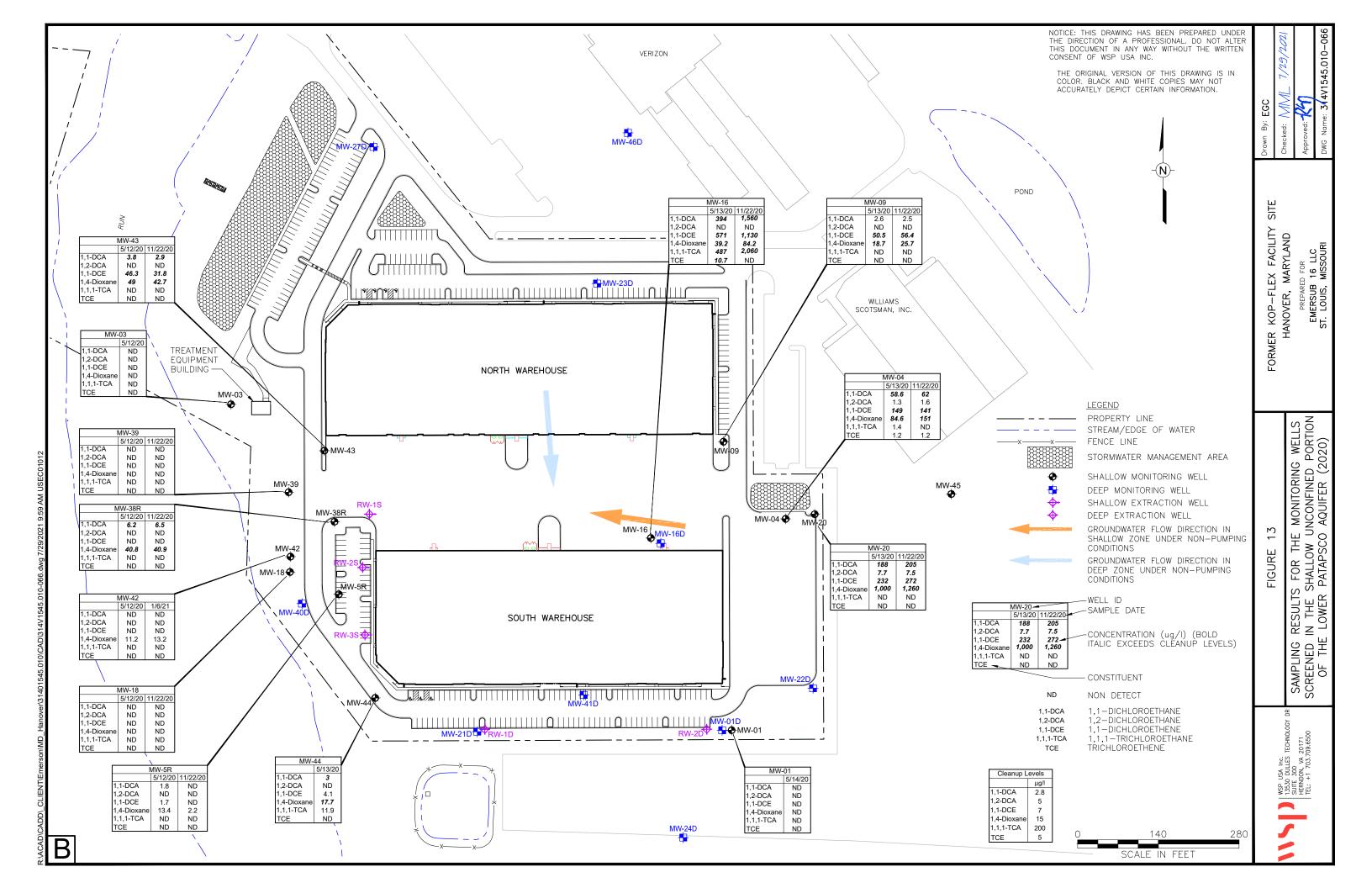

Figure 3 Cumulative Mass Removal Former Kop-Flex Facility Site Hanover, Maryland

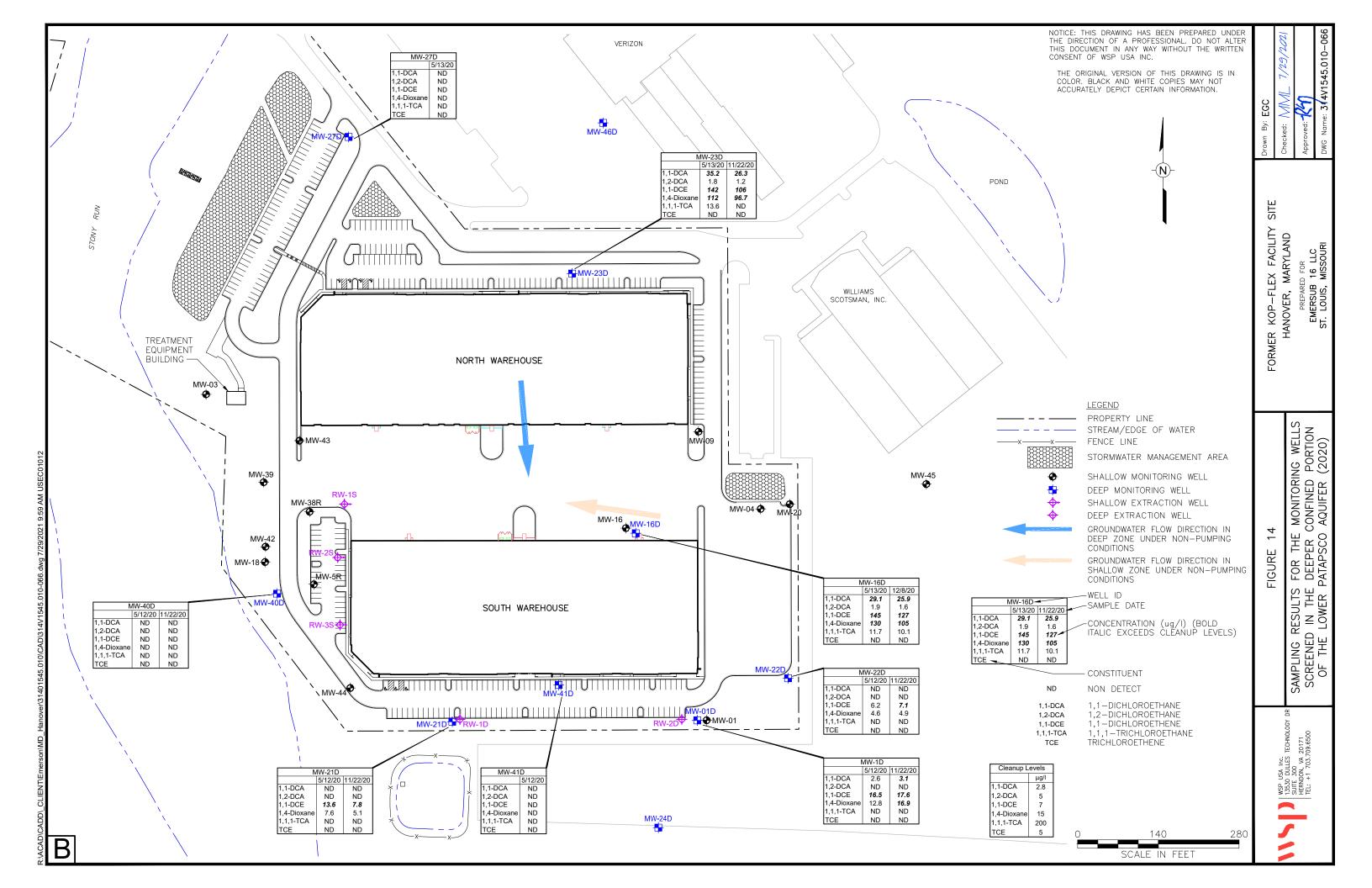


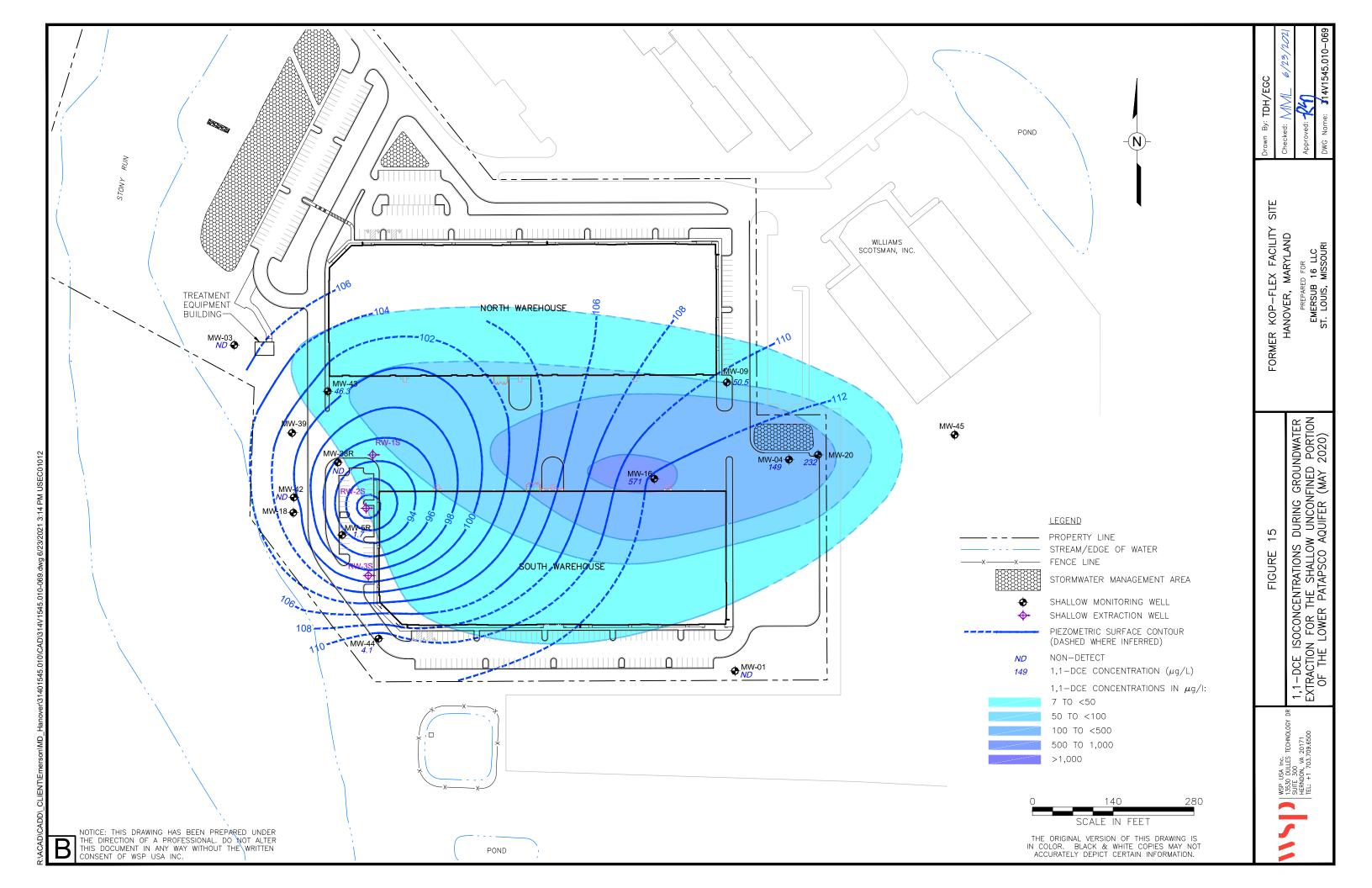


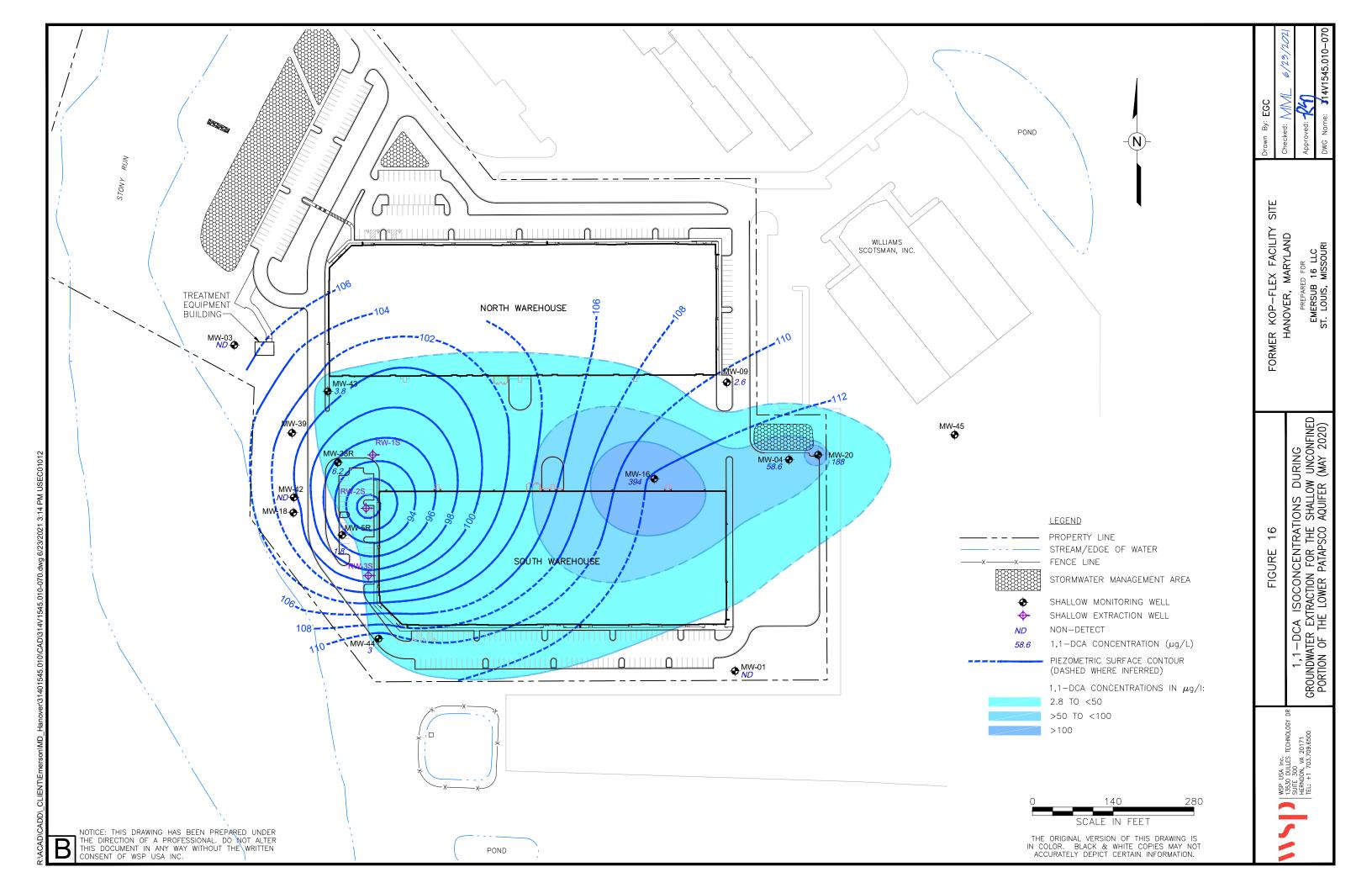


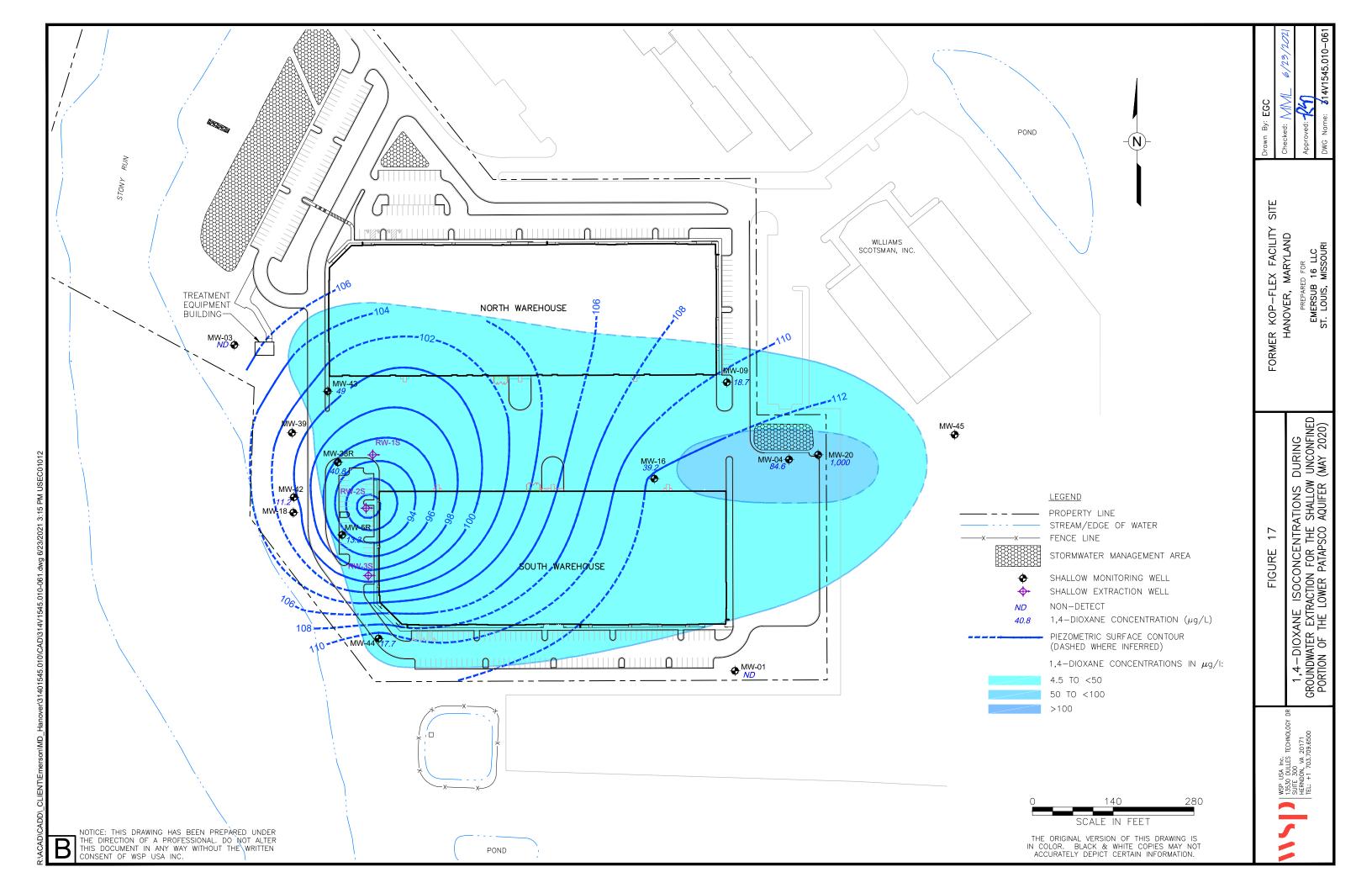


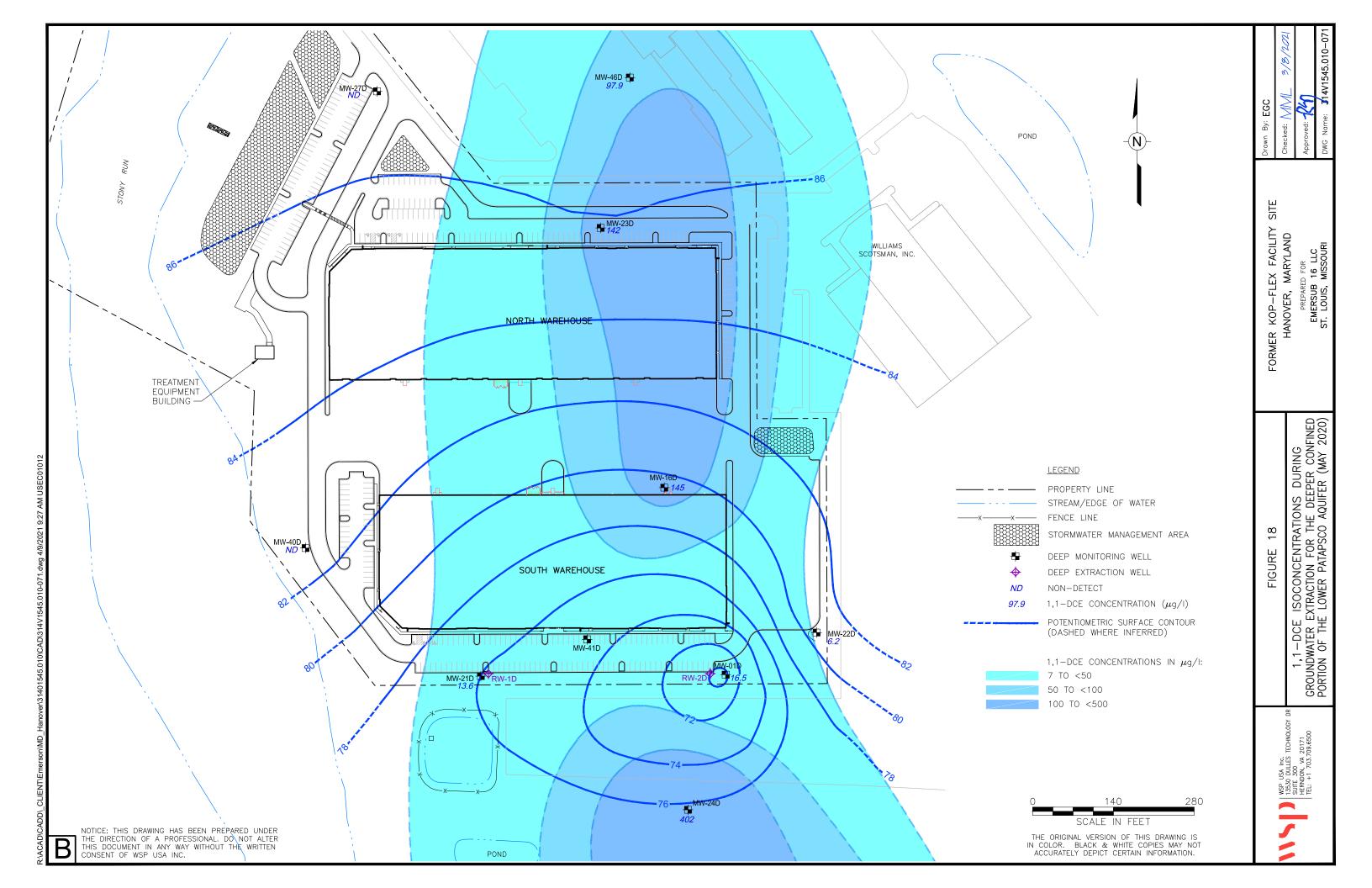


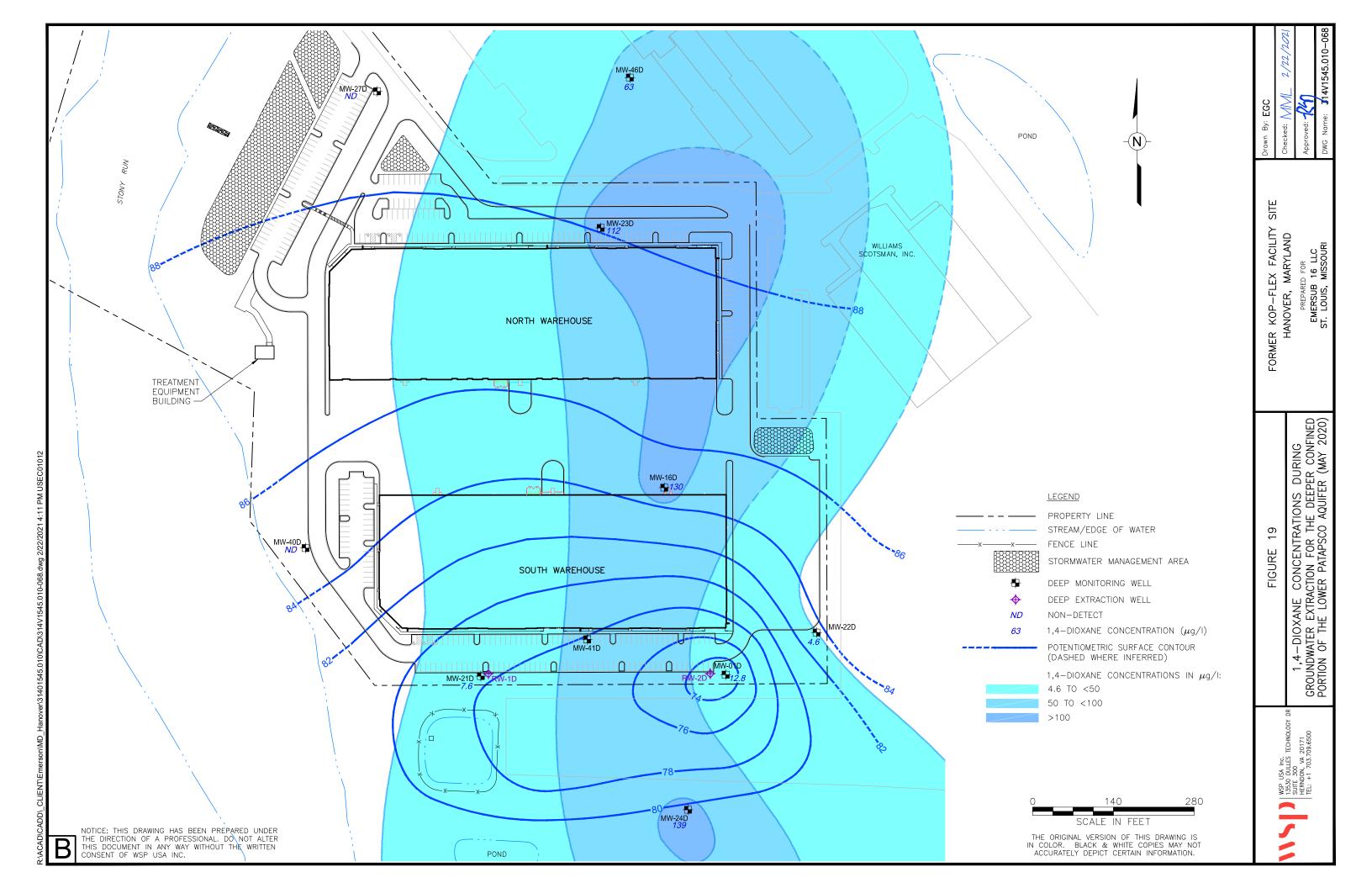












TABLES

Table 1

Historical Influent Results Former Kop-Flex Facility Hanover, Maryland (a)

Analyte Name		MDE Clear Standard for Groundy pe I/II Aqui	ds vater	Influent VS 3/13/20		Influent VS 3/15/201		Influent V 3/20/20		Influent V 3/23/20		Influent V 3/29/20		Influent VSP- 4/3/2017	-1	Influent VS 4/12/201		Influent V 4/19/20		Influent V 5/8/20		Influent V 6/21/20	
Volatile Organic Compounds (EPA Method 8260))																						
1,1,1-Trichloroethane 71	1-55-6	200	(c)	55		150		92		81		82		62		55		49		41		39	
1,1,2,2-Tetrachloroethane 79	9-34-5	0.076		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1,2-Trichloro-1,2,2-Trifluoroethane 76	6-13-1			1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1,2-Trichloroethane 79	9-00-5	5		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethane 75	5-34-3	2.8	(d)	180		200		110		140		150		140		140		120		86		59	
1,1-Dichloroethene 75	5-35-4	7	(c)	260		360		260		360		360		390		380		410		350		310	
1,2,3-Trichlorobenzene 87	7-61-6			1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,2,4-Trichlorobenzene 120	0-82-1	70		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,2-Dibromo-3-Chloropropane 96	6-12-8	0.20		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
1,2-Dibromoethane (EDB)	6-93-4	0.050		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,2-Dichlorobenzene 95	5-50-1	600		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,2-Dichloroethane 10'	7-06-2	5	(c)	1.6		2.0		2.5		3.1		3.5		3.6		3.5		3.0		2.6		2.1	
1,2-Dichloropropane 78	8-87-5	5		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,3-Dichlorobenzene 54	1-73-1			1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,4-Dichlorobenzene 100	6-46-7	75		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
2-Butanone (MEK) 78	8-93-3	560		25		10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	1	U
2-Hexanone 59	1-78-6			5	U	10	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
4-Methyl-2-Pentanone	8-10-1	630		5	U	10	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Acetone 67	7-64-1	1,400		10		10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	1	U
Benzene 71	1-43-2	5		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Bromochloromethane 74	4-97-5			1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Bromodichloromethane 75	5-27-4	80		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Bromoform 75	5-25-2	80		5	U	10	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Bromomethane 74	4-83-9	0.75		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Carbon Disulfide 75	5-15-0	81		10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U
Carbon Tetrachloride 56	6-23-5	5		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chlorobenzene 108	8-90-7	100		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chloroethane 75	5-00-3	2,100	(d)	3.0		10		2.3		2.4		2.3		2.7		2.5		2.5		2.7		2.7	
Chloroform 67	7-66-3	80		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chloromethane 74	4-87-3	19		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Cyclohexane 110	0-82-7			10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U
Dibromochloromethane 124	4-48-1	80		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Dichlorodifluoromethane 75	5-71-8			1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Ethylbenzene 100	0-41-4	700		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Isopropylbenzene 98	8-82-8	45		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
	9-20-9			10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U

Table 1
Historical Influent Results

Former Kop-Flex Facility Hanover, Maryland (a)

Analyte Name	Cas#	MDE Cle Standa for Ground Type I/II Aq	rds dwater	Influent V 3/13/20		Influent V 3/15/20		Influent V 3/20/20		Influent V: 3/23/20		Influent V 3/29/20		Influent VS 4/3/2017		Influent V 4/12/20		Influent V 4/19/20		Influent V 5/8/201		Influent V 6/21/20	
Methyl-t-butyl ether	1634-04-4	20		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Methylcyclohexane	108-87-2			10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U
Methylene Chloride	75-09-2	5		1	U	10		1	U	1	U	1.1		1	U	1	U	1	U	1	U	1	U
Naphthalene	91-20-3	0.17		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Styrene	100-42-5	100		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Tetrachloroethene	127-18-4	5	(c)	1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Toluene	108-88-3	1,000		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Trichloroethene	79-01-6	5	(c)	1.9		10		2.2		2.8		2.8		3.0		3.0		2.9		2.6		2.2	
Trichlorofluoromethane	75-69-4			5	U	10	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Vinyl Chloride	75-01-4	2	(c)	1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
cis-1,2-Dichloroethene	156-59-2	70	(c)	2.2		10		1.2		1.8		1.9		2.5		2.6		2.2		1.9		1.4	
cis-1,3-Dichloropropene	10061-01-5			1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
m,p-Xylenes	108-38-3	10,000		2	U	10	U	2	U	2	U	2	U	2	U	2	U	2	U	2	U	2	U
o-Xylene	95-47-6	10,000		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	156-60-5	100		1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,3-Dichloropropene	10061-02-6			1	U	10	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
	TOTAL VOCs:			538.7		752		470.2		591.1		603.6		603.8		586.6		589.6		486.8		410	5.4
Volatile Organic Compounds (EPA M	(ethod 8260 - SIM)																						
1,4-Dioxane	71-55-6	15	(c)	250		440		360		330		340		330		290		270		220		1	190

Table 1

Historical Influent Results Former Kop-Flex Facility Hanover, Maryland (a)

Analyte Name Cas	MDE Clean Standard for Groundw Type I/II Aquif	s ater	Influent VS 7/10/201		Influent V 8/3/201		Influent V 9/11/20		Influent V 10/9/20		Influent V 11/7/20		Influent VSI 12/11/201		Influent VS 1/10/201		Influent V3 2/7/201		Influent V 3/19/20		Influent V 4/17/20	
Volatile Organic Compounds (EPA Method 8260)																						
1,1,1-Trichloroethane 71-5:	-6 200	(c)	44		41		35		32		32		26		25		26		23		22	
1,1,2,2-Tetrachloroethane 79-34	-5 0.076		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13	-1		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1,2-Trichloroethane 79-00	-5 5		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1-Dichloroethane 75-34	-3 2.8	(d)	57		49		40		44		47		48		51		58		61		64	
1,1-Dichloroethene 75-3:	-4 7	(c)	250		230		240		200		240		250		270		260		290		320	
1,2,3-Trichlorobenzene 87-6	-6		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,2,4-Trichlorobenzene 120-8	2-1 70		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,2-Dibromo-3-Chloropropane 96-12	-8 0.20		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
1,2-Dibromoethane (EDB) 106-9	3-4 0.050		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,2-Dichlorobenzene 95-50	-1 600		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,2-Dichloroethane 107-0	5-2 5	(c)	2.1		2.0		1.7		1.6		1.8		1.8		2.0		2.4		2.3		2.3	
1,2-Dichloropropane 78-8'	-5 5		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,3-Dichlorobenzene 541-7	3-1		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,4-Dichlorobenzene 106-4	5-7 75		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
2-Butanone (MEK) 78-93	-3 560		10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U
2-Hexanone 591-7	3-6		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
4-Methyl-2-Pentanone 108-1)-1 630		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Acetone 67-64	-1 1,400		10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U
Benzene 71-43	-2 5		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Bromochloromethane 74-9'	-5		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Bromodichloromethane 75-2'	-4 80		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Bromoform 75-2:	-2 80		5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Bromomethane 74-83	-9 0.75		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Carbon Disulfide 75-1:	-0 81		10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U
Carbon Tetrachloride 56-23	-5 5		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chlorobenzene 108-9)-7 100		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chloroethane 75-00	-3 2,100	(d)	2.3		1.8		1.7		2.6		2.6		4.2		4.0		4.1		4.6		5.8	
Chloroform 67-60	-3 80		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chloromethane 74-8'	-3 19		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Cyclohexane 110-8	2-7		10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U
Dibromochloromethane 124-4	3-1 80		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Dichlorodifluoromethane 75-7	-8		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Ethylbenzene 100-4	1-4 700		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Isopropylbenzene 98-82			1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Methyl Acetate 79-20			10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U

Table 1
Historical Influent Results

Former Kop-Flex Facility Hanover, Maryland (a)

Analyte Name	Cas#	MDE Cle Standa for Ground Type I/II Aq	rds dwater	Influent V 7/10/20		Influent V 8/3/20		Influent \ 9/11/2		Influent \\\10/9/2		Influent V 11/7/20		Influent V 12/11/20		Influent V 1/10/20		Influent V 2/7/20		Influent \ 3/19/2		Influent \(\frac{4}{17/2} \)	
Methyl-t-butyl ether	1634-04-4	20		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	IJ	1	U
Methylcyclohexane	108-87-2			10	U	10	Ū	10	Ū	10	Ü	10	Ū	10	Ü	10	Ū	10	Ü	10	Ü	10	Ü
Methylene Chloride	75-09-2	5		1	U	1	U	1	Ü	1	Ü	1	U	1	U	1	U	1	Ü	1	U	1	Ü
Naphthalene	91-20-3	0.17		1	U	1	U	1	IJ	1	U	1	U	1	U	1	U	1	IJ	1	U	1	U
Styrene	100-42-5	100		1	U	1	U	1	U	1	Ü	1	U	1	U	1	U	1	U	1	U	1	Ü
Tetrachloroethene	127-18-4	5	(c)	1	U	1	U	1	U	1	Ü	1	U	1	U	1	U	1	U	1	U	1	U
Toluene	108-88-3	1,000	(•)	1	U	1	Ü	1	Ü	1	Ü	1	U	1	U	1	U	1	U	1	Ü	1	Ü
Trichloroethene	79-01-6	5	(c)	2.2		2.0	_	1.7	_	1.6	_	1.7	_	1.6	_	1.7	_	1.8	_	1.7	_	1.7	
Trichlorofluoromethane	75-69-4		(-)	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Vinyl Chloride	75-01-4	2	(c)	1	U	1	Ü	1	Ü	1	Ü	1	Ü	1	Ü	1	Ü	1	Ü	1	Ü	1	Ü
cis-1,2-Dichloroethene	156-59-2	70	(c)	1.3		1.3		1	Ū	1.2		1.3		1.6		1.7		2.0		2.2		2.3	
cis-1,3-Dichloropropene	10061-01-5		(-)	1	U	1	U	1	Ū	1	U	1	U	1	U	1	U	1	U	1	U	1	U
m,p-Xylenes	108-38-3	10,000		2	U	2	U	2	U	2	U	2	U	2	U	2	U	2	U	2	U	2	U
o-Xylene	95-47-6	10,000		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,2-Dichloroethene	156-60-5	100		1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
trans-1,3-Dichloropropene	10061-02-6			1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
	TOTAL VOCs:			358	3.9	32	7.1	32	0.1	28	3.0	326.4		333.2		355.4		354.3		384.8		418.1	
Volatile Organic Compounds (EPA M	Method 8260 - SIM)																						
1,4-Dioxane	71-55-6	15	(c)	170		1	70	1	160	1	60	150		150		180		1	70	1	50	150	

Table 1
Historical Influent Results

Former Kop-Flex Facility Hanover, Maryland (a)

Analyte Name Cas#	MDE Cleanup Standards for Groundwate Type I/II Aquifers	5/	ent VSP-1 8/2018	Influent \ 6/5/20		Influent V 7/12/20 (e)		Influent V 10/3/20		Influent VSI 1/8/2019		Influent VSP-1 4/4/2019		uent VSP 5/8/2019	-1	Influent VS 7/2/2019		Influent V 10/16/20		Influent V 1/9/202	
Volatile Organic Compounds (EPA Method 8260)																					
1,1,1-Trichloroethane 71-55-6	200 () 1	9	23		24		28		20		27		29		27		20		19	
1,1,2,2-Tetrachloroethane 79-34-:			1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
1,1,2-Trichloro-1,2,2-Trifluoroethane 76-13-			1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
1,1,2-Trichloroethane 79-00-:	5		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane 75-34-3	2.8)	0	76		74		72		63		54		51		44		43		44	
1,1-Dichloroethene 75-35-4			10	310		320		330		330		240		260		230		240		220	
1,2,3-Trichlorobenzene 87-61-6			l U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
1,2,4-Trichlorobenzene 120-82-	1 70		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
1,2-Dibromo-3-Chloropropane 96-12-3	0.20		5 U	5	U	5	U	5	U	5	U	5 U		5	U	5.0	U	5.0	U	5.0	U
1,2-Dibromoethane (EDB) 106-93-	4 0.050		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
1,2-Dichlorobenzene 95-50-	600		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
1,2-Dichloroethane 107-06-	2 5 () 2	.5	2.6		2.4		2.7		2.2		2		1.8		1.7		1.5		1.5	
1,2-Dichloropropane 78-87-:			1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
1,3-Dichlorobenzene 541-73-	l		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
1,4-Dichlorobenzene 106-46-	7 75		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
2-Butanone (MEK) 78-93-3	560	1	0 U	10	U	10	U	10	U	10	U	10 U		10	U	10	U	10	U	10	U
2-Hexanone 591-78-	5 		5 U	5	U	5	U	5	U	5	U	5 U		5	U	5.0	U	5.0	U	5.0	U
4-Methyl-2-Pentanone 108-10-	1 630		5 U	5	U	5	U	5	U	5	U	5 U		5	U	5.0	U	5.0	U	5.0	U
Acetone 67-64-	1,400]	0 U	10	U	10	U	10	U	10	U	10 U		10	U	10	U	10	U	10	U
Benzene 71-43-2	5		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
Bromochloromethane 74-97-:			1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
Bromodichloromethane 75-27-4	80		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
Bromoform 75-25-2	80		5 U	5	U	5	U	5	U	5	U	5 U		5	U	5.0	U	5.0	U	5.0	U
Bromomethane 74-83-9	0.75		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
Carbon Disulfide 75-15-	81	1	0 U	10	U	10	U	10	U	10	U	10 U		10	U	10	U	10	U	10	U
Carbon Tetrachloride 56-23-	5		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
Chlorobenzene 108-90-	7 100		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
Chloroethane 75-00-3	2,100 (.) 7	.3	7.2		7.8		6.1		5.7		4.5	2	4.00		3.90		4		3.5	
Chloroform 67-66-3	80		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
Chloromethane 74-87-3	19		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
Cyclohexane 110-82-	7]	0 U	10	U	10	U	10	U	10	U	10 U		10	U	10	U	10	U	10	U
Dibromochloromethane 124-48-	1 80		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
Dichlorodifluoromethane 75-71-			1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
Ethylbenzene 100-41-	4 700		1 U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
Isopropylbenzene 98-82-8	45		l U	1	U	1	U	1	U	1	U	1 U		1	U	1.0	U	1.0	U	1.0	U
Methyl Acetate 79-20-9		1	0 U	10	U	10	U	10	U	10	U	10 U		10	U	10	U	10	U	10	U

Table 1
Historical Influent Results
Former Kop-Flex Facility

Hanover, Maryland (a)

Influent VSP-1 **MDE Cleanup** Influent VSP-1 Standards 5/8/2018 6/5/2018 7/12/2018 10/3/2018 1/8/2019 4/4/2019 5/8/2019 7/2/2019 10/16/2019 1/9/2020 **Analyte Name** Cas# for Groundwater (e) Type I/II Aquifers (b) Methyl-t-butyl ether 1634-04-4 20 U U U U U U U 1.0 U 1.0 U 1.0 U Methylcyclohexane 108-87-2 10 U 10 10 U 10 10 U 10 U 10 U 10 U 10 U 10 U Methylene Chloride 75-09-2 5 U U U U U U U 1.0 U 1.0 U 1.0 U 91-20-3 0.17 Naphthalene U U U U U 1.6 U 1.0 U 1.0 U U 1.0 Styrene 100-42-5 100 U U U U U U U 1.0 U 1.0 U 1.0 U Tetrachloroethene 127-18-4 5 U U U U U U U 1.0 U 1.0 U 1.0 U (c) U 108-88-3 U U U U U 1.0 U U U Toluene 1,000 1.0 1.0 79-01-6 1.9 1.8 1.9 1.2 1.2 Trichloroethene 5 (c) 1.7 1.6 1.6 1.6 1.5 Trichlorofluoromethane 75-69-4 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5.0 U 5.0 U 5.0 U Vinyl Chloride 75-01-4 2 (c) 1 U U U U U U U 1.0 U 1.0 U 1.0 U 2.6 2.1 cis-1,2-Dichloroethene 156-59-2 70 2.5 2.7 2.7 1.8 1.7 1.6 1.3 1.2 U U U U U U U U U cis-1,3-Dichloropropene 10061-01-5 1 1.0 1.0 U 1.0 108-38-3 2 2 2 2 2 U 2 2 m,p-Xylenes 10,000 U U U U U U 2.0 U 2.0 U 2.0 U o-Xylene 95-47-6 10,000 U U U U U U U 1.0 U 1.0 U 1.0 U 156-60-5 U U U U U U trans-1,2-Dichloroethene 100 U U 1.0 1.0 U 1.0 U trans-1,3-Dichloropropene U U U U U U U 10061-02-6 1.0 U 1.0 U 1.0 U --TOTAL VOCs: 413.0 423.4 432.7 443.3 424.6 332.5 349.1 309.7 311.0 290.4

130

150

150

130

130

150

140

170

110

Volatile Organic Compounds (EPA Method 8260 - SIM)

71-55-6

15

1,4-Dioxane

Table 1

Historical Influent Results Former Kop-Flex Facility Hanover, Maryland (a)

Analyte Name	Cas#	MDE Clea Standa for Ground Type I/II Aqu	rds lwater	Influent V 4/7/202		Influent V 7/30/20		Influent V 11/12/2	
Volatile Organic Compounds (EPA Meth	od 8260)								
1,1,1-Trichloroethane	71-55-6	200	(c)	21		24		19	
1,1,2,2-Tetrachloroethane	79-34-5	0.076		1.0	U	1.0	U	1.0	U
1,1,2-Trichloro-1,2,2-Trifluoroethane	76-13-1			1.0	U	1.0	U	1.0	U
1,1,2-Trichloroethane	79-00-5	5		1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	75-34-3	2.8	(d)	45		49		47	
1,1-Dichloroethene	75-35-4	7	(c)	2	20	250		220	
1,2,3-Trichlorobenzene	87-61-6			1.0	U	1.0	U	1.0	U
1,2,4-Trichlorobenzene	120-82-1	70		1.0	U	1.0	U	1.0	U
1,2-Dibromo-3-Chloropropane	96-12-8	0.20		5.0	U	5.0	U	1.0	U
1,2-Dibromoethane (EDB)	106-93-4	0.050		1.0	U	1.0	U	1.0	U
1,2-Dichlorobenzene	95-50-1	600		1.0	U	1.0	U	1.0	U
1,2-Dichloroethane	107-06-2	5	(c)	1.5		1.6		1.4	
1,2-Dichloropropane	78-87-5	5		1.0	U	1.0	U	1.0	U
1,3-Dichlorobenzene	541-73-1			1.0	U	1.0	U	1.0	U
1,4-Dichlorobenzene	106-46-7	75		1.0	U	1.0	U	1.0	U
2-Butanone (MEK)	78-93-3	560		5.0	U	5.0	U	5.0	U
2-Hexanone	591-78-6			5.0	U	5.0	U	5.0	U
4-Methyl-2-Pentanone	108-10-1	630		5.0	U	5.0	U	5.0	U
Acetone	67-64-1	1,400		5.0	U	5.0	U	5.0	U
Benzene	71-43-2	5		1.0	U	1.0	U	1.0	U
Bromochloromethane	74-97-5			1.0	U	1.0	U	1.0	U
Bromodichloromethane	75-27-4	80		1.0	U	1.0	U	1.0	U
Bromoform	75-25-2	80		1.0	U	1.0	U	1.0	U
Bromomethane	74-83-9	0.75		1.0	U	1.0	U	1.0	U
Carbon Disulfide	75-15-0	81		1.0	U	1.0	U	1.0	U
Carbon Tetrachloride	56-23-5	5		1.0	U	1.0	U	1.0	U
Chlorobenzene	108-90-7	100		1.0	U	1.0	U	1.0	U
Chloroethane	75-00-3	2,100	(d)	3.7		3.7		4.2	
Chloroform	67-66-3	80		1.0	U	1.0	U	1.0	U
Chloromethane	74-87-3	19		1.0	U	1.0	U	1.0	U
Cyclohexane	110-82-7			10.0	U	10.0	U	1.0	U
Dibromochloromethane	124-48-1	80		1.0	U	1.0	U	1.0	U
Dichlorodifluoromethane	75-71-8			1.0	U	1.0	U	1.0	U
Ethylbenzene	100-41-4	700		1.0	U	1.0	U	1.0	U
Isopropylbenzene	98-82-8	45		1.0	U	1.0	U	1.0	U
Methyl Acetate	79-20-9			10.0	U	10.0	U	1.0	U

Table 1

Historical Influent Results Former Kop-Flex Facility Hanover, Maryland (a)

Analyte Name	Cas#	MDE Cle Standa for Ground Type I/II Aqu	rds lwater	Influent V 4/7/202		Influent V 7/30/20		Influent V 11/12/2	
Methyl-t-butyl ether	1634-04-4	20		1.0	U	1.0	U	1.0	U
Methylcyclohexane	108-87-2			10.0	U	10.0	U	1.0	U
Methylene Chloride	75-09-2	5		1.0	U	1.0	U	1.0	U
Naphthalene	91-20-3	0.17		1.0	U	1.0	U	1.0	U
Styrene	100-42-5	100		1.0	U	1.0	U	1.0	U
Tetrachloroethene	127-18-4	5	(c)	1.0	U	1.0	U	1.0	U
Toluene	108-88-3	1,000		1.0	U	1.0	U	1.0	U
Trichloroethene	79-01-6	5	(c)	1.2		1.2		1.1	
Trichlorofluoromethane	75-69-4			1.0	U	1.0	U	1.0	U
Vinyl Chloride	75-01-4	2	(c)	1.0	U	1.0	U	1.0	U
cis-1,2-Dichloroethene	156-59-2	70	(c)	1.2		1.4		1.2	
cis-1,3-Dichloropropene	10061-01-5			1.0	U	1.0	U	1.0	U
m,p-Xylenes	108-38-3	10,000		2.0	U	2.0	U	2.0	U
o-Xylene	95-47-6	10,000		1.0	U	1.0	U	1.0	U
trans-1,2-Dichloroethene	156-60-5	100		1.0	U	1.0	U	1.0	U
trans-1,3-Dichloropropene	10061-02-6			1.0	U	1.0	U	1.0	U
	TOTAL VOCs:			293.6		330.9		293.9	
Volatile Organic Compounds (EPA M	Iethod 8260 - SIM)								
1,4-Dioxane	71-55-6	15	(c)	20	60	110		1	10

Notes:

- a/ MDE = Maryland Department of the Environment; EPA = US Environmental Protection Agency; VOC = volatile organic compound;
 SIM = Selected Ion Monitoring; U = not detected above the method detection limit; -- = no existing cleanup standard.
 All concentrations are in micrograms per liter (μg/L).
 - Results shown in highlight and **bold** exceed the cleanup standard.
- b/ All cleanup standards, except for 1,4-dioxane, are equal to the Maryland Generic Numeric Cleanup Standards for Groundwater, Type I and II Aquifers, from the State of Maryland Interim Final Guidance (October 2018). Accessed May 27, 2020: https://mde.maryland.gov/programs/LAND/MarylandBrownfieldVCP/Documents/www.mde.state.md.us/assets/document/M DE%20Soil%20and%20Groundwater%20Cleanup%20Standards%2010-2018%20Interim%20Final%20Update%203-2.pdf
- c/ Numeric cleanup standards are equal to those in Section 6 of WSP's October 2, 2015, Response Action Plan, Revision 2.
- d/ Numeric cleanup standards for 1,1-dichloroethane and chloroethane reflect the current standards promulgated by the State of Maryland in October 2018 and differ from those in Section 6 of WSP's October 2, 2015, Response Action Plan, Revision 2.
- e/ Reduced influent monitoring frequency to quarterly effective July 2018.

Table 2

			Sample ID: Date:	Effluent VS 03/13/201		Effluent V 3/20/20		Effluent V 3/29/20		Effluent VSP-4 3/30/2017	Effluent V 4/3/20		Effluent VSP- 5/8/2017	4]	Effluent VS 6/21/201		Effluent V 7/10/20		Effluent VS 8/3/201		Effluent V 9/11/20	
Analyte Name	Units	Cas#	Permit Limits																			
Volatile Organic Compounds (EPA Metho	od 624)																					
1,1,1-Trichloroethane	μg/L	71-55-6		5.0	U	5.0	U	5.0	U	NA	5.0	U		U	5.0	U	5.0	U	5.0	U	5.0	U
1,1,2,2-Tetrachloroethane	μg/L	79-34-5		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,1,2-Trichloroethane	μg/L	79-00-5		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,1-Dichloroethane	μg/L	75-34-3		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,1-Dichloroethene	μg/L	75-35-4		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,2-Dichlorobenzene	μg/L	95-50-1		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,2-Dichloroethane	μg/L	107-06-2		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,2-Dichloropropane	μg/L	78-87-5		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,3-Dichlorobenzene	μg/L	541-73-1		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
1,4-Dichlorobenzene	μg/L	106-46-7		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
2-Chloroethyl Vinyl Ether	μg/L	110-75-8		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Benzene	μg/L	71-43-2		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Bromodichloromethane	μg/L	75-27-4		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Bromoform	μg/L	75-25-2		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Bromomethane	μg/L	74-83-9		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Carbon Tetrachloride	μg/L	56-23-5		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Chlorobenzene	μg/L	108-90-7		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Chloroethane	μg/L	75-00-3		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Chloroform	μg/L	67-66-3		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Chloromethane	μg/L	74-87-3		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Dibromochloromethane	μg/L	124-48-1		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Dichlorodifluoromethane	μg/L	75-71-8		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Ethylbenzene	μg/L	100-41-4		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Methylene Chloride	μg/L	75-09-2		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Tetrachloroethylene	μg/L	127-18-4		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Toluene	μg/L	108-88-3		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Trichloroethene	μg/L	79-01-6		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Trichlorofluoromethane	μg/L	75-69-4		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Vinyl Chloride	μg/L	75-01-4		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
cis-1,3-Dichloropropene	μg/L	10061-01-5		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
trans-1,2-dichloroethene	μg/L	156-60-5		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
trans-1,3-dichloropropene	μg/L	10061-02-6		5.0	U	5.0	U	5.0	U	NA	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
TOTAL VOCs:				ND		ND		ND		NA	ND		ND		ND		ND		ND		ND	

Table 2

			Sample ID: Date:	Effluent VS 03/13/20		Effluent VS 3/20/201		Effluent VS 3/29/201		Effluent VSP- 3/30/2017	4	Effluent VSP-4 4/3/2017	4 1	Effluent VSP-4 5/8/2017	1	Effluent VS 6/21/201		Effluent VS 7/10/201		Effluent V: 8/3/201		Effluent VS 9/11/201	
Analyte Name	Units	Cas#	Permit Limits																				
Total Metals and Hardness (EPA Method 200	.8)																						
Calcium	$\mu g/L$	7440-70-2		28,600		3,650		3,400		NA		2,840		NA		3,440		NA		NA		NA	
Copper	μg/L	7440-50-8	13	1.0	U	1.0	U	1.0	U	NA		3.2		4.7		4.3		4.6		5.0		4.6	
Hardness (Ca & Mg)	mg/L	HARDCAMG		91		15		14		NA		12		15		14		14		15		16	
Lead	μg/L	7439-92-1	65	1.0	U	1.0	U	1.0	U	NA		1 U	J	1 U	J	1.0	U	1.0	U	1.0	U	1.0	U
Magnesium	μg/L	7439-95-4		4,690		1,470		1,260		NA		1,220		NA		1,400		NA		NA		NA	
Nickel	μg/L	7440-02-0	470	1.5		29.9		2.6		NA		7.7		9.4		9.2		9.7		10.1		10.7	
Zinc	μg/L	7440-66-6	120	20	U	179		27.2		NA		24.7		20.2		20	U	23.7		22.8		48.9	
Dissolved Metals																							
Copper	μg/L	7440-50-8		1.0	U	1.0	U	1.0	U	NA		1.4		3.5		1.9		2.3		1.1		2.7	
Lead	μg/L	7439-92-1		1.0	U	1.0	U	1.0	U	NA		1.0 U	J	1.0 U	J	1.0	U	1.0	U	1.0	U	1.0	U
Nickel	μg/L	7440-02-0		1.0	U	27.3		2.5		NA		8		9.3		9.3		9.3		1	U	9.7	
Zinc	μg/L	7440-66-6		20	U	163		20	U	NA		20 U	J	20 U	J	20	U	20	U	20	U	20	U
Total Suspended Solids (SM 2540D)																							
Total Suspended Solids	mg/L	TSS		1.0	U	1.0	U	1.0	U	NA		1.0 U	J	1.0 U	J	2.0	U	2.0	U	1.0	U	1.0	U
Biological Oxygen Demand (SM 5210B)																							
Biological Oxygen Demand, 5 Day	mg/L	BOD5		2.0	U	2.0	U	3.0	U	NA		2.0 U	J	2.0 U	J	5.0	U	5.0	U	5.0	U	5.0	U
Field Parameters																							
pH	SU	_	6.5 - 8.5	7.29		6.88		6.84		NA		6.56		6.72		7.05		7.02		7.5		8.05	
Dissolved Oxygen	mg/L	=	≥ 5	7.08		8.14		10.65		NA		7.35		11.05		13.50		15		17.3		16.45	
Daily Flow Rate (b)	gpd	-		43,200		93,600		108,000		NA		103,680		102,240		102,816		99,216		92,880		92,736	
Nitrogen																							
Nitrogen, Total	lbs/qtr			NA		NA		NA		5.71		NA		110.68		NA		98.67		NA		NA	
Ammonia (as N)	mg/L	7664-41-7		NA		NA		NA			U	NA		0.02 U	Ţ	NA		0.2	U	NA		NA	
Nitrate (as N)	mg/L	7727-37-9		NA		NA		NA		0.68	_	NA		0.91		NA		0.95	Č	NA		NA	
Nitrite (as N)	mg/L	7727-37-9		NA		NA		NA			U	NA		0.1 U	T	NA		0.73	U	NA		NA	
Organic Nitrogen (as N)	mg/L	7727-37-9		NA NA		NA NA		NA NA			U	NA NA		0.1 C		NA NA		0.1	U	NA NA		NA NA	
	_	7727-37-9		NA NA		NA NA		NA NA			U	NA NA		0.4 C		NA NA		0.4	U	NA NA		NA NA	
Nitrogen, Total Kjeldahl	mg/L	1121-31-9		INA		INA		INA		0.4	U	INA		0.4 C	J	INA		0.4	U	INA		INA	

Table 2

			Sample ID: Date:	Effluent VS 10/9/201		Effluent V 11/7/20		Effluent V 12/11/20		Effluent V 1/10/20		Effluent V 2/7/20		Effluent VSP- 3/19/2018	-4	Effluent VSP- 4/17/2018	-4	Effluent VSI 5/8/2018	P-4	Effluent VS 6/5/2018		Effluent V 7/12/20	
Analyte Name	Units	Cas#	Permit Limits							(c)													
Volatile Organic Compounds (EPA Metho	od 624)																						
1,1,1-Trichloroethane	$\mu g/L$	71-55-6		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
1,1,2,2-Tetrachloroethane	μg/L	79-34-5		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U		U	5.0	U	1.0	U	1.0	U	1.0	U
1,1,2-Trichloroethane	$\mu g/L$	79-00-5		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	$\mu g/L$	75-34-3		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U		U	•	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethene	μg/L	75-35-4		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U		U		U	1.0	U	1.0	U	1.0	U
1,2-Dichlorobenzene	μg/L	95-50-1		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloroethane	μg/L	107-06-2		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U		U	•	U	1.0	U	1.0	U	1.0	U
1,2-Dichloropropane	$\mu g/L$	78-87-5		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
1,3-Dichlorobenzene	μg/L	541-73-1		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	•	U	5.0	U	1.0	U	1.0	U	1.0	U
1,4-Dichlorobenzene	μg/L	106-46-7		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U		U	5.0	U	1.0	U	1.0	U	1.0	U
2-Chloroethyl Vinyl Ether	μg/L	110-75-8		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
Benzene	μg/L	71-43-2		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	•	U	5.0	U	1.0	U	1.0	U	1.0	U
Bromodichloromethane	μg/L	75-27-4		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U		U		U	1.0	U	1.0	U	1.0	U
Bromoform	μg/L	75-25-2		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U		U		U	1.0	U	1.0	U	1.0	U
Bromomethane	μg/L	74-83-9		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
Carbon Tetrachloride	μg/L	56-23-5		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	•	U	5.0	U	1.0	U	1.0	U	1.0	U
Chlorobenzene	μg/L	108-90-7		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U		U	5.0	U	1.0	U	1.0	U	1.0	U
Chloroethane	μg/L	75-00-3		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
Chloroform	μg/L	67-66-3		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	•	U	•	U	1.0	U	1.0	U	1.0	U
Chloromethane	μg/L	74-87-3		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U		U		U	1.0	U	1.0	U	1.0	U
Dibromochloromethane	μg/L	124-48-1		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U		U		U	1.0	U	1.0	U	1.0	U
Dichlorodifluoromethane	μg/L	75-71-8		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
Ethylbenzene	μg/L	100-41-4		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U		U	5.0	U	1.0	U	1.0	U	1.0	U
Methylene Chloride	μg/L	75-09-2		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
Tetrachloroethylene	μg/L	127-18-4		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
Toluene	$\mu g/L$	108-88-3		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
Trichloroethene	μg/L	79-01-6		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
Trichlorofluoromethane	μg/L	75-69-4		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U		U		U	1.0	U	1.0	U	1.0	U
Vinyl Chloride	μg/L	75-01-4		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
cis-1,3-Dichloropropene	μg/L	10061-01-5		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
trans-1,2-dichloroethene	μg/L	156-60-5		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
trans-1,3-dichloropropene	μg/L	10061-02-6		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	1.0	U	1.0	U	1.0	U
TOTAL VOCs:				ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	

Table 2

			Sample ID: Date:	Effluent VS 10/9/201		Effluent V 11/7/20		Effluent VS 12/11/20		Effluent VS 1/10/201		Effluent VS 2/7/2018		Effluent VSF 3/19/2018		Effluent VS 4/17/201		Effluent VS 5/8/201		Effluent VS 6/5/201		Effluent V: 7/12/201	
Analyte Name	Units	Cas#	Permit Limits							(c)													
Total Metals and Hardness (EPA Method 200	0.8)																						
Calcium	μg/L	7440-70-2		NA		NA		NA		NA		3,980		4,030		4,280		NA		NA		4,200	
Copper	μg/L	7440-50-8	13	4.6		1.0	U	4.0		4.2		4.0		4.9		2.1		1.3		2.4		5.0	
Hardness (Ca & Mg)	mg/L	HARDCAMG		15		16		16		18		16		17		18		18		16		17	
Lead	μg/L	7439-92-1	65	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Magnesium	μg/L	7439-95-4		NA		NA		NA		NA		1,560		1,620		1,810		NA		NA		1,650	
Nickel	μg/L	7440-02-0	470	10.6		10.8		10.7		11.1		11.2		11.4		8.4		13.2		11.6		12.6	
Zinc	μg/L	7440-66-6	120	24.6		21.2		20.6		28.6		22		26.9		28.4		24.5		32.4		27.9	
Dissolved Metals																							
Copper	μg/L	7440-50-8		3.2		1.0	U	2.8		3.1		2.7		4.1		1.9		1.2		1.4		3.4	
Lead	μg/L	7439-92-1		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Nickel	μg/L	7440-02-0		10.3		10.6		10.1	U	11.7		10.8		12.3		8.1		12.3		10.0		11.6	
Zinc	μg/L	7440-66-6		20	U	20	U	20	U	20.7		20	U	23.8		20	U	20.6		20.0	U	21.2	
Total Suspended Solids (SM 2540D)																							
Total Suspended Solids	mg/L	TSS		1.0	U	1.0	U	2.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	2.0	U	2.0	U
Biological Oxygen Demand (SM 5210B)																							
Biological Oxygen Demand, 5 Day	mg/L	BOD5		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Field Parameters																							
pH	SU	-	6.5 - 8.5	7.41		6.6		7.8		7.48		7.60		7.48		7.99		7.61		7.53		7.74	
Dissolved Oxygen	mg/L	_	≥ 5	17.6		18.65		17.79		15.6		15.93		15.22		12.13		13.30		12.63		11.76	
Daily Flow Rate (b)	gpd	-		82,878		86,809		95,592		97,690		97,015		88,665		90,352		94,346		97,707		96,390	
Nitrogen																							
Nitrogen, Total	lbs/qtr			93.24		NA		NA		130.22		NA		NA		NA		NA		NA		NA	
Ammonia (as N)	mg/L	7664-41-7		0.2	U	NA		NA		0.2	U	NA		NA		NA		NA		NA		NA	
Nitrate (as N)	mg/L	7727-37-9		0.92	-	NA		NA		1.4	-	NA		NA		NA		NA		NA		NA	
Nitrite (as N)	mg/L	7727-37-9		0.1	U	NA		NA		0.1	U	NA		NA		NA		NA		NA		NA	
Organic Nitrogen (as N)	mg/L	7727-37-9		0.4	U	NA		NA		0.4	U	NA		NA		NA		NA		NA		NA	
Nitrogen, Total Kjeldahl	_	7727-37-9		0.4	U	NA		NA NA		0.4	U	NA NA		NA NA		NA		NA NA		NA		NA NA	
Minogen, Total Kjeldani	mg/L	1141-31-9		0.4	U	11/1		11/1		0.4	U	11/1		INA		11/1		11/1		11/1		11/1	

Table 2

			Sample ID: Date:	Effluent V		Effluent V 9/6/201		Effluent V 10/3/20		Effluent V 11/6/20		Effluent V 12/6/20		Effluent VSP 1/8/2019	-4	Effluent VS 2/5/2019		Effluent VS 3/7/201		Effluent VS 4/4/2019		Effluent V 5/8/201	
Analyte Name	Units	Cas#	Permit Limits																				
Volatile Organic Compounds (EPA Metho	od 624)																						
1,1,1-Trichloroethane	μg/L	71-55-6		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,2,2-Tetrachloroethane	μg/L	79-34-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,2-Trichloroethane	μg/L	79-00-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	μg/L	75-34-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethene	μg/L	75-35-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichlorobenzene	μg/L	95-50-1		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloroethane	μg/L	107-06-2		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloropropane	μg/L	78-87-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,3-Dichlorobenzene	μg/L	541-73-1		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,4-Dichlorobenzene	μg/L	106-46-7		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
2-Chloroethyl Vinyl Ether	μg/L	110-75-8		1.0	U	1.0	U	1.0	U	1.0	U	NA		NA		NA		NA		NA		NA	
Benzene	μg/L	71-43-2		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromodichloromethane	μg/L	75-27-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromoform	μg/L	75-25-2		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromomethane	μg/L	74-83-9		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Carbon Tetrachloride	μg/L	56-23-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chlorobenzene	μg/L	108-90-7		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroethane	μg/L	75-00-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroform	μg/L	67-66-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloromethane	μg/L	74-87-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Dibromochloromethane	μg/L	124-48-1		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Dichlorodifluoromethane	μg/L	75-71-8		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Ethylbenzene	μg/L	100-41-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Methylene Chloride	μg/L	75-09-2		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Tetrachloroethylene	μg/L	127-18-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Toluene	μg/L	108-88-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Trichloroethene	μg/L	79-01-6		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Trichlorofluoromethane	μg/L	75-69-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Vinyl Chloride	μg/L	75-01-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
cis-1,3-Dichloropropene	μg/L	10061-01-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,2-dichloroethene	μg/L	156-60-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,3-dichloropropene	μg/L	10061-02-6		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
TOTAL VOCs:				ND		ND		ND		ND		ND		ND		ND		ND		ND		ND	

Table 2

			Sample ID: Date:	Effluent VS 8/8/2013		Effluent V 9/6/201		Effluent VS 10/3/201		Effluent VS 11/6/201		Effluent VS 12/6/201		Effluent VSP 1/8/2019	'-4	Effluent VS 2/5/2019		Effluent VS 3/7/2019		Effluent VS 4/4/201		Effluent VS 5/8/2019	
Analyte Name	Units	Cas#	Permit Limits																				
Total Metals and Hardness (EPA Method 200	0.8)																						
Calcium	$\mu g/L$	7440-70-2		4,170		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Copper	μg/L	7440-50-8	13	4.0		3.8		4.2		2.1		2.9		1.0	U	1.7		3.7		3.9		4.3	
Hardness (Ca & Mg)	mg/L	HARDCAMG		17		18		17		18		18		19		18		17		16		18	
Lead	μg/L	7439-92-1	65	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Magnesium	μg/L	7439-95-4		1,690		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Nickel	μg/L	7440-02-0	470	12.1		12.0		12.0		13.3		13		16.6		13.6		12.6		11.6		13.2	
Zinc	μg/L	7440-66-6	120	25.8		26.0		31.8		20	U	23.4		26.5		27.5		25.8		22.4		25.1	
Dissolved Metals																							
Copper	μg/L	7440-50-8		2.6		2.2		2.8		1.2		2.3		1.0	U	1.0	U	3.2		3.2		3.5	
Lead	μg/L	7439-92-1		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Nickel	μg/L	7440-02-0		11.6		10.9		11.6		11.6		12.1		14		13.2		11.3		13.3		12.4	
Zinc	μg/L	7440-66-6		51.6		20	U	28.4		20	U	20	U	20.5		20.7		20	U	20	U	20	U
Total Suspended Solids (SM 2540D)																							
Total Suspended Solids	mg/L	TSS		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Biological Oxygen Demand (SM 5210B)																							
Biological Oxygen Demand, 5 Day	mg/L	BOD5		2.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Field Parameters																							
pH	SU	_	6.5 - 8.5	6.94		8.05		6.80		6.81		6.97		6.85		6.75		7.2		7.15		6.72	
Dissolved Oxygen	mg/L	_	≥ 5	12.45		13.12		8.50		10.33		12.15		8.82		8.85		7.51		7.17		7.28	
Daily Flow Rate (b)	gpd	-		85,875		96,894		93,553		77,496		87,236		92,672		97,420		98,934		104,205		101,014	
Nitrogen																							
Nitrogen, Total	lbs/qtr			NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Ammonia (as N)	mg/L	7664-41-7		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Nitrate (as N)	mg/L mg/L	7727-37-9		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Nitrite (as N)	mg/L	7727-37-9		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
. ,	_	7727-37-9		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA	
Organic Nitrogen (as N)	mg/L	7727-37-9		NA NA				NA NA				NA NA				NA NA		NA NA				NA NA	
Nitrogen, Total Kjeldahl	mg/L	1121-31-9		NA		NA		NA		NA		INA		NA		NA		NA		NA		NA	

Table 2

			Sample ID: Date:	Effluent V: 6/12/202		Effluent V 7/2/201		Effluent VS 8/1/2019		Effluent V 9/4/201		Effluent V 10/16/2		Effluent VSP 11/4/2019	-4	Effluent VS 12/2/201		Effluent V 1/9/202		Effluent V 2/4/202		Effluent V 3/24/20	
Analyte Name	Units	Cas#	Permit Limits																				
Volatile Organic Compounds (EPA Method	624)																						
1,1,1-Trichloroethane	μg/L	71-55-6		3.4		1.0	U	1.0	U	1.0	U	1.0	U		U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,2,2-Tetrachloroethane	μg/L	79-34-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1,2-Trichloroethane	μg/L	79-00-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethane	μg/L	75-34-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,1-Dichloroethene	μg/L	75-35-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichlorobenzene	μg/L	95-50-1		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U		U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloroethane	μg/L	107-06-2		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U		U	1.0	U	1.0	U	1.0	U	1.0	U
1,2-Dichloropropane	μg/L	78-87-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U		U	1.0	U	1.0	U	1.0	U	1.0	U
1,3-Dichlorobenzene	μg/L	541-73-1		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
1,4-Dichlorobenzene	μg/L	106-46-7		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
2-Chloroethyl Vinyl Ether	μg/L	110-75-8		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Benzene	μg/L	71-43-2		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromodichloromethane	μg/L	75-27-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Bromoform	μg/L	75-25-2		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U		U	1.0	U	1.0	U	1.0	U	1.0	U
Bromomethane	μg/L	74-83-9		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Carbon Tetrachloride	μg/L	56-23-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U		U	1.0	U	1.0	U	1.0	U	1.0	U
Chlorobenzene	μg/L	108-90-7		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroethane	μg/L	75-00-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloroform	μg/L	67-66-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Chloromethane	μg/L	74-87-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U		U	1.0	U	1.0	U	1.0	U	1.0	U
Dibromochloromethane	μg/L	124-48-1		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U		U	1.0	U	1.0	U	1.0	U	1.0	U
Dichlorodifluoromethane	μg/L	75-71-8		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Ethylbenzene	μg/L	100-41-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U		U	1.0	U	1.0	U	1.0	U	1.0	U
Methylene Chloride	μg/L	75-09-2		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Tetrachloroethylene	μg/L	127-18-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Toluene	μg/L	108-88-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Trichloroethene	μg/L	79-01-6		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U		U	1.0	U	1.0	U	1.0	U	1.0	U
Trichlorofluoromethane	μg/L	75-69-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Vinyl Chloride	μg/L	75-01-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
cis-1,3-Dichloropropene	μg/L	10061-01-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,2-dichloroethene	μg/L	156-60-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
trans-1,3-dichloropropene	$\mu g/L$	10061-02-6		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
TOTAL VOCs:				3.4		ND		ND		ND		ND		ND		ND		ND		ND		ND	

Table 2

			Sample ID: Date:	Effluent VS 6/12/201		Effluent V 7/2/201		Effluent VS 8/1/2019		Effluent VS 9/4/2019		Effluent VS 10/16/20		Effluent VSI 11/4/2019		Effluent VS 12/2/201		Effluent V 1/9/202		Effluent V 2/4/202		Effluent V 3/24/20	
Analyte Name	Units	Cas#	Permit Limits																				
Total Metals and Hardness (EPA Method 200	0.8)																						
Calcium	$\mu g/L$	7440-70-2		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Copper	μg/L	7440-50-8	13	5		2.6		1.4		3.8		3.7		3.9		3.6		2.7		1.0	U	3.3	
Hardness (Ca & Mg)	mg/L	HARDCAMG		21		19		17		20		18		17		14		20		13.0		17	
Lead	μg/L	7439-92-1	65	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Magnesium	μg/L	7439-95-4		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Nickel	μg/L	7440-02-0	470	13.9		8.9		8.9		13.8		13.0		13.0		12.3		13.1		4.5		9.2	
Zinc	μg/L	7440-66-6	120	29.5		39.4		22.2		25.2		28.9		28.0		26.8		25.3		20.0	U	23.2	
Dissolved Metals																							
Copper	μg/L	7440-50-8		3.4		2.0		1.0	U	1.6		1.6		1.5		1.1		3.6		1.0	U	3.2	
Lead	μg/L	7439-92-1		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Nickel	μg/L	7440-02-0		12.6		9.0		8.8		13.0		12.5		12.6		11.8		13.3		1.5		11.6	
Zinc	μg/L	7440-66-6		20.3		20	U	20	U	20.1		20.9		28.8		20	U	22.4		20.0	U	22.4	
Total Suspended Solids (SM 2540D)																							
Total Suspended Solids	mg/L	TSS		2.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Biological Oxygen Demand (SM 5210B)																							
Biological Oxygen Demand, 5 Day	mg/L	BOD5		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Field Parameters																							
pH	SU	_	6.5 - 8.5	6.55		6.52		7.01		6.79		6.99		6.99		7.06		6.55		8.14		6.63	
Dissolved Oxygen	mg/L	-	≥ 5	9.86		7.78		7.76		5.75		8.30		6.94		8.46		8.16		8.13		6.95	
Daily Flow Rate (b)	gpd	-		95,834		98,658		93,473		74,748		69,097		96,262		79,991		77,418		85,908		43,238	
Nitrogen																							
Nitrogen, Total	lbs/qtr			NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Ammonia (as N)	mg/L	7664-41-7		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Nitrate (as N)	mg/L	7727-37-9		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Nitrite (as N)	mg/L	7727-37-9		NA		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Organic Nitrogen (as N)	mg/L	7727-37-9		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA	
	_	7727-37-9		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA		NA NA	
Nitrogen, Total Kjeldahl	mg/L	1121-31-9		INA		INA		INA		INA		INA		INA		INA		INA		INA		INA	

Table 2

			Sample ID: Date:	Effluent V 4/7/202		Effluent V 5/28/20		Effluent V 6/29/20		Effluent V 7/30/20		Effluent V 8/26/20		Effluent V 9/28/202		Effluent V 10/26/20		Effluent V 11/12/2		Effluent V 12/3/20	
Analyte Name	Units	Cas#	Permit Limits																		
Volatile Organic Compounds (EPA Meth	od 624)																				
1,1,1-Trichloroethane	μg/L	71-55-6		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
1,1,2,2-Tetrachloroethane	μg/L	79-34-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
1,1,2-Trichloroethane	μg/L	79-00-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
1,1-Dichloroethane	μg/L	75-34-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
1,1-Dichloroethene	μg/L	75-35-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
1,2-Dichlorobenzene	μg/L	95-50-1		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
1,2-Dichloroethane	μg/L	107-06-2		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
1,2-Dichloropropane	μg/L	78-87-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
1,3-Dichlorobenzene	μg/L	541-73-1		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
1,4-Dichlorobenzene	μg/L	106-46-7		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
2-Chloroethyl Vinyl Ether	μg/L	110-75-8		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Benzene	μg/L	71-43-2		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Bromodichloromethane	μg/L	75-27-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Bromoform	μg/L	75-25-2		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Bromomethane	μg/L	74-83-9		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Carbon Tetrachloride	μg/L	56-23-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Chlorobenzene	μg/L	108-90-7		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Chloroethane	μg/L	75-00-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Chloroform	μg/L	67-66-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Chloromethane	μg/L	74-87-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Dibromochloromethane	μg/L	124-48-1		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Dichlorodifluoromethane	μg/L	75-71-8		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Ethylbenzene	μg/L	100-41-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Methylene Chloride	μg/L	75-09-2		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Tetrachloroethylene	μg/L	127-18-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Toluene	μg/L	108-88-3		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Trichloroethene	μg/L	79-01-6		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Trichlorofluoromethane	μg/L	75-69-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
Vinyl Chloride	μg/L	75-01-4		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
cis-1,3-Dichloropropene	μg/L	10061-01-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
trans-1,2-dichloroethene	μg/L	156-60-5		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U								
trans-1,3-dichloropropene	μg/L	10061-02-6		1.0	Ü	1.0	Ü	1.0	Ū	1.0	Ū	1.0	Ü	1.0	Ü	1.0	Ü	1.0	Ü	1.0	Ü
TOTAL VOCs:				ND		ND		ND		ND		ND		ND		ND		ND		ND	

Table 2

			Sample ID: Date:	Effluent V 4/7/202		Effluent V 5/28/202		Effluent V 6/29/20		Effluent V 7/30/202		Effluent V 8/26/202		Effluent V 9/28/202		Effluent V 10/26/20		Effluent V: 11/12/20		Effluent V 12/3/20	
Analyte Name	Units	Cas#	Permit Limits																		
Total Metals and Hardness (EPA Method 20	00.8)																				
Calcium	μg/L	7440-70-2		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Copper	μg/L	7440-50-8	13	1.8		2.6		5.5		2.7		5.0		6.2		6.7		2.2		2.7	
Hardness (Ca & Mg)	mg/L	HARDCAMG		20		18		19		25		15		20		18		14		24	
Lead	μg/L	7439-92-1	65	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Magnesium	μg/L	7439-95-4		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Nickel	μg/L	7440-02-0	470	14.3		15.8		14.5		17.0		13.8		16.3		20.0		16.6		17.7	
Zinc	μg/L	7440-66-6	120	32.1		32.4		29.1		33.6		27.6		28.1		32.6		31.3		27.5	
Dissolved Metals	/ - -																				
Copper	μg/L	7440-50-8		1.3		1.2		1.0	U	1.6		3.0		3.8		3.3		1.3		1.3	
Lead	μg/L	7439-92-1		1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
Nickel	μg/L	7440-02-0		13.8		14.9		14.8		15.0		14.3		15.6		15.0		15.7		17.2	
Zinc	$\mu g/L$	7440-66-6		25.1		23.4		24.3		28.6		25.9		23.2		21.5		21.4		22.7	
Total Suspended Solids (SM 2540D)																					
Total Suspended Solids	mg/L	TSS		1.0	U	1.0	U	1.0	U	2.0	U	1.0	U	1.0	U	1.0	U	1.0	U	1.0	U
•	U																				
Biological Oxygen Demand (SM 5210B)																					
Biological Oxygen Demand, 5 Day	mg/L	BOD5		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Field Parameters																					
pH	SU	_	6.5 - 8.5	6.76		7.01		6.82		7.23		7.20		6.98		7.63		6.96		7.67	
Dissolved Oxygen	mg/L	_	≥ 5	8.44		8.34		8.72		7.85		8.32		7.92		8.30		9.15		9.01	
Daily Flow Rate (b)	gpd	-		77,089		58,459		59,217		73,109		88,076		57,272		90,297		98,368		100,433	
Nitrogen																					
Nitrogen, Total	lbs/qtr			NA		NA		NA		NA		NA		NA		NA		NA		NA	
Ammonia (as N)	mg/L	7664-41-7		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Nitrate (as N)	mg/L	7727-37-9		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Nitrite (as N)	mg/L	7727-37-9		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Organic Nitrogen (as N)	mg/L	7727-37-9		NA		NA		NA		NA		NA		NA		NA		NA		NA	
Nitrogen, Total Kjeldahl	mg/L	7727-37-9		NA		NA		NA		NA		NA		NA		NA		NA		NA	

Notes:

a/ EPA = US Environmental Protection Agency; SM = Standard Method; VOC = volatile organic compound; μg/L = micrograms per liter; mg/L = milligrams per liter; U = not detected above the method detection limit; ND = non-detected sum; NA = compound not analyzed; SU = Standard Units; gpd = gallons per day; lbs/qtr = pounds per quarter; N = Nitrogen.

b/ Daily Flow Rate determined by average of gallons processed per day per monitoring window.

c/ Nitrogen parameters no longer analyzed after the first quarter 2018 per Maryland Department of the Environment Correspondance dated March 30, 2018.

Table 3

Historical Effluent Results - 1,4-Dioxane Former Kop-Flex Facility Hanover, Maryland (a)

Analyte Name	Cas#	Cleanup Goal (b)	Effluent VSP-4 03/13/2017 (c)	Effluent VSP-4 03/14/2017	Effluent VSP-4 3/15/2017	Effluent VSP-4 3/20/2017 (c)	Effluent VSP-4 3/23/2017	Effluent VSP-4 4/3/2017 (c)	Effluent VSP-4 4/12/2017	Effluent VSP-4 4/19/2017
Volatile Organic Compounds (EPA Meth	od 8260 - SIM)					• • • • • • • • • • • • • • • • • • • •		, ,		
1,4-Dioxane	71-55-6	15	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
			Effluent VSP-4	Effluent VSP-4	ECC. ANGD 4	ECC AND A	ECC LICE A	ECC LIGHT	ECC AND A	ECC / NOD 4
			5/8/2017 (c)	6/21/2017 (c)	Effluent VSP-4 7/10/2017 (c)	Effluent VSP-4 8/3/2017 (c)	Effluent VSP-4 9/11/2017 (c)	Effluent VSP-4 10/09/2017 (c)	Effluent VSP-4 10/12/2017	Effluent VSP-4 10/23/2017
Volatile Organic Compounds (EPA Meth	od 8260 - SIM)		3/8/2017 (0)	0/21/2017 (0)	//10/2017 (C)	8/3/2017 (C)	9/11/2017 (C)	10/09/2017 (C)	10/12/2017	10/23/2017
1,4-Dioxane	71-55-6	15	1.0 U	1.0 U	1.0 U	1.0 U	1.2	1.0 U	1.0 U	1.0 U
1,1 Bioxane	71 55 0	10	1.0 0	1.0 0	1.0 0	1.0 C	1.2	1.0 C	1.0 C	1.0 C
			Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4
			10/26/2017	11/7/2017 (c)	12/11/2017 (c)	1/10/2018 (c)	2/07/2018 (c)	3/19/2018 (c)	4/17/2018 (c)	5/8/2018 (c)
Volatile Organic Compounds (EPA Meth										_
1,4-Dioxane	71-55-6	15	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.4	1.0 U	1.0 U
			ECCL AND A	ECC AND A	ECC AND A	ECC AND A	ECC AND A	ECCL AND A	ECC AND A	ECC AND A
			Effluent VSP-4 6/5/2018 (c)	Effluent VSP-4 7/12/2018 (c)	Effluent VSP-4 8/8/2018 (c)	Effluent VSP-4 9/6/2018 (c)	Effluent VSP-4 9/10/2018	Effluent VSP-4 9/17/2018	Effluent VSP-4 9/17/2018	Effluent VSP-4 10/3/2018 (c)
Volatile Organic Compounds (EPA Meth	od 8260 - SIM)		0/3/2018 (C)	//12/2018 (C)	6/6/2018 (C)	9/0/2018 (C)	9/10/2018	9/1//2018	9/1//2016	10/3/2018 (C)
1,4-Dioxane	71-55-6	15	1.0 U	1.9	1.6	1.7	4.6	4.8	3.8	1.7
1,. 218	,		1.0 0	1.,	1.0	1.,			2.0	11,
			Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4
			11/6/2018 (c)	11/30/2018	12/6/2018 (c)	12/12/2018	1/8/2019 (c)	2/5/2019 (c)	3/7/2019 (c)	4/2/2019
Volatile Organic Compounds (EPA Meth										
1,4-Dioxane	71-55-6	15	1.0 U	1.0 U	1.1	2.9	1.3	1.6	11.0	1.7
			Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4
			4/4/2019 (c)	5/8/2019 (c)	6/12/2019 (c)	7/2/2019 (c)	8/1/2019 (c)	9/4/2019 (c)	10/16/2019 (c)	11/4/2019 (c)
Volatile Organic Compounds (EPA Meth	od 8260 - SIM)		4/4/2019 (C)	3/8/2019 (0)	0/12/2019 (0)	77272019 (C)	6/1/2019 (C)	97472019 (C)	10/10/2019 (C)	11/4/2019 (c)
1,4-Dioxane	71-55-6	15	10.0	5.6	37.0	1.0 U	1.0 U	7.0	7.6	12.0
,										
			Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4
			12/2/2019 (c)	1/9/2020 (c)	2/4/2020 (c)	3/24/2020 (c)	4/7/2020 (c)	5/28/2020 (c)	6/29/2020 (c)	7/30/2020 (c)
Volatile Organic Compounds (EPA Meth										
1,4-Dioxane	71-55-6	15	12.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.7	1.0 U
			Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4	Effluent VSP-4		
			8/26/2020 (c)	9/28/2020 (c)	10/26/2020 (c)	11/12/2020 (c)	12/3/2020 (c)	12/15/2020		
Volatile Organic Compounds (EPA Meth	od 8260 - SIM)		0/20/2020 (0)	712012020 (0)	10/20/2020 (0)	11/12/2020 (0)	12/3/2020 (0)	12/13/2020		
1,4-Dioxane	71-55-6	15	1.0 U	6.3	2.0	43	2.0	2.2		

Notes

a/ EPA = US Environmental Protection Agency; SIM = Selected Ion Monitoring; U = not detected above the method detection limit. All concentrations are in micrograms per liter ($\mu g/L$).

Results shown in highlight and **bold** exceed the cleanup goal.

b/ Numeric cleanup standard from Section 6 of WSP's October 2, 2015, Response Action Plan, Revision 2.

c/ VOCs were analyzed by Method 624 to fulfill the NPDES permit requirement. See Table 2 for results.

Table 4
Summary of System Discharge and Mass Removal
Former Kop-Flex Facility
Hanover, Maryland (a)

		Total	Water Flow	Estimate	ed VOCs	Estimated	1,4-Dioxane
		Discharged	Rate (b)	Removed	per Month	Removed	per Month
		Volume	GPM	Mass	Volume	Mass	Volume
Year	Month	Gals	AVG	lbs	Gals	lbs	Gals
2017	Total	26,606,357	61.3	86.56	8.56	43.07	5.01
2018	Total	33,439,140	67.3	111.31	11.05	41.49	4.83
2019	Total	33,697,947	69.8	95.45	9.47	36.33	4.23
	January	2,399,945	71.1	5.67	0.56	2.20	0.26
	February	2,491,340	70.7	5.88	0.58	2.29	0.27
	March	1,340,388	72.6	3.17	0.31	1.23	0.14
	April	2,312,666	73.5	5.52	0.55	5.02	0.58
	May	1,812,215	73.0	4.33	0.43	3.93	0.46
2020	June	1,776,502	70.3	4.24	0.42	3.78	0.44
2020	July	2,266,375	69.0	6.11	0.61	2.08	0.24
	August	2,730,352	67.9	7.36	0.73	2.51	0.29
	September	1,718,149	69.4	4.63	0.46	1.49	0.17
	October	2,799,218	69.3	6.68	0.66	2.52	0.29
	November	2,951,043	69.2	7.04	0.70	1.65	0.19
	December	3,113,432	69.7	7.43	0.74	2.81	0.33
2020	Total	27,711,625	70.5	68.06	6.75	31.51	3.67
	Cumulative	121,455,069		361.37	35.84	152.39	17.73

Notes:

a/ GPM = gallons per minute; AVG = average; lbs = pounds; gals = gallons.

b/ Average water flow rate in GPM is based on fully operational days only.

Table 5

Summary of Recovery Well Flow Rates
Former Kop-Flex Facility
Hanover, Maryland (a)

	Average	Recovery W	ell Flow Rates	S	
Location:	RW-1S	RW-2S	RW-3S	RW-1D	RW-2D
2018 Average:	4.47	1.80	2.40	28.43	28.73
2019 Average:	4.85	1.72	1.41	28.48	29.34
Month of Operation					
January 2020	3.44	1.24	1.41	22.52	20.22
February 2020	4.99	2.29	2.22	30.73	32.78
March 2020	2.08	0.89	0.87	12.07	12.81
April 2020	5.46	2.30	2.19	14.36	33.92
May 2020	2.75	1.35	1.10	16.04	16.80
June 2020	3.23	1.60	1.27	18.44	19.20
July 2020	4.13	2.00	1.45	22.00	22.56
August 2020	4.84	2.33	1.63	25.43	26.15
September 2020	3.65	1.83	1.59	18.14	20.15
October 2020	5.23	2.61	2.41	22.04	29.41
November 2020	5.33	2.65	2.52	28.84	29.40
December 2020	5.31	2.67	2.56	29.52	29.94
2020 Average:	4.20	1.98	1.77	21.68	24.45

Average Combined Flow Rate of System during 2020 (GPM): 54.08

Notes:

a/ Flow rates are listed in gallons per minute (GPM).

Summary of Recovery Well Volumes Former Kop-Flex Facility Hanover, Maryland (a)

Table 6

	Summary of	f Recovery We	ell Total Volu	mes by Month	1	
Location:	RW-1S	RW-2S	RW-3S	RW-1D	RW-2D	Total
2017 Total	1.659	1.315	1.005	10.626	12.218	26.823
2018 Total	2.348	0.943	1.259	14.942	15.099	34.592
2019 Total	2.489	0.890	0.721	14.613	15.052	33.764
Month of Operation						
January 2020	0.173	0.062	0.071	1.654	1.019	2.980
February 2020	0.201	0.092	0.090	0.531	1.322	2.236
March 2020	0.111	0.048	0.046	0.643	0.683	1.530
April 2020	0.220	0.093	0.088	0.579	1.368	2.348
May 2020	0.103	0.051	0.041	0.601	0.629	1.424
June 2020	0.172	0.085	0.068	0.982	1.023	2.330
July 2020	0.196	0.095	0.069	1.046	1.072	2.478
August 2020	0.195	0.094	0.066	1.025	1.054	2.434
September 2020	0.184	0.092	0.080	0.914	1.016	2.286
October 2020	0.188	0.094	0.087	0.794	1.059	2.221
November 2020	0.215	0.107	0.102	1.163	1.186	2.772
December 2020	0.252	0.127	0.122	1.403	1.423	3.326
Percentage of Total:	8%	4%	3%	40%	45%	
2020 Total:	2.212	1.040	0.929	11.334	12.852	28.366
Cumulative Total:	8.707	4.188	3.915	51.515	55.221	123.546

Notes:

a/ Volumes of water are listed in millions of gallons.

Table 7

2020 Recovery Well Sampling Results Former Kop-Flex Facility Hanover, Maryland (a)

				Shallow	Wells				Deep	Wells	
	Well ID:	RV	V-1S	RW	-2S	RW	-3S	RW	'-1D	RW	7-2D
	Date Sampled:	5/13/20	11/22/20	5/12/20	11/22/20	5/12/20	11/22/20	5/12/20	11/22/20	5/12/20	11/22/20
	Groundwater Cleanup										
Parameters	Standards (µg/L) (b)										
VOCs	_										
Chloroethane	2,100	16.3	12.8	2 U	1 U	1 U	1 U	3.9	4.0	1 U	1 U
1,1-Dichloroethane	2.8	98.2	81.2	24.9	18.6	3.4	2.8	48.4	42.0	21.4	17.9
1,2-Dichloroethane	5	3.0	2.5 U	2 U	1 U	1 U	1 U	2 U	2 U	1.6	1.0 U
1,1-Dichloroethene	7	447	344	140	129	5.9	4.2	202	179	145	131
1,4-Dioxane	15 (c)	298	351	99.8	97.0	17.2	13.8	81.8	90.9	78.2	74.5
1,1,1-Trichloroethane	200	95.7	65.4	232	191	1 U	1 U	5.1	2 U	5.3	5.5
Trichloroethene	5	3.2	2.5 U	2 U	1.4	1 U	1 U	2 U	2 U	1 U	1 U
Vinyl chloride	2	3.6	3.4	2 U	1 U	1 U	1 U	2 U	2 U	1 U	1 U

Notes:

- a/ VOC = volatile organic compound; U = not detected above the method detection limit.
 Only detected VOC concentrations are provided.
 All concentrations are in micrograms per liter (μg/L).
 Results shown in **bold** exceed the cleanup standard.
- b/ All cleanup standards, except for 1,4-dioxane, are equal to the Maryland Generic Numeric Cleanup Standards for Groundwater, Type I and II Aquifers, from the State of Maryland Interim Final Guidance (October 2018). Accessed May 27, 2020: https://mde.maryland.gov/programs/LAND/MarylandBrownfieldVCP/Documents/www.mde.state.md.us/assets/document/MDE %20Soil%20and%20Groundwater%20Cleanup%20Standards%2010-2018%20Interim%20Final%20Update%203-2.pdf
- c/ Numeric cleanup standard from WSP's October 2, 2015, Response Action Plan, Revision 2.

Historical Groundwater Sample Results - Recovery Wells Former Kop-Flex Facility Hanover, Maryland (a, b)

Table 8

			VOCs (µg/L)						
Well ID	Zone	Sample Date	1,1-DCA	1,1-DCE	1,4-Dioxane				
	Groundwater Clear	nup Standard (c)	2.8	7	15 (d)				
RW-1S	Shallow	12/7/2016	468	957	1,420				
		5/1/2017	711	1,210	1,370				
		8/31/2017	192	434	586				
		11/14/2017	196	544	580				
		5/30/2018	93	381	377				
		11/7/2018	105	458	467				
		5/21/2019	89.1	384	374				
		11/19/2019	77.4	348	299				
		5/13/2020	98.2	447	298				
		11/22/2020	81.2	344	351				
		% ND	0%	0%	0%				
		Min D	77.4	344	298				
		Max D	711	1,210	1,420				
		Mean D	211.1	550.7	612.2				
		% Decline	89%	72%	75%				
		Trend	Decreasing	Decreasing	Decreasing				
RW-2S	Shallow	12/6/2016	198	971	1,190				
		5/1/2017	95.7	622	949				
		8/31/2017	71.7	390	482				
		11/14/2017	83.5	401	549				
		5/30/2018	33.0	203	200				
		11/7/2018	29.1	177	200				
		5/21/2019	36.5	244	448				
		11/19/2019	22.4	132	111				
		5/13/2020	24.9	140	99.8				
		11/22/2020	18.6	129	97.0				
		% ND	0%	0%	0%				
		Min D	18.6	129	97				
		Max D	198	971	1,190				
		Mean D	61.3	340.9	432.6				
		% Decline	91%	87%	92%				
		Trend	Decreasing	Decreasing	Decreasing				

Table 8

Historical Groundwater Sample Results - Recovery Wells
Former Kop-Flex Facility
Hanover, Maryland (a, b)

			VOCs (μg/L)							
Well ID	Zone	Sample Date	1,1-DCA	1,1-DCE	1,4-Dioxane					
	Groundwater Clear	nup Standard (c)	2.8	7	15 (d)					
RW-3S	Shallow	12/6/2016	4.6	7.2	5.9					
		5/1/2017	1.0 U	1.2	3.8					
		8/31/2017	1.0 U	1.7	5.9					
		11/14/2017	1.8	1.8	10.6					
		5/30/2018	1.9	2.6	10.4					
		11/7/2018	2.1	2.6	12.4					
		5/21/2019	2.1	2.7	15.2					
		11/19/2019	2.9	4.7	16.6					
		5/12/2020	3.4	5.9	17.2					
		11/22/2020	2.8	4.2	13.8					
		% ND	20%	0%	0%					
		Min D	1.8	1.2	3.8					
		Max D	4.6	7.2	17.2					
		Mean D	2.7	3.5	11.2					
		% Decline	39%	42%	20%					
		Trend	Increasing	Increasing	Increasing					
RW-1D	Deep	12/6/2016	4.4	39.3	34.4					
		5/1/2017	10.4	88.9	51.9					
		8/31/2017	15.7	99.7	52.8					
		11/14/2017	30.4	174	65.5					
		5/30/2018	77.1	392	139					
		11/7/2018	78.1	363	155					
		5/21/2019	50.8	224	112					
		11/19/2019	49.9	240	89.7					
		5/12/2020	48.4	202	81.8					
		11/22/2020	42	179	90.9					
		% ND	0%	0%	0%					
		Min D	4.4	39.3	34.4					
		Max D	78.1	392	155					
		Mean D	40.7	200.2	87.3					
		% Decline	46%	54%	41%					
		Trend	NT	NT	Increasing					

Table 8

Historical Groundwater Sample Results - Recovery Wells Former Kop-Flex Facility Hanover, Maryland (a, b)

				VOCs (µg/L)	
Well ID	Zone	Sample Date	1,1-DCA	1,1-DCE	1,4-Dioxane
	Groundwater Clear	up Standard (c)	2.8	7	15 (d)
RW-2D	Deep	12/6/2016	64	257	206
		5/1/2017	56.6	486	214
		8/31/2017	42.4	306	149
		11/14/2017	44	295	172
		5/30/2018	24.9	175	106
		11/7/2018	25.4	185	99.8
		5/21/2019	16.9	115	72.7
		11/19/2019	21.6	149	85.5
		5/12/2020	21.4	145	78.2
		11/22/2020	17.9	131	74.5
		% ND	0%	0%	0%
		Min D	16.9	115	72.7
		Max D	64	486	214
		Mean D	33.5	224.4	125.8
		% Decline	72%	73%	65%
		Trend	Decreasing	Decreasing	Decreasing

Notes:

- a/ Select constituents are presented above, see Appendix E for complete analytical data.
- b/ VOC = volatile organic compound; DCA = dichloroethane; DCE = dichloroethene;
 - U = compound not detected above reported limit; % = percent; ND = non-detect; min = minimum; max = maximum; D = detection; NT = no trend.
 - All concentrations are in micrograms per liter (µg/L).
 - Results shown in **bold** exceed the cleanup standard.
- c/ All cleanup standards, except for 1,4-dioxane, are equal to the Maryland Generic Numeric Cleanup Standards for Groundwater, Type I and II Aquifers, from the State of Maryland Interim Final Guidance (October 2018). Accessed May 27, 2020:
 - https://mde.maryland.gov/programs/LAND/MarylandBrownfieldVCP/Documents/www.mde.state.md.us/assets/document/MDE%20Soil%20and%20Groundwater%20Cleanup%20Standards%2010-2018%20Interim%20Final%20Update%203-2.pdf
- d/ Numeric cleanup standard from WSP's October 2, 2015, Response Action Plan, Revision 2.

Table 9

Groundwater Sample Trend Evaluation Former Kop-Flex Facility Hanover, Maryland (a, b)

Well ID	1,1-I		1,1-1		1,4-Dioxane			
Well ID	Trend	% Change	Trend	% Change	Trend	% Change		
Shallow Monito	ring Wells							
MW-1	NA	NA	NA	NA	NA	NA		
MW-3	NA	NA	NA	NA	NA	78%		
MW-4	NT	76%	Decreasing	86%	NT	74%		
MW-5R	NA	72%	NT	81%	NT	87%		
MW-9	NT	44%	NT	46%	NT	73%		
MW-16	NT	80%	Decreasing	96%	Decreasing	94%		
MW-18	NA	NA	NA	NA	NA	96%		
MW-20	Increasing	0%	NT	5%	Increasing	22%		
MW-38R	NT	22%	NA	NA	NT	35%		
MW-39	NA	NA	NA	71%	NA	67%		
MW-42	NA	NA	NA	NA	NT	32%		
MW-43	Decreasing	86%	Decreasing	82%	Decreasing	82%		
MW-44	NT	80%	NT	82%	NT	73%		
Deep Monitorin	g Wells							
MW-1D	Decreasing	97%	Decreasing	96%	NT	95%		
MW-16D	Decreasing	54%	Decreasing	50%	Decreasing	48%		
MW-21D	NA	93%	Decreasing	93%	Decreasing	91%		
MW-22D	NA	80%	Decreasing	81%	Decreasing	80%		
MW-23D	NT	33%	NT	49%	Decreasing	45%		
MW-27D	NA	NA	NA	NA	NA	72%		
MW-40D	NA	84%	Decreasing	97%	NA	89%		
MW-41D	NA	NA	NA	55%	NT	64%		
Shallow Recove	ry Wells							
RW-1S	Decreasing	89%	Decreasing	72%	Decreasing	75%		
RW-2S	Decreasing	91%	Decreasing	87%	Decreasing	92%		
RW-3S	Increasing	39%	Increasing	42%	Increasing	20%		
Deep Recovery	Wells							
RW-1D	NT	46%	NT	54%	Increasing	41%		
RW-2D	Decreasing	72%	Decreasing	73%	Decreasing	65%		

average % decline
DCA DCE Dioxane
58% 69% 68%

average % decline
DCA DCE Dioxane
74% 74% 73%

average % decline
DCA DCE Dioxane
73% 67% 62%

average % decline
DCA DCE Dioxane
59% 64% 53%

Bold indicates most recent sample greater than Maximum Contaminant Level (MCL)

Italics indicates most recent sample non-detect

Orange shading indicates increasing trend Green shading indicates decreasing trend

Notes:

 a/ Mann-Kendall statistical evaluation conducted on VOCs with equal to or greater than 50% detection at individual monitoring wells with 4 or more sample results;

95% confidence limit used for statistical calculation.

NT = no trend; NA = not analyzed; VOC = volatile organic compound;

DCA = dichloroethane: DCE = dichloroethene.

b/ Percent changes calculated using the historical maximum concentration and the most recent sampling data; 1/2 of the method detection limit for non-detect values; 0% change reflects concentration increases.

Table 10

May 2020 Foulant Characterization Sampling Results
Former Kop-Flex Facility
Hanover, Maryland (a)

Sampling ID	Sampling Location	<u>DRO</u>	<u>DRO - SGT</u>	<u>HEM</u>	HEM - SGT	<u>TOC</u>	Fulvic Acid	Humic Acid
MW-01	Shallow Background MW	0.1 U	0.1 U	5.2 U	5.2 U	0.91	1.7	0.23 J
MW-27D	Deep Background MW	0.12	0.1 U	5.2 U	5.2 U	0.83	1.7	0.79
MW-100 (b)	Deep Background MW	0.11	0.1 U	5.2 U	5.2 U	1.3	1.8	0.20 J
VSP-1S	Combined Shallow RW Discharge	0.1 U	0.1 U	5.4 U	5.4 U	1.3	2.2	0.66
VSP-1D	Combined Deep RW Discharge	0.1 U	0.1 U	5.4 U	5.4 U	0.61	2.0	0.66
VSP-100 (c)	Combined Deep RW Discharge	0.1 U	0.1 U	5.3 U	5.3 U	0.50	1.5	0.33 J
T-1100	Lead Resin Vessel Effluent	0.1 U	0.1 U	5.4 U	5.4 U	0.24 J	1.6	0.33 Ј
VSP-4	System Effluent	0.1 U	0.1 U	5.2 U	5.2 U	6.6	0.88	8.7

Notes:

a/ MW = monitoring well; RW = recovery well; DRO = diesel range organics; SGT = silica gel treatment; HEM = hexane extractable material; TOC = total organic carbon; U = result is below method detection limit; J = result is below method calibration limit, but above method detection limit. All concentrations are in milligrams per liter (mg/L).

b/ Duplicate of sample collected from well MW-27D.

c/ Duplicate of sample collected from VSP-1D sample port.

Table 11

July 2020 Foulant Characterization Sampling Results Former Kop-Flex Facility Hanover, Maryland (a)

Sampling ID	Sampling Location	<u>TOC</u>	<u>DOC</u>
VSP-1S VSP-1D	Combined Shallow RW Discharge Combined Deep RW Discharge	0.86 J 0.5 U	1.3 0.92 J
VSP-1200	Lead Resin Vessel Effluent	0.5 U	0.53 J
VSP-4 VSP-100 (b)	System Effluent System Effluent	0.5 U 0.5 U	0.53 J 0.51 J
Condensate	Condensate from resin steam regeneration	9.2	9.0

Notes:

All concentrations are in milligrams per liter (mg/L).

a/ RW = recovery well; TOC = total organic carbon; DOC = dissolved organic carbon; U = result is below method detection limit; J = result is below method calibration limit, but above method detection limit.

b/ Duplicate of sample collected from VSP-4 sample port.

Table 12

December 2020 Treatment System Metals Sampling Results
Former Kop-Flex Facility Site
Hanover, Maryland (a, b)

	Sample ID: Sample Location:	VSP-2 After EQ tank & before bag filters	VSP-3 After bag filters & before resin	T-1200 Lead Ef Between resin vessels	Effluent VSP-4 After resin; System discharge
Analyte Name		C			,
Dissolved Metals (µg/	L; EPA Method 200.8)				
Aluminum		129	120	185	100 U
Copper		4.8	4.8	11.7	2.2
Iron		100 U	100 U	100 U	100 U
Lead		1.0 U	1.0 U	1.0 U	1.0 U
Nickel		14.5	14.5	14.8	17.5
Zinc		25.8	26.2	41.1	25.1
Total Metals (μg/L; Ε	CPA Method 200.8)				
Aluminum		135	126	182	100 U
Copper		5.5	5.6	16.4	3.7
Iron		100 U	100 U	100 U	100 U
Lead		1.0 U	1.0 U	1.0 U	1.0 U
Nickel		15.0	14.8	14.8	17.0
Zinc		40.1	24.5	59.5	26.3
Hardness (mg/L; SM	2340B)				
Hardness	,	7.8	7.8	7.7	8.0

Notes:

a/ μ g/L = micrograms per liter; mg/L = milligrams per liter; EPA = US Environmental Protection Agency; SM = Standard Method; U = non-detect.

b/ All samples were collected on December 15, 2020.

Table 13

Well Construction

Former Kop-Flex Facility
Hanover, Maryland (a)

Well ID	Installation Date	Well Diameter (inches)	TOC Elevation (ft amsl)	Total Depth (ft btoc)			<u>Screen</u> <u>Depth</u> (ft btoc)			Interval Elevation (ft amsl)		
Shallow (Unconfin	ed) Zone											
MW-01	03/30/96	2	113.6	36	10.0	26.0	-	36.0	87.60	-	77.60	
MW-03	04/01/96	2	113.6	21.7	10.0	11.7	-	21.7	101.90	-	91.90	
MW-04	04/02/96	2	124.4	34.3	10.0	24.3	-	34.3	100.10	-	90.10	
MW-5R	09/13/16	2	123.5	33	10.0	23.0	-	33.0	100.50	-	90.50	
MW-09	12/10/96	2	125.1	25	10.0	15.0	-	25.0	110.10	-	100.10	
MW-16	08/2010	2	124.0	50.2	10.0	40.2	-	50.2	83.80	-	73.80	
MW-18	11/30/11	2	125.1	58.3	10.0	48.3	-	58.3	76.80	-	66.80	
MW-20	11/29/11	2	125.4	50	5.0	45.0	-	50.0	80.40	-	75.40	
MW-38R	09/13/16	2	125.4	33.3	10.0	23.3	-	33.3	102.10	-	92.10	
MW-39	04/04/14	2	124.6	54	10.0	44.0	-	54.0	80.60	-	70.60	
MW-42	09/13/16	2	125.9	33.2	10.0	23.2	-	33.2	102.70	-	92.70	
MW-43	09/14/16	2	122.8	47.5	10.0	37.5	-	47.5	85.30	-	75.30	
MW-44	09/15/16	2	127.1	42.8	10.0	32.8	-	42.8	94.30	-	84.30	
Deep (Confined) Z	one											
MW-1D	12/03/11	2	129.4	112.2	10.0	102.2	-	112.2	27.20	-	17.20	
MW-16D	12/19/10	2	124.1	100.2	10.0	90.2	-	100.2	33.90	-	23.90	
MW-21D	03/22/12	2	126.3	106	10.0	96.0	-	106.0	30.30	-	20.30	
MW-22D	03/23/12	2	128.9	114.9	10.0	104.9	-	114.9	24.00	-	14.00	
MW-23D	03/21/12	2	125.2	95	10.0	85.0	-	95.0	40.20	-	30.20	
MW-27D	08/27/13	2	117.2	117.3	10.0	107.3	-	117.3	9.90	-	-0.10	
MW-40D	09/21/16	2	124.1	95.8	10.0	85.8	-	95.8	38.30	-	28.30	
MW-41D	09/23/16	2	127.1	164	10.0	154.0	-	164.0	-26.90	-	-36.90	
RECOVERY WE	LLS											
Shallow (Unconfin												
RW-1S	09/12/16	1	122.9	62	35.0	27.0	-	62.0	95.90	-	60.90	
RW-2S	09/11/16	1	123.5	60.5	35.0	25.5	-	60.5	98.00	-	63.00	
RW-3S	09/11/16	1	1 125.4		35.0	27.0	-	62.0	98.40	-	63.40	
Deep (Confined) Z												
RW-1D	09/09/16	1	126.9	126	40.0	86.0	-	126.0	40.90	-	0.90	
RW-2D	08/31/16	1	127.4	145.6	40.0	105.6	105.6 - 145.6		21.80	-	-18.20	

Notes:

a/ TOC = top of casing; ft amsl = feet above mean sea level; ft btoc = feet below top of casing.

Table 14

Historical Water Level Measurements in Monitoring Wells and Recovery Well Piezometers Former Kop-Flex Facility Hanover, Maryland (a)

			12/7/20	12/7/2016 (b)		17 (b)	3/21/2	2017	4/7/2	017	4/10/2	2017	4/13/2	2017
Well ID	Zone	TOC elevation		Groundwater		Groundwater		Groundwater		Groundwater		Groundwater		Groundwater
Well ID	Zone	100 elevation	Depth to Water		Depth to Water	Elevation								
MW-01	Shallow	129.8	NM	-	15.98	113.82	16.16	113.64	15.93	113.87	15.95	113.85	15.94	113.86
MW-03	Shallow	113.6	6.78	106.82	6.83	106.77	6.79	106.81	6.41	107.19	6.76	106.84	6.91	106.69
MW-04	Shallow	124.4	12.28	112.12	11.14	113.26	11.17	113.23	11.05	113.35	11.09	113.31	11.06	113.34
MW-5R	Shallow	123.5	15.87	107.63	13.49	110.01	15.98	107.52	16.15	107.35	16.38	107.12	16.45	107.05
MW-09	Shallow	125.1	10.84	114.26	11.30	113.80	11.51	113.59	11.41	113.69	11.41	113.69	11.51	113.59
MW-16	Shallow	124.0	10.92	113.08	11.12	112.88	11.66	112.34	11.74	112.26	11.81	112.19	11.82	112.18
MW-18	Shallow	125.1	20.77	104.33	20.84	104.26	22.85	102.25	22.85	102.25	23.11	101.99	23.18	101.92
MW-20	Shallow	125.4	NM	-	12.24	113.16	12.5	112.90	12.33	113.07	12.31	113.09	12.3	113.10
MW-38R	Shallow	125.4	15.58	109.82	15.76	109.64	19.64	105.76	19.6	105.80	20.81	104.59	19.81	105.59
MW-39	Shallow	124.6	NM	-	20.96	103.64	22.64	101.96	22.55	102.05	21.86	102.74	23	101.60
MW-42	Shallow	125.9	16.18	109.72	16.26	109.64	19.28	106.62	19.33	106.57	19.52	106.38	19.49	106.41
MW-43	Shallow	122.8	19.25	103.55	19.31	103.49	20.68	102.12	20.31	102.49	20.61	102.19	21.81	100.99
MW-44	Shallow	127.1	14.93	112.17	15.25	111.85	17.7	109.40	17.08	110.02	17.18	109.92	17.35	109.75
MW-45	Shallow	126.7	NM	-	NM	-	14.1	112.62	13.85	112.87	13.85	112.87	13.85	112.87
RW-1S	Shallow	122.9	12.96	109.94	13.17	109.73	12.96	109.94	20.36	102.54	20.6	102.30	20.56	102.34
RW-2S	Shallow	123.5	14.12	109.38	14.02	109.48	28.55	94.95	28.88	94.62	29.81	93.69	29	94.50
RW-3S	Shallow	125.4	14.29	111.11	14.24	111.16	20.34	105.06	23.49	101.91	23.59	101.81	23.69	101.71
MW-1D	Deep	129.4	42.81	86.59	42.22	87.18	56.15	73.25	56.06	73.34	56.22	73.18	56.44	72.96
MW-16D	Deep	124.1	34.91	89.19	34.72	89.38	37.55	86.55	37.6	86.50	38.02	86.08	38.1	86.00
MW-21D	Deep	126.3	37.8	88.50	37.59	88.71	47.12	79.18	47.26	79.04	47.57	78.73	47.61	78.69
MW-22D	Deep	128.9	40.78	88.07	40.49	88.36	43.28	85.57	43.3	85.55	43.59	85.26	43.76	85.09
MW-23D	Deep	125.2	35.14	90.06	34.74	90.46	36.33	88.87	36.29	88.91	36.72	88.48	36.81	88.39
MW-24D	Deep	129.1	46.3	82.80	45.73	83.37	47.44	81.66	47.71	81.39		81.10		80.94
MW-27D	Deep	117.2	29.66	87.54	26.78	90.42	27.73	89.47	27.68	89.52	28.18	89.02	28.3	88.90
MW-40D	Deep	124.1	35.14	88.96	34.94	89.16	37.19	86.91	37.51	86.59	37.98	86.12		86.12
MW-41D	Deep	127.1	41.98	85.12	41.44	85.66	44.00	83.10	44.06	83.04	44.48	82.62	44.56	82.54
MW-46D	Deep	124.8	NM	-	NM	-	NM	-	NM	-	NM	-	NM	-
RW-1D	Deep	126.9	38.53	88.37	38.19	88.71	58.69	68.21	59.02	67.88		67.84	59.02	67.88
RW-2D	Deep	127.4	42.31	85.09	41.62	85.78	68.82	58.58	68.51	58.89	68.39	59.01	68.78	58.62

Table 14

Historical Water Level Measurements in Monitoring Wells and Recovery Well Piezometers Former Kop-Flex Facility Hanover, Maryland (a)

			4/17/2	4/17/2017		017	5/8/2	017	8/31/2	2017	10/25/	2017	11/14/	2017
Well ID	Zone	TOC elevation		Groundwater										
Well ID	Zone	100 elevation	Depth to Water		Depth to Water	Elevation								
MW-01	Shallow	129.8	15.90	113.90	15.92	113.88	15.81	113.99	15.49	114.31	NA	NA	14.17	115.63
MW-03	Shallow	113.6	6.90	106.70	6.96	106.64	6.87	106.73	7.59	106.01	NA	NA	7.27	106.33
MW-04	Shallow	124.4	11.13	113.27	10.95	113.45	10.91	113.49	10.66	113.74	NA	NA	10.97	113.43
MW-5R	Shallow	123.5	16.47	107.03	16.60	106.90	16.60	106.90	16.90	106.60	NA	NA	16.78	106.72
MW-09	Shallow	125.1	11.48	113.62	11.41	113.69	11.34	113.76	11.09	114.01	NA	NA	NA	NA
MW-16	Shallow	124.0	12.08	111.92	11.99	112.01	11.81	112.19	11.90	112.10	NA	NA	12.00	112.00
MW-18	Shallow	125.1	23.19	101.91	23.30	101.80	23.28	101.82	24.63	100.47	NA	NA	24.41	100.69
MW-20	Shallow	125.4	13.38	112.02	13.01	112.39	12.24	113.16	12.39	113.01	NA	NA	11.98	113.42
MW-38R	Shallow	125.4	19.84	105.56	19.94	105.46	19.96	105.44	20.16	105.24	NA	NA	19.93	105.47
MW-39	Shallow	124.6	23.01	101.59	23.05	101.55	23.00	101.60	24.51	100.09	NA	NA	23.93	100.67
MW-42	Shallow	125.9	19.55	106.35	19.68	106.22	19.67	106.23	19.95	105.95	NA	NA	19.82	106.08
MW-43	Shallow	122.8	20.92	101.88	21.11	101.69	20.90	101.90	21.73	101.07	NA	NA	21.66	101.14
MW-44	Shallow	127.1	17.23	109.87	17.31	109.79	17.27	109.83	17.18	109.92	NA	NA	17.00	110.10
MW-45	Shallow	126.7	13.75	112.97	13.67	113.05	13.60	113.12	13.20	113.52	NA	NA	13.80	112.92
RW-1S	Shallow	122.9	20.60	102.30	20.80	102.10	20.79	102.11	21.49	101.41	NA	NA	21.98	100.92
RW-2S	Shallow	123.5	29.14	94.36		93.89	29.74	93.76	32.10	91.40	NA	NA	30.76	92.74
RW-3S	Shallow	125.4	23.73	101.67	24.32	101.08	24.46	100.94	26.20	99.20	NA	NA	28.47	96.93
MW-1D	Deep	129.4	56.37	73.03		73.00	56.29	73.11	56.70	72.70	58.17	71.23		71.31
MW-16D	Deep	124.1	37.94	86.16	37.98	86.12	38.08	86.02	41.1	83.00	40.71	83.39	40.63	83.47
MW-21D	Deep	126.3	47.58	78.72	47.54	78.76	47.61	78.69	56.7	69.60	50.61	75.69	50.53	75.77
MW-22D	Deep	128.9	43.73	85.12	43.82	85.03	43.81	85.04	46.71	82.14	46.74	82.11	46.25	82.60
MW-23D	Deep	125.2	36.61	88.59	36.71	88.49	36.77	88.43	39.9	85.30	39.21	85.99	39.04	86.16
MW-24D	Deep	129.1	48.29	80.81	48.35	80.75	48.37	80.73	55.82	73.28	52.15	76.95	51.99	77.11
MW-27D	Deep	117.2	28.03	89.17	28.21	88.99	28.21	88.99	31.11	86.09		86.68	30.34	86.86
MW-40D	Deep	124.1	37.85	86.25	38.01	86.09	38.04	86.06		83.10		83.35		83.60
MW-41D	Deep	127.1	44.43	82.67	44.61	82.49	44.62	82.48		77.92		79.16		79.39
MW-46D	Deep	124.8	NM	-										
RW-1D	Deep	126.9	59.26	67.64	58.88	68.02	58.99	67.91	60.23	66.67		64.28	63.62	63.28
RW-2D	Deep	127.4	68.63	58.77	68.70	58.70	68.44	58.96	70.11	57.29	68.90	58.50	68.95	58.45

Table 14

Historical Water Level Measurements in Monitoring Wells and Recovery Well Piezometers Former Kop-Flex Facility Hanover, Maryland (a)

			5/30/2018		11/7/2	2018	5/21/2	2019	11/19/	2019	5/12/2	2020	11/22/	2020
Well ID	Zone	TOC elevation		Groundwater										
· · · · · · · · ·	Zonc	100 cicvation	Depth to Water	Elevation										
MW-01	Shallow	129.8	15.52	114.28	13.99	115.81	13.98	115.82	16.47	113.33	15.67	114.13	15.58	114.22
MW-03	Shallow	113.6	7.17	106.43	6.43	107.17	7.08	106.52	7.02	106.58	6.09	107.51	6.1	107.50
MW-04	Shallow	124.4	10.19	114.21	9.16	115.24	8.80	115.60	11.07	113.33	11.00	113.40	10.85	113.55
MW-5R	Shallow	123.5	15.89	107.61	15.51	107.99	15.74	107.76	16.61	106.89	16.55	106.95	15.84	107.66
MW-09	Shallow	125.1	10.78	114.32	9.16	115.94	9.61	115.49	12.00	113.10	11.57	113.53	11.23	113.87
MW-16	Shallow	124.0	11.76	112.24	10.96	113.04	9.37	114.63	12.43	111.57	11.66	112.34	11.68	112.32
MW-18	Shallow	125.1	23.80	101.30	23.13	101.97	22.97	102.13	21.12	103.98	23.10	102.00	23.80	101.30
MW-20	Shallow	125.4	12.15	113.25	11.74	113.66	10.64	114.76	12.98	112.42	12.57	112.83	12.11	113.29
MW-38R	Shallow	125.4	19.35	106.05	18.67	106.73	19.13	106.27	19.83	105.57	19.03	106.37	19.25	106.15
MW-39	Shallow	124.6	23.72	100.88	23.09	101.51	23.00	101.60	23.94	100.66	23.04	101.56	23.52	101.08
MW-42	Shallow	125.9	19.16	106.74	18.55	107.35	18.91	106.99	19.44	106.46	18.85	107.05	NM	-
MW-43	Shallow	122.8	20.47	102.33	20.60	102.20	21.46	101.34	22.04	100.76	20.98	101.82	21.91	100.89
MW-44	Shallow	127.1	16.32	110.78	15.78	111.32	15.91	111.19	17.24	109.86	16.30	110.80	16.52	110.58
MW-45	Shallow	126.7	12.98	113.74	12.00	114.72	11.75	114.97	14.55	112.17	NM	-	13.61	113.11
RW-1S	Shallow	122.9	22.88	100.02	23.97	98.93	26.42	96.48	28.64	94.26	29.16	93.74	28.13	94.77
RW-2S	Shallow	123.5	28.37	95.13	27.48	96.02	31.16	92.34	31.70	91.80	33.33	90.17	35.31	88.19
RW-3S	Shallow	125.4	26.91	98.49	24.39	101.01	22.10	103.30	23.24	102.16	22.85	102.55	26.72	98.68
MW-1D	Deep	129.4	58.03	71.37	57.22	72.18	56.55	72.85	59.49	69.91	57.17	72.23	59.91	69.49
MW-16D	Deep	124.1	40.37	83.73	39.33	84.77	38.30	85.80	40.99	83.11	38.67	85.43	NM	-
MW-21D	Deep	126.3	50.38	75.92	49.61	76.69	48.38	77.92	50.75	75.55	48.50	77.80	50.37	75.93
MW-22D	Deep	128.9	46.30	82.55	35.31	93.54	44.02	84.83	46.20	82.65	44.05	84.80	46.55	82.30
MW-23D	Deep	125.2	38.87	86.33	37.72	87.48	36.88	88.32	39.40	85.80	37.16	88.04	39.22	85.98
MW-24D	Deep	129.1	50.94	78.16	50.72	78.38	49.67	79.43	51.12	77.98	48.80	80.30	53.02	76.08
MW-27D	Deep	117.2	30.20	87.00	29.17	88.03	28.15	89.05	30.68	86.52	28.64	88.56	30.62	86.58
MW-40D	Deep	124.1	40.44	83.66	39.60	84.50	38.50	85.60	41.16	82.94	38.59	85.51	40.97	83.13
MW-41D	Deep	127.1	47.56	79.54	46.56	80.54	45.42	81.68	48.50	78.60	45.28	81.82	48.65	78.45
MW-46D	Deep	124.8		87.40	32.65	92.12	35.47	89.30	37.90	86.87		89.04	37.72	87.05
RW-1D	Deep	126.9	62.75	64.15	62.97	63.93	62.44	64.46	64.86	62.04	NM	-	NM	-
RW-2D	Deep	127.4	69.21	58.19	68.34	59.06	68.19	59.21	71.36	56.04	69.35	58.05	69.72	57.68

Notes:

TOC = top of casing; NM = not measured; NA = not available because the well had not been installed; - = value not calculated.

Light gray shading denotes wells screened in the shallow (unconfined) zone; blue shading denotes wells screened in the deep (confined) zone.

Continuous pumping of the groundwater recovery well system started on March 29, 2017.

Water levels from both shallow and deep recovery wells were measured in piezometers co-located with the wells.

b/ Water level measurements representative of non-pumping conditions in the aquifer system.

a/ Vertical datum is NAVD-88.

Table 15

2020 Monitoring Well Sampling Results
Former Kop-Flex Facility
Hanover, Maryland (a)

									Shallow Wells						
	Well ID:	MW	-01	MW-03	MW	7-04	MW	′-5R	MW	'-09		MW-16		MW	7-18
	Date Sampled:	5/13/	/20	5/12/20	5/13/20	11/22/20	5/12/20	11/22/20	5/13/20	11/22/20	5/13/20	Duplicate (d)	11/22/20	5/12/20	11/22/20
Parameters	Groundwater Cleanup Standards (μg/L) (b)														
VOCs	<u> </u>														
Chloroethane	2,100	1	U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	10.9	25 U	20 U	1 U	1 U
1,1-Dichloroethane	2.8	1	U	1 U	58.6	62.0	1.8	1 U	2.6	2.5	394	425	1,560	1 U	1 U
1,2-Dichloroethane	5	1	U	1 U	1.3	1.6	1 U	1 U	1 U	1 U	5 U	5 U	20 U	1 U	1 U
1,1-Dichloroethene	7	1	U	1 U	149	141	1.7	1 U	50.5	56.4	571	594	1,130	1 U	1 U
1,4-Dioxane	15 (c)	2	U	2 U	84.6	151	13.4	2.2	18.7	25.7	39.2	35	84.2	2 U	2 U
Methyl tert-butyl ether	20	1	U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	5 U	5 U	20 U	1 U	1 U
1,1,1-Trichloroethane	200	1	U	1 U	1.4	1 U	1 U	1 U	1 U	1 U	487	518	2,060	1 U	1 U
Trichloroethene	5	1	U	1 U	1.2	1.2	1 U	1 U	1 U	1 U	10.7	12	20 U	1 U	1 U

Table 15

2020 Monitoring Well Sampling Results
Former Kop-Flex Facility
Hanover, Maryland (a)

			Shallow Wells									
	Well ID:	MV	V- 20	MW-	-38R	MW	V- 39	MW	-42	MW	7-43	MW-44
	Date Sampled:	5/13/20	11/22/20	5/12/20	11/22/20	5/12/20	11/22/20	5/12/20	1/6/21	5/12/20	11/22/20	5/13/20
Parameters	Groundwater Cleanup Standards (μg/L) (b)											
VOCs	487(7											
Chloroethane	2,100	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	2.8	188	205	6.2	6.5	1 U	1 U	1 U	1 U	3.8	2.9	3.0
1,2-Dichloroethane	5	7.7	7.5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethene	7	232	272	1 U	1 U	1 U	1 U	1 U	1 U	46.3	31.8	4.1
1,4-Dioxane	15 (c)	1,000	1,260	40.8	40.9	2 U	2 U	11.2	13.2	49	42.7	17.7
Methyl tert-butyl ether	20	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	3.4	1 U	1 U
1,1,1-Trichloroethane	200	2 U	2 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	11.9
Trichloroethene	5	2 11	2 11	1 I I	1 11	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Table 15

2020 Monitoring Well Sampling Results Former Kop-Flex Facility Hanover, Maryland (a)

									Deep Wells							
	Well ID:	MW	-1D		MW-16D		MW-	-21D	MW	-22D	MW	-23D	MW-27D	MW	-40D	MW-41D
	Date Sampled:	5/12/20	11/22/20	5/13/20	12/8/20	Duplicate (d)	5/12/20	11/22/20	5/12/20	11/22/20	5/13/20	11/22/20	5/13/20	5/12/20	11/22/20	5/12/20
Parameters	Groundwater Cleanup Standards (μg/L) (b)															
VOCs	<u> </u>															
Chloroethane	2,100	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,1-Dichloroethane	2.8	2.6	3.1	29.1	25.9	24.4	1 U	1 U	1 U	1 U	35.2	26.3	1 U	1 U	1 U	1 U
1,2-Dichloroethane	5	1 U	1 U	1.9	1.6	1.7	1 U	1 U	1 U	1 U	1.8	1.2	1 U	1 U	1 U	1 U
1,1-Dichloroethene	7	16.5	17.6	145	127	108	13.6	7.8	6.2	7.1	142	106	1 U	1 U	1 U	1 U
1,4-Dioxane	15 (c)	12.8	16.9	130	105	118	7.6	5.1	4.6	4.9	112	96.7	2 U	2 U	2 U	1 U
Methyl tert-butyl ether	20	1 U	1 U	1 U	1 U	1 U	2.9	3.0	1 U	1 U	1 U	1 U	1 U	3.1	1 U	1 U
1,1,1-Trichloroethane	200	1 U	1 U	11.7	10.1	8.9	1 U	1 U	1 U	1 U	13.6	1 U	1 U	1 U	1 U	1 U
Trichloroethene	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U

Notes:

Only detected VOC concentrations are provided.

All concentrations are in micrograms per liter (μ g/L).

Results shown in **bold** exceed the cleanup standard.

a/ U = not detected above the method detection limit; VOC = volatile organic compound.

b/ All cleanup standards, except for 1,4-dioxane, are equal to the Maryland Generic Numeric Cleanup Standards for Groundwater, Type I and II Aquifers, from the State of Maryland Interim Final Guidance (October 2018). Accessed May 27, 2020: https://mde.maryland.gov/programs/LAND/MarylandBrownfieldVCP/Documents/www.mde.state.md.us/assets/document/MD E%20Soil%20and%20Groundwater%20Cleanup%20Standards%2010-2018%20Interim%20Final%20Update%203-2.pdf

c/ Numeric cleanup standard from WSP's October 2, 2015, Response Action Plan, Revision 2.

d/ Duplicate sample listed to the right of the original sample.

Table 16

Historical Groundwater Sample Results - Monitoring Wells
Former Kop-Flex Facility
Hanover, Maryland (a, b)

				VOCs (µg/l)	
Well ID	Zone	Sample Date	1,1-DCA	1,1-DCE	1,4-Dioxane
	Groundwater Q	uality Standard (c)	2.8	7	15 (d)
MW-1	Shallow	5/14/2020	1.0 U	1.0 U	1.0 U
		% ND	100%	100%	100%
		Min D	NA	NA	NA
		Max D	NA	NA	NA
		Mean D	NA	NA	NA
		% Decline	NA	NA	NA
		Trend	NA	NA	NA
MW-3	Shallow	12/8/2016	1.0 U	1.0 U	4.6
		5/1/2017	1.0 U	1.0 U	2.0 U
		5/30/2018	1.0 U	1.0 U	2.0 U
		5/21/2019	1.0 U	1.0 U	2.0 U
		5/12/2020	1.0 U	1.0 U	2.0 U
		% ND	100%	100%	80%
		Min D	NA	NA	4.6
		Max D	NA	NA	4.6
		Mean D	NA	NA	4.6
		% Decline	NA	NA	78%
		Trend	NA	NA	NA
MW-4	Shallow	12/7/2016	259	1,020	576
		5/2/2017	103	459	252
		11/15/2017	29.2	151	121
		5/30/2018	33.3	153	92.7
		11/7/2018	23.3	89.9	1.0 U
		5/21/2019	57.7	142	111
		11/19/2019	45.1	126	94.2
		5/13/2020	58.6	149	84.6
		11/22/2020	62.0	141	151
		% ND	0%	0%	11%
		Min D	23.3	89.9	84.6
		Max D	259	1,020	576
		Mean D	74.6	270.1	185.3
		% Decline	76%	86%	74%
		Trend	NT	Decreasing	NT

Table 16

Historical Groundwater Sample Results - Monitoring Wells
Former Kop-Flex Facility
Hanover, Maryland (a, b)

				VOCs (µg/l)	
Well ID	Zone	Sample Date	1,1-DCA	1,1-DCE	1,4-Dioxane
	Groundwater Qu	ality Standard (c)	2.8	7	15 (d)
MW-5R	Shallow	12/7/2016	1.0 U	1.0 U	16.5
		5/1/2017	1.4	1.4	16.5
		11/15/2017	1.6	2.5	11.0
		5/30/2018	1.8	2.7	11.5
		11/7/2018	1.0 U	1.3	2.0 U
		5/21/2019	1.0 U	1.0 U	7.6
		11/19/2019	1.0 U	1.0 U	6.8
		5/12/2020	1.8	1.7	13.4
		11/22/2020	1.0 U	1.0 U	2.2
		% ND	56%	44%	11%
		Min D	1.4	1.3	2.2
		Max D	1.8	2.7	16.5
		Mean D	1.7	1.9	10.7
		% Decline	72%	81%	87%
		Trend	NA	NT	NT
MW-9	Shallow	12/8/2016	4.5	104	95.5
		5/2/2017	2.9	63.8	20.8
		11/15/2017	3.1	60.2	32.4
		5/30/2018	2.2	49.2	23.4
		11/7/2018	4.5	75.9	37.4
		5/21/2019	3.6	70.8	32.8
		11/19/2019	2.6	48.7	24.4
		5/13/2020	2.6	50.5	18.7
		11/22/2020	2.5	56.4	25.7
		% ND	0%	0%	0%
		Min D	2.2	48.7	18.7
		Max D	4.5	104	95.5
		Mean D	3.2	64.4	34.6
		% Decline	44%	46%	73%
		Trend	NT	NT	NT

Table 16

Historical Groundwater Sample Results - Monitoring Wells
Former Kop-Flex Facility
Hanover, Maryland (a, b)

						VOCs (µg/	(l)		
Well ID	Zone	Sample Date		1,1-DCA	L	1,1-DCE		1,4-Dioxai	ne
	Groundwater Qu	ality Standard (c)		2.8		7		15 (d)	
MW-16	Shallow	12/8/2016		6,420		26,200		1,450	
		5/2/2017		7,910		10,500		971	
		11/15/2017		7,110		7,740		836	
		5/30/2018		6,250		4,690		636	
		11/7/2018		7,360		7,800		866	
		5/22/2019		343		1,160		1,230	
		11/19/2019		608		1,440		81.9	
		5/13/2020		394		571		39.2	
		5/13/2020	(e)	425		594		35	
		11/22/2020		1,560		1,130		84.2	
		% ND		0%		0%		0%	
		Min D		343		571		35	
		Max D		7,910		26,200		1,450	
		Mean D		3,838		6,183		622.9	
		% Decline		80%		96%		94%	
		Trend		NT		Decreasing	g	Decreasin	g
MW-18	Shallow	12/7/2016		1.0	U	1.0	U	2.0	U
		5/1/2017		1.0	U	1.0	U	2.0	U
		11/15/2017		1.0	U	1.0	U	24.9	
		5/30/2018		1.0	U	1.0	U	2.0	U
		11/7/2018		1.0	U	1.0	U	2.0	U
		5/21/2019		1.0	U	1.0	U	2.0	U
		11/19/2019		1.0	U	1.0	U	2.0	U
		5/12/2020		1.0	U	1.0	U	2.0	U
		11/22/2020		1.0	U	1.0	U	2.0	U
		% ND		100%		100%		89%	
		Min D		NA		NA		24.9	
		Max D		NA		NA		24.9	
		Mean D		NA		NA		24.9	
		% Decline		NA		NA		96%	
		Trend		NA		NA		NA	

Table 16

Historical Groundwater Sample Results - Monitoring Wells
Former Kop-Flex Facility
Hanover, Maryland (a, b)

				VOCs (μg/l)	
Well ID	Zone	Sample Date	1,1-DCA	1,1-DCE	1,4-Dioxane
	Groundwater Qua	ality Standard (c)	2.8	7	15 (d)
MW-20	Shallow	12/9/2016	99.7	173	767
		5/2/2017	161	286	967
		11/15/2017	136	223	969
		5/30/2018	115	205	966
		11/7/2018	145	233	986
		5/21/2019	157	226	1,620
		11/19/2019	175	244	1,220
		5/13/2020	188	232	1,000
		11/22/2020	205	272	1,260
		% ND	0%	0%	0%
		Min D	99.7	173	767
		Max D	205	286	1,620
		Mean D	153.5	232.7	1,084
		% Decline	0%	5%	22%
		Trend	Increasing	NT	Increasing
MW-38R	Shallow	12/9/2016	3.8	1.0 U	18.3
		5/1/2017	6.0	1.0 U	42.6
		11/15/2017	8.3	1.0 U	62.5
		5/30/2018	4.3	1.0 U	40.7
		11/7/2018	6.9	1.0 U	39.4
		5/21/2019	4.7	1.0 U	43.2
		11/19/2019	7.7	1.0 U	51.5
		5/12/2020	6.2	1.0 U	40.8
		11/22/2020	6.5	1.0 U	40.9
		% ND	0%	100%	0%
		Min D	3.8	NA	18.3
		Max D	8.3	NA	62.5
		Mean D	6	NA	42.2
		% Decline	22%	NA	35%
		Trend	NT	NA	NT

Table 16

Historical Groundwater Sample Results - Monitoring Wells
Former Kop-Flex Facility
Hanover, Maryland (a, b)

				VOCs (μg/l)	
Well ID	Zone	Sample Date	1,1-DCA	1,1-DCE	1,4-Dioxane
	Groundwater Qu	ality Standard (c)	2.8	7	15 (d)
MW-39	Shallow	12/7/2016	1.0 U	1.7	2.5
		5/1/2017	1.0 U	1.1	3.0
		11/15/2017	1.0 U	0.6 J	2.2
		5/30/2018	1.0 U	1.0 U	2.0 U
		11/7/2018	1.0 U	1.0 U	2.0 U
		5/21/2019	1.0 U	1.0 U	2.0 U
		11/19/2019	1.0 U	1.0 U	2.0 U
		5/12/2020	1.0 U	1.0 U	2.0 U
		11/22/2020	1.0 U	1.0 U	2.0 U
		% ND	100%	67%	67%
		Min D	NA	0.6	2.2
		Max D	NA	1.7	3
		Mean D	NA	1.1	2.6
		% Decline	NA	71%	67%
		Trend	NA	NA	NA
MW-42	Shallow	12/7/2016	1.0 U	1.0 U	4.8
		5/1/2017	1.0 U	1.0 U	8.0
		11/15/2017	1.0 U	1.0 U	19.3
		5/30/2018	1.0 U	1.0 U	7.4
		11/7/2018	1.0 U	1.0 U	10.3
		5/21/2019	1.0 U	1.0 U	10.6
		11/19/2019	1.0 U	1.0 U	5.6
		5/12/2020	1.0 U	1.0 U	11.2
		1/6/2021	1.0 U	1.0 U	13.2
		% ND	100%	100%	0%
		Min D	NA	NA	4.8
		Max D	NA	NA	19.3
		Mean D	NA	NA	10
		% Decline	NA	NA	32%
		Trend	NA	NA	NT

Table 16

Historical Groundwater Sample Results - Monitoring Wells
Former Kop-Flex Facility
Hanover, Maryland (a, b)

				VOCs (μg/l)	
Well ID	Zone	Sample Date	1,1-DCA	1,1-DCE	1,4-Dioxane
	Groundwater Qu	ality Standard (c)	2.8	7	15 (d)
MW-43	Shallow	12/7/2016	15.9	171	237
		5/1/2017	21.3	177	206
		11/15/2017	15.9	159	165
		5/30/2018	5.9	68	57.6
		11/7/2018	13.8	118	107
		5/21/2019	5.2	53.9	52.0
		11/19/2019	4.3	48.5	55.2
		5/12/2020	3.8	46.3	49.0
		11/22/2020	2.9	31.8	42.7
		% ND	0%	0%	0%
		Min D	2.9	31.8	42.7
		Max D	21.3	177	237
		Mean D	9.9	97.1	107.9
		% Decline	86%	82%	82%
		Trend	Decreasing	Decreasing	Decreasing
MW-44	Shallow	12/7/2016	1.0 U	1.0 U	2.0 U
		5/1/2017	6.6	5.9	49.1
		5/30/2018	1.4	1.4	8.4
		5/21/2019	14.9	22.4	64.4
		5/13/2020	3.0	4.1	17.7
		% ND	20%	20%	20%
		Min D	1.4	1.4	8.4
		Max D	14.9	22.4	64.4
		Mean D	6.5	8.5	34.9
		% Decline	80%	82%	73%
		Trend	NT	NT	NT

Table 16

Historical Groundwater Sample Results - Monitoring Wells
Former Kop-Flex Facility
Hanover, Maryland (a, b)

					VOCs (µg/l)	
Well ID	Zone	Sample Date		1,1-DCA	1,1-DCE	1,4-Dioxane
	Groundwater Qu	ality Standard (c)		2.8	7	15 (d)
MW-1D	Deep	1/2/2017		72	375	236
		5/3/2017		105	407	329
		11/15/2017		80	277	243
		5/30/2018		14.9	71.4	64.4
		11/7/2018		7.1	38.8	2.0 U
		5/21/2019		2.1	13.7	12.8
		11/19/2019		3.4	17.7	17.9
		5/18/2020		2.6	16.5	12.8
		11/22/2020		3.1	17.6	16.9
		% ND		0%	0%	11%
		Min D		2.1	13.7	12.8
		Max D		105	407	329
		Mean D		32.2	137.2	116.6
		% Decline		97%	96%	95%
		Trend		Decreasing	Decreasing	NT
MW-16D	Deep	12/8/2016		56.6	254	202
		5/2/2017		43.7	235	182
		11/15/2017		29.7	179	192
		5/30/2018		26.4	180	153
		5/30/2018	(e)	27.1	188	156
		11/7/2018		27.5	161	158
		11/7/2018	(e)	28.9	180	135
		5/22/2019		28.5	172	148
		5/22/2019	(e)	27.6	151	146
		11/19/2019		25.6	133	140
		11/19/2019	(e)	26.6	142	119
		5/13/2020		29.1	145	130
		12/8/2020		25.9	127	105
		% ND		0%	0%	0%
		Min D		25.6	127	105
		Max D		56.6	254	202
		Mean D		31	172.8	151.2
		% Decline		54%	50%	48%
		Trend		Decreasing	Decreasing	Decreasing

Table 16

Historical Groundwater Sample Results - Monitoring Wells
Former Kop-Flex Facility
Hanover, Maryland (a, b)

				VOCs (μg/l)	
Well ID	Zone	Sample Date	1,1-DCA	1,1-DCE	1,4-Dioxane
	Groundwater Qu	ality Standard (c)	2.8	7	15 (d)
MW-21D	Deep	12/16/2016	2.6	23.4	18.6
		5/1/2017	6.9	111	57.5
		11/15/2017	2.0	14.4	18.5
		5/30/2018	1.0	38.8	32.2
		11/7/2018	1.0 U	30.0	18.0
		5/21/2019	1.0 U	9.9	8.4
		11/19/2019	1.0 U	4.1	4.1
		5/18/2020	1.0 U	13.6	7.6
		11/22/2020	1.0 U	7.8	5.1
		% ND	56%	0%	0%
		Min D	1	4.1	4.1
		Max D	6.9	111	57.5
		Mean D	3.1	28.1	18.9
		% Decline	93%	93%	91%
		Trend	NA	Decreasing	Decreasing
MW-22D	Deep	12/7/2016	2.5	31.5	24.5
		5/2/2017	2.5	36.9	24.6
		11/15/2017	1.72	24.4	19.6
		5/30/2018	1.0 U	13.1	7.9
		11/7/2018	1.0 U	9.7	2.0 U
		5/21/2019	1.0 U	6.3	5.1
		11/19/2019	1.0 U	5.6	4.9
		5/18/2020	1.0 U	6.2	4.6
		11/22/2020	1.0 U	7.1	4.9
		% ND	67%	0%	11%
		Min D	1.72	5.6	4.6
		Max D	2.5	36.9	24.6
		Mean D	2.2	15.6	12
		% Decline	80%	81%	80%
		Trend	NA	Decreasing	Decreasing

Table 16

Historical Groundwater Sample Results - Monitoring Wells
Former Kop-Flex Facility
Hanover, Maryland (a, b)

				VOCs (μg/l)	
Well ID	Zone	Sample Date	1,1-DCA	1,1-DCE	1,4-Dioxane
	Groundwater Q	uality Standard (c)	2.8	7	15 (d)
MW-23D	Deep	1/2/2017	26.4	140	151
		5/1/2017	39.1	208	177
		11/15/2017	31.1	179	158
		5/30/2018	30.5	172	148
		11/7/2018	36.2	185	146
		5/21/2019	18.5	96.4	70.7
		11/19/2019	22.7	107	109
		5/13/2020	35.2	142	112
		11/22/2020	26.3	106	96.7
		% ND	0%	0%	0%
		Min D	18.5	96.4	70.7
		Max D	39.1	208	177
		Mean D	29.6	148.4	129.8
		% Decline	33%	49%	45%
		Trend	NT	NT	Decreasing
MW-27D	Deep	12/7/2016	1.0 U	1.0 U	2.0 U
		5/1/2017	1.0 U	1.0 U	3.6
		5/30/2018	1.0 U	1.0 U	2.0 U
		5/21/2019	1.0 U	1.0 U	2.0 U
		5/13/2020	1.0 U	1.0 U	2.0 U
		% ND	100%	100%	80%
		Min D	NA	NA	3.6
		Max D	NA	NA	3.6
		Mean D	NA	NA	3.6
		% Decline	NA	NA	72%
		Trend	NA	NA	NA

Table 16

Historical Groundwater Sample Results - Monitoring Wells Former Kop-Flex Facility Hanover, Maryland (a, b)

				VOCs (µg/l)	
Well ID	Zone	Sample Date	1,1-DCA	1,1-DCE	1,4-Dioxane
	Groundwater Qu	ality Standard (c)	2.8	7	15 (d)
MW-40D	Deep	12/9/2016	2.9	18.1	9.4
		5/1/2017	3.1	17.4	8.5
		11/15/2017	0.9 J	5.2	5.2
		5/30/2018	1.0 U	2.9	2.0 U
		11/7/2018	1.0 U	4.4	2.7
		5/21/2019	1.0 U	1.0 U	2.0 U
		11/19/2019	1.0 U	1.0 U	2.0 U
		5/18/2020	1.0 U	1.0 U	2.0 U
		11/22/2020	1.0 U	1.0 U	2.0 U
		% ND	67%	44%	56%
		Min D	0.9	2.9	2.7
		Max D	3.1	18.1	9.4
		Mean D	2.3	9.6	6.5
		% Decline	84%	97%	89%
		Trend	NA	Decreasing	NA
MW-41D	Deep	12/16/2016	1.0 U	1.0 U	2.8
		5/17/2017	1.0 U	1.0 U	2.4
		5/30/2018	1.0 U	1.1	2.0 U
		5/21/2019	1.0 U	1.0 U	2.1
		5/18/2020	1.0 U	1.0 U	2.0 U
		% ND	100%	80%	40%
		Min D	NA	1.1	2.1
		Max D	NA	1.1	2.8
		Mean D	NA	1.1	2.4
		% Decline	NA	55%	64%
		Trend	NA	NA	NT

Notes:

- a/ Select constituents are presented above, see Appendix E for complete analytical data.
- b/ VOC = volatile organic compound; DCA = dichloroethane; DCE = dichloroethene;
 - J = estimated concentration; U = compound not detected above reported limit; % = percent;
 - ND = non-detect; min = minimum; max = maximum; D = detection; NT = no trend; NA = not applicable.
 - All concentrations are in micrograms per liter (μ g/L).
 - Results shown in **bold** exceed the cleanup standard.
- c/ All cleanup standards, except for 1,4-dioxane, are equal to the Maryland Generic Numeric Cleanup Standards for Groundwater, Type I and II Aquifers, from the State of Maryland Interim Final Guidance (October 2018). Accessed May 27, 2020:
 - https://mde.maryland.gov/programs/LAND/MarylandBrownfieldVCP/Documents/www.mde.state.md.us/assets/document/MDE%20Soil%20and%20Groundwater%20Cleanup%20Standards%2010-2018%20Interim%20Final%20Update%203-2.pdf
- d/ Numeric cleanup standard from WSP's October 2, 2015, Response Action Plan, Revision 2.
- e/ Duplicate of previous sample.

APPENDIX

LAB REPORTS FOR SYSTEM SAMPLING

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20010902

January 23, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20010902

Project Name: Kop Flex Project Location: Hanover, MD

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 20010902.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on February 13, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan PrucnalLaboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20010902

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 01/09/2020 at 11:10 am

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20010902-001	Effluent VSP-4	WASTE WATER	01/09/20 09:30	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20010902

Sample ID: Effluent VSP-4 Date/Time Sampled: 01/09/2020 09:30 PSS Sample ID: 20010902-001

Matrix: WASTE WATER Date/Time Received: 01/09/2020 11:10

Total Metals + Hardness Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL Flag Dil		Prepared	Analyzed	Analyst
Copper	2.7	ug/L	1.0	1	01/10/20	01/14/20 14:38	3 1064
Lead	ND	ug/L	1.0	1	01/10/20	01/10/20 16:44	1064
Nickel	13.1	ug/L	1.00	1	01/10/20	01/14/20 14:38	3 1064
Zinc	25.3	ug/L	20.0	1	01/10/20	01/14/20 14:38	3 1064
Hardness (Ca & Mg)	20	mg/L	0.66	1	01/10/20	01/10/20 16:44	1064

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Descrit Helita

pH=2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Chloromethane	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Vinyl Chloride	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Bromomethane	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Chloroethane	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Trichlorofluoromethane	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Methylene Chloride	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Chloroform	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Carbon Tetrachloride	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Benzene	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Trichloroethene	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Bromodichloromethane	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Toluene	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Tetrachloroethylene	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Dibromochloromethane	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Chlorobenzene	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011
Ethylbenzene	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57	1011

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20010902

Sample ID: Effluent VSP-4 Matrix: WASTE WATER			•	01/09/2020 09 01/09/2020 11	•	e ID: 20010902-001				
Volatile Organics Compounds (TVO)	Analytica	al Method:	EPA 624 .1		Preparation Method: 624					
pH=2	Result	Units	RL	Flag Dil	Prepared	Analyzed Analyst				
Bromoform	ND	ug/L	1.0	1	01/09/20					
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57 1011				
1,3-Dichlorobenzene	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57 1011				
1,4-Dichlorobenzene	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57 1011				
1,2-Dichlorobenzene	ND	ug/L	1.0	1	01/09/20	01/09/20 17:57 1011				
Surrogate(s)	Recovery		Limits							
Dibromofluoromethane	97	%	87-120	1	01/09/20	01/09/20 17:57 1011				
4-Bromofluorobenzene	103	%	85-147	1	01/09/20	01/09/20 17:57 1011				
Toluene-D8	100	%	88-110	1	01/09/20	01/09/20 17:57 1011				
Total Suspended Solids	Analytica	al Method:	SM 2540D -20	11						
_	Result	Units	RL	Flag Dil	Prepared	Analyzed Analyst				
Suspended Solids	ND	mg/L	1.0	1	01/09/20	01/09/20 18:08 1061				
Biochemical Oxygen Demand	Analytica	al Method:	SM 5210B -20	11						
Start time: 09-Jan-20 15:20	Result	Units	RL	Flag	Prepared	Analyzed Analyst				
Biochemical Oxygen Demand, 5 day	ND	mg/L	5.0		01/14/20	01/14/20 14:50 4005				

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20010902

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

20010902: Analyses associated with analyst code 4005 were performed by Enviro-Chem Laboratories, Inc., 47 Loveton Circle, Suite K, Sparks, MD 21152

General Comments:

Per client, do not report dissolved metals results.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SM 5210B -2011

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20010902

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical	Batch Prepared	Analyzed
EPA 200.8	Effluent VSP-4	Initial	20010902-001	W	79932	171030	01/10/2020 10:17	01/10/2020 16:44
	79932-1-BKS	BKS	79932-1-BKS	W	79932	171030	01/10/2020 10:17	01/10/2020 16:23
	79932-1-BLK	BLK	79932-1-BLK	W	79932	171030	01/10/2020 10:17	01/10/2020 16:19
	20200108HRP001 S	MS	20010809-001 S	W	79932	171030	01/10/2020 10:17	01/10/2020 16:32
	Covanta S	MS	20010915-002 S	W	79932	171030	01/10/2020 10:17	01/10/2020 18:42
	20200108HRP001 SD	MSD	20010809-001 S	W	79932	171030	01/10/2020 10:17	01/10/2020 16:36
	79932-1-BLK	Reanalysis	79932-1-BLK	W	79932	171115	01/10/2020 10:17	01/14/2020 14:16
	Effluent VSP-4	Reanalysis	20010902-001	W	79932	171115	01/10/2020 10:17	01/14/2020 14:38
EPA 200.8	79945-1-BKS	BKS	79945-1-BKS	W	79945	171032	01/10/2020 15:18	01/10/2020 18:55
	79945-1-BLK	BLK	79945-1-BLK	W	79945	171032	01/10/2020 15:18	01/10/2020 18:51
	Effluent S	MS	20010827-001 S	W	79945	171032	01/10/2020 15:18	01/10/2020 19:04
	Effluent SD	MSD	20010827-001 S	W	79945	171032	01/10/2020 15:18	01/10/2020 19:08
	79945-1-BKS	Reanalysis	79945-1-BKS	W	79945	171117	01/10/2020 15:18	01/14/2020 15:14
	79945-1-BLK	Reanalysis	79945-1-BLK	W	79945	171117	01/10/2020 15:18	01/14/2020 14:16
EPA 624.1	Effluent VSP-4	Initial	20010902-001	W	79926	170977	01/09/2020 09:24	01/09/2020 17:57
	79926-1-BKS	BKS	79926-1-BKS	W	79926	170977	01/09/2020 09:24	01/09/2020 10:32
	79926-1-BLK	BLK	79926-1-BLK	W	79926	170977	01/09/2020 09:24	01/09/2020 12:25
	BSSE-200107 S	MS	20010706-001 S	W	79926	170977	01/09/2020 09:24	01/09/2020 14:11
	BSSE-200107 SD	MSD	20010706-001 S	W	79926	170977	01/09/2020 09:24	01/09/2020 14:33
SM 2540D -2011	Effluent VSP-4	Initial	20010902-001	W	170988	170988	01/09/2020 18:08	01/09/2020 18:08
	170988-1-BLK	BLK	170988-1-BLK	W	170988	170988	01/09/2020 18:08	01/09/2020 18:08
	13623-Eff-1/20 D	MD	20010813-001 D	W	170988	170988	01/09/2020 18:08	01/09/2020 18:08
SM 5210B -2011	Effluent VSP-4	Initial	20010902-001	W	171303	171303	01/14/2020 14:50	01/14/2020 14:50

QC Summary

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20010902

Analytical Method: SM 2540D -2011

Seq Number: 170988 Matrix: Water

MB Sample Id: 170988-1-BLK

Parameter MB LOD RL Units Flag

Suspended Solids ND 0.5000 1.000 mg/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 171030 Matrix: Water Date Prep: 01/10/20

MB Sample Id: 79932-1-BLK LCS Sample Id: 79932-1-BKS

MB **Spike** LCS LCS Limits Units **Parameter** Flag Result Amount Result %Rec Copper 5.738 40.00 43.21 108 85-115 ug/L Lead <1.000 40.00 41.43 104 85-115 ug/L Nickel <1.000 40.00 45.30 113 85-115 ug/L Zinc <20.00 200 223.9 112 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 171032 Matrix: Water Date Prep: 01/10/20

MB Sample Id: 79945-1-BLK LCS Sample Id: 79945-1-BKS

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Copper	<1.000	40.00	38.62	97	85-115	ug/L	
Lead	<1.000	40.00	43.86	110	85-115	ug/L	
Nickel	<1.000	40.00	40.51	101	85-115	ug/L	
Zinc	<20.00	200	204	102	85-115	ug/L	

QC Summary

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20010902

Analytical Method: EPA 624 .1 Prep Method: E624PREP Seq Number: 170977 Matrix: Water Date Prep: 01/09/20

LCS Sample Id: 79926-1-BKS MB Sample Id: 79926-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethane	<1.000	50.00	46.09	92	54-148		ug/L	
Chloromethane	<1.000	50.00	46.74	93	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	47.82	96	5-195		ug/L	
Bromomethane	<1.000	50.00	50.86	102	15-185		ug/L	
Chloroethane	<1.000	50.00	44.14	88	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	45.25	91	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	46.00	92	50-150		ug/L	
Methylene Chloride	<1.000	50.00	48.14	96	60-140		ug/L	
trans-1,2-dichloroethene	<1.000	50.00	47.83	96	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	45.69	91	70-130		ug/L	
Chloroform	<1.000	50.00	45.71	91	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	45.59	91	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	46.14	92	70-130		ug/L	
Benzene	<1.000	50.00	45.19	90	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	44.51	89	70-130		ug/L	
Trichloroethene	<1.000	50.00	45.10	90	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	46.70	93	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	47.15	94	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	44.61	89	25-175		ug/L	
Toluene	<1.000	50.00	45.42	91	70-130		ug/L	
trans-1,3-dichloropropene	<1.000	50.00	44.23	88	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	44.73	89	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	44.81	90	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	44.35	89	70-135		ug/L	
Chlorobenzene	<1.000	50.00	44.99	90	65-135		ug/L	
Ethylbenzene	<1.000	50.00	47.68	95	60-140		ug/L	
Bromoform	<1.000	50.00	42.00	84	70-130		ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	43.83	88	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	47.50	95	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	46.41	93	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	47.07	94	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	103		99		87-120	%		
4-Bromofluorobenzene	101		102		85-147	%		
Toluene-D8	101		100		88-110	%		

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits L = Recovery of BS,BSD or both below the laboratory control limits

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

${\mathfrak P}_{*_{CLIENT}}$	WSP	*OFF	CE LOC. H	erndor	, VA	PSS V	Vork Orde	er#: 2	200	100	202			IDH			PAGE	- 1	OF _	1	
	CTMGR: Eric John					Matrix (odes.	W-Driel	ring Wit	r GW-			W =Was	te Wtr	0 =0il	S=Soil	L=Liqu	id SO 1	.=Solid A =A	ir WI =W	Vipe
						No.	SAMPLE	Preserva Used	tives H	101		H	NO3								
*880150	eric. johnson@ ctname: Kop Flex	r	315	101545	10/04	O N	TYPE	Analysis		$\sqrt{}$	/	/1	metal	5/	/	/	/	/	//		
PROJEC	OTHANIE. RUP 1. OA	100	PRO	JECT NO.:		T A	C = COMP	Required	(624)	/	1000	50	In me	/ /	/	/	/		//		
	cation: Havover, N				_	I N				2/	1/8	Per s	John of	/	/	/	/	/			
2	3(s): Shannon [100			E R	G = GRAB	100	800	5/0	3/2	2/0	00/	/	/	/	/	/	/		
LAB NO.		17774	*DATE (SAMPLED)		MATRIX (See Codes)	S		/	/	1	F	10	/		_				REM	ARKS	
-	Effluent VSP-	-4	1/9/20	0930	WW	7	G	X	X	X	X	X							Zn,Cu,	NIP	6
								Н													
								Н						-						_	
								Н										-			
								Н													
5																					
Relinquish	red By: (1)	Date	Time	Received	1 Le			*	Reque Day	ested	TAT (0	one TA	T per	COC) 2-Day			olers:		TB. I	.4°د	
-	Bulle		1110			1		□ No	ext Da	y [Eme	rgenc	y 🛛	Other	Cı	stody	Seal:	AP.	5		
Relinquish	ed By: (2)	Date	Time	Received	By:			Data COA			s Req I CLP	uired: LIKE	ОТ	HER		Pres	ent:	PHE	S Temp:	.12-0	300
Relinquish	ad Bu (2)	Dete	Time	Daniel de									_		- St	ipping	g Carr	ier: (lint	N B	Min.
neiinquisn	eu by. (3)	Date	Time	Received	БУ:			Spec La	ial Ins	truction	ons: Site	>+0	diss	ard	ed	U-a	tay	5	AT,		
Relinquish	ed By: (4)	Date	Time	Received	Ву:			DW C		IANC						STA		ESUL	TS REPC	RTED OTHER	

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20010902

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 02/13/2020 Date Received 01/09/2020 11:10:00 AM **Delivered By** Client Not Applicable **Tracking No** Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? N/A Temp (deg C) .3 N/A Temp Blank Present Yes Seal(s) Signed / Dated? Sampler Name Shannon Burke **Documentation** COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 Preservation **Total Metals** (pH<2)Yes Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	Thomas Wingate	Date: 01/09/2020	_
	01.91.1		

PM Review and Approval:

Do VOA vials have zero headspace?

524 VOC (Rcvd with trip blanks)

624 VOC (Rcvd at least one unpreserved VOA vial)

Amber Confer

Date: 01/23/2020

(pH<2)

Version 1.000

Yes

No

N/A

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20010903

January 23, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20010903

Project Name: Kop Flex Project Location: Hanover, MD

Project Location: Hanover, ML Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 20010903.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on February 13, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20010903

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 01/09/2020 at 11:10 am

PSS Sample ID	Sample ID	Matrix Date/Time Collected	
20010903-001	Effluent VSP-4	WASTE WATER 01/09/20 09:30	_
20010903-002	Influent VSP-1	GROUND WATER 01/09/20 09:10	
20010903-003	TB-010920	WATER 01/09/20 00:00	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- If the target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20010903

Sample ID: Effluent VSP-4 Date/Time Sampled: 01/09/2020 09:30 PSS Sample ID: 20010903-001

Matrix: WASTE WATER Date/Time Received: 01/09/2020 11:10

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

Qualifier(s): See Batch 171328 on Case Narrative.

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	01/22/20	01/22/20 16:07	7 1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	104	%	80-120	1	01/22/20	01/22/20 16:0	7 1045

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20010903

Sample ID: Influent VSP-1 Date/Time Sampled: 01/09/2020 09:10 PSS Sample ID: 20010903-002

Matrix: GROUND WATER Date/Time Received: 01/09/2020 11:10

TCL Volatile Organic Compounds Analytical Method: SW-846 8260 B Preparation Method: 5030B

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	ND	ug/L	10	1	01/11/20	01/11/20 13:27	1011
Benzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Bromochloromethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Bromodichloromethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Bromoform	ND	ug/L	5.0	1	01/11/20	01/11/20 13:27	1011
Bromomethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
2-Butanone (MEK)	ND	ug/L	10	1	01/11/20	01/11/20 13:27	1011
Carbon Disulfide	ND	ug/L	10	1	01/11/20	01/11/20 13:27	1011
Carbon tetrachloride	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Chlorobenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Chloroethane	3.5	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Chloroform	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Chloromethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Cyclohexane	ND	ug/L	10	1	01/11/20	01/11/20 13:27	1011
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1	01/11/20	01/11/20 13:27	1011
Dibromochloromethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
1,2-Dibromoethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Dichlorodifluoromethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
1,1-Dichloroethane	44	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
1,2-Dichloroethane	1.5	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
cis-1,2-Dichloroethene	1.2	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
1,1-Dichloroethene	220	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
trans-1,3-Dichloropropene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
trans-1,2-Dichloroethene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Ethylbenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
2-Hexanone (MBK)	ND	ug/L	5.0	1	01/11/20	01/11/20 13:27	1011
Isopropylbenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Methyl Acetate	ND	ug/L	10	1	01/11/20	01/11/20 13:27	1011
Methylcyclohexane	ND	ug/L	10	1	01/11/20	01/11/20 13:27	1011
Methylene chloride	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20010903

Sample ID: Influent VSP-1 Date/Time Sampled: 01/09/2020 09:10 PSS Sample ID: 20010903-002

Matrix: GROUND WATER Date/Time Received: 01/09/2020 11:10

TCL Volatile Organic Compounds Analytical Method: SW-846 8260 B Preparation Method: 5030B

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
4-Methyl-2-Pentanone (MIBK)	ND	ug/L	5.0	1	01/11/20	01/11/20 13:27	1011
Methyl-t-Butyl Ether	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Naphthalene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Styrene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Tetrachloroethene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Toluene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
1,1,1-Trichloroethane	19	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Trichloroethene	1.2	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Trichlorofluoromethane	ND	ug/L	5.0	1	01/11/20	01/11/20 13:27	1011
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Vinyl chloride	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
m&p-Xylene	ND	ug/L	2.0	1	01/11/20	01/11/20 13:27	1011
o-Xylene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:27	1011
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	99	%	87-109	1	01/11/20	01/11/20 13:27	1011
Dibromofluoromethane	101	%	93-111	1	01/11/20	01/11/20 13:27	1011
Toluene-D8	101	%	91-109	1	01/11/20	01/11/20 13:27	1011

1,4-Dioxane by GC/MS - SIM

Analytical Method: SW-846 8260 B-Modified

Preparation Method: 5030B

Qualifier(s): See Batch 171328 on Case Narrative.

_	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	110	ug/L	5.0	5	01/22/20	01/22/20 16:29	1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	103	%	80-120	5	01/22/20	01/22/20 16:29	9 1045

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20010903

Sample ID: TB-010920 Date/Time Sampled: 01/09/2020 00:00 PSS Sample ID: 20010903-003

Matrix: WATER Date/Time Received: 01/09/2020 11:10

TCL Volatile Organic Compounds Analytical Method: SW-846 8260 B Preparation Method: 5030B

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	ND	ug/L	10	1	01/11/20	01/11/20 13:04	1011
Benzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Bromochloromethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Bromodichloromethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Bromoform	ND	ug/L	5.0	1	01/11/20	01/11/20 13:04	1011
Bromomethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
2-Butanone (MEK)	ND	ug/L	10	1	01/11/20	01/11/20 13:04	1011
Carbon Disulfide	ND	ug/L	10	1	01/11/20	01/11/20 13:04	1011
Carbon tetrachloride	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Chlorobenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Chloroethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Chloroform	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Chloromethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Cyclohexane	ND	ug/L	10	1	01/11/20	01/11/20 13:04	1011
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1	01/11/20	01/11/20 13:04	1011
Dibromochloromethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
1,2-Dibromoethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Dichlorodifluoromethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
cis-1,2-Dichloroethene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
trans-1,3-Dichloropropene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
trans-1,2-Dichloroethene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Ethylbenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
2-Hexanone (MBK)	ND	ug/L	5.0	1	01/11/20	01/11/20 13:04	1011
Isopropylbenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Methyl Acetate	ND	ug/L	10	1	01/11/20	01/11/20 13:04	1011
Methylcyclohexane	ND	ug/L	10	1	01/11/20	01/11/20 13:04	1011
Methylene chloride	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20010903

Sample ID: TB-010920 Date/Time Sampled: 01/09/2020 00:00 PSS Sample ID: 20010903-003

Matrix: WATER Date/Time Received: 01/09/2020 11:10

TCL Volatile Organic Compounds Analytical Method: SW-846 8260 B Preparation Method: 5030B

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
4-Methyl-2-Pentanone (MIBK)	ND	ug/L	5.0	1	01/11/20	01/11/20 13:04	1011
Methyl-t-Butyl Ether	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Naphthalene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Styrene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Tetrachloroethene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Toluene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Trichloroethene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Trichlorofluoromethane	ND	ug/L	5.0	1	01/11/20	01/11/20 13:04	1011
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Vinyl chloride	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
m&p-Xylene	ND	ug/L	2.0	1	01/11/20	01/11/20 13:04	1011
o-Xylene	ND	ug/L	1.0	1	01/11/20	01/11/20 13:04	1011
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	104	%	87-109	1	01/11/20	01/11/20 13:04	1011
Dibromofluoromethane	99	%	93-111	1	01/11/20	01/11/20 13:04	1011
Toluene-D8	100	%	91-109	1	01/11/20	01/11/20 13:04	1011

1,4-Dioxane by GC/MS - SIM

Analytical Method: SW-846 8260 B-Modified

Preparation Method: 5030B

Qualifier(s): See Batch 171328 on Case Narrative.

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	01/22/20	01/22/20 15:44	1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	106	%	80-120	1	01/22/20	01/22/20 15:44	4 1045

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20010903

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

Analytical:

1,4-Dioxane by GC/MS - SIM

Batch: 171328

Laboratory control spike/laboratory spike duplicate (LCS/LCSD) Relative Percent Difference (RPD) exceedances identified; see QC summary.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20010903

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Batch	Prepared	Analyzed
SW-846 8260 B	Influent VSP-1	Initial	20010903-002	W	79949	171020	01/11/2020 08:59	01/11/2020 13:27
	TB-010920	Initial	20010903-003	W	79949	171020	01/11/2020 08:59	01/11/2020 13:04
	79949-1-BKS	BKS	79949-1-BKS	W	79949	171020	01/11/2020 08:59	01/11/2020 09:54
	79949-1-BLK	BLK	79949-1-BLK	W	79949	171020	01/11/2020 08:59	01/11/2020 11:25
	DW-2-20-01-10 S	MS	20011004-001 S	W	79949	171020	01/11/2020 08:59	01/11/2020 15:20
	DW-2-20-01-10 SD	MSD	20011004-001 S	W	79949	171020	01/11/2020 08:59	01/11/2020 15:43
SW-846 8260 B-	Effluent VSP-4	Initial	20010903-001	W	80100	171328	01/22/2020 12:44	01/22/2020 16:07
Modified	Influent VSP-1	Initial	20010903-002	W	80100	171328	01/22/2020 12:44	01/22/2020 16:29
	TB-010920	Initial	20010903-003	W	80100	171328	01/22/2020 12:44	01/22/2020 15:44
	80100-1-BKS	BKS	80100-1-BKS	W	80100	171328	01/22/2020 12:44	01/22/2020 13:36
	80100-1-BLK	BLK	80100-1-BLK	W	80100	171328	01/22/2020 12:44	01/22/2020 15:22
	80100-1-BSD	BSD	80100-1-BSD	W	80100	171328	01/22/2020 12:44	01/22/2020 14:03

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20010903

Analytical Method: SW-846 8260 B
Seq Number: 171020 Matrix: Water Date Prep: 01/11/20

MB Sample Id: 79949-1-BLK LCS Sample Id: 79949-1-BKS

MB Sample Id: 79949-	1-BLK	L	CS Sampl	e Id: 7994	19-1-BKS		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Acetone	<10.00	50.00	45.03	90	55-120	ug/L	
Benzene	<1.000	50.00	44.48	89	87-123	ug/L	
Bromochloromethane	<1.000	50.00	43.93	88	74-136	ug/L	
Bromodichloromethane	<1.000	50.00	46.11	92	83-125	ug/L	
Bromoform	<5.000	50.00	44.06	88	72-129	ug/L	
Bromomethane	<1.000	50.00	46.41	93	45-167	ug/L	
2-Butanone (MEK)	<10.00	50.00	43.67	87	45-136	ug/L	
Carbon Disulfide	<10.00	50.00	44.58	89	87-123	ug/L	
Carbon tetrachloride	<1.000	50.00	45.38	91	79-133	ug/L	
Chlorobenzene	<1.000	50.00	44.49	89	87-127	ug/L	
Chloroethane	<1.000	50.00	43.78	88	81-122	ug/L	
Chloroform	<1.000	50.00	44.46	89	76-129	ug/L	
Chloromethane	<1.000	50.00	45.27	91	59-121	ug/L	
Cyclohexane	<10.00	50.00	48.57	97	83-122	ug/L	
1,2-Dibromo-3-chloropropane	<5.000	50.00	45.58	91	63-140	ug/L	
Dibromochloromethane	<1.000	50.00	43.70	87	73-139	ug/L	
1,2-Dibromoethane	<1.000	50.00	46.19	92	80-127	ug/L	
1,2-Dichlorobenzene	<1.000	50.00	47.18	94	82-129	ug/L	
1,3-Dichlorobenzene	<1.000	50.00	46.27	93	88-127	ug/L	
Dichlorodifluoromethane	<1.000	50.00	43.05	86	70-131	ug/L	
1,4-Dichlorobenzene	<1.000	50.00	45.89	92	84-129	ug/L	
1,1-Dichloroethane	<1.000	50.00	43.71	87	85-120	ug/L	
1,2-Dichloroethane	<1.000	50.00	44.27	89	86-125	ug/L	
cis-1,2-Dichloroethene	<1.000	50.00	44.80	90	86-126	ug/L	
1,1-Dichloroethene	<1.000	50.00	44.86	90	85-123	ug/L	
1,2-Dichloropropane	<1.000	50.00	46.80	94	83-120	ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	44.17	88	81-125	ug/L	
trans-1,3-Dichloropropene	<1.000	50.00	44.43	89	79-121	ug/L	
trans-1,2-Dichloroethene	<1.000	50.00	46.52	93	87-120	ug/L	
Ethylbenzene	<1.000	50.00	47.30	95	82-128	ug/L	
2-Hexanone (MBK)	<5.000	50.00	48.05	96	56-116	ug/L	
Isopropylbenzene	<1.000	50.00	49.47	99	81-128	ug/L	
Methyl Acetate	<10.00	50.00	45.37	91	68-129	ug/L	
Methylcyclohexane	<10.00	50.00	48.33	97	84-127	ug/L	
Methylene chloride	<1.000	50.00	45.41	91	85-119	ug/L	
4-Methyl-2-Pentanone (MIBK)	<5.000	50.00	46.23	92	57-116	ug/L	
Methyl-t-Butyl Ether	<1.000	50.00	46.03	92	61-130	ug/L	
Naphthalene	<1.000	50.00	47.67	95	74-114	ug/L	
Styrene	<1.000	50.00	45.66	91	76-130	ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	46.47	93	79-131	ug/L	
Tetrachloroethene	<1.000	50.00	44.64	89	85-131	ug/L	
Toluene	<1.000	50.00	44.89	90	82-127	ug/L	
1,2,3-Trichlorobenzene	<1.000	50.00	50.06	100	79-123	ug/L	
1,2,4-Trichlorobenzene	<1.000	50.00	50.66	101	78-123	ug/L	
1,1,1-Trichloroethane	<1.000	50.00	44.47	89	87-125	ug/L	
Trichloroethene	<1.000	50.00	44.88	90	87-124	ug/L	
1,1,2-Trichloroethane	<1.000	50.00	45.43	91	84-127	ug/L	
Trichlorofluoromethane	<5.000	50.00	43.88	88	85-130	ug/L	
1,1,2-Trichlorotrifluoroethane	<1.000	50.00	46.86	94	81-132	ug/L	
Vinyl chloride	<1.000	50.00	46.98	94	66-133	ug/L	
m&p-Xylene	<2.000	100	95.35	95	78-126	ug/L	
						-	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20010903

Analytical Method: SW-846 8260 B
Seq Number: 171020 Matrix: Water Date Prep: 01/11/20

MB Sample Id: 79949-1-BLK LCS Sample Id: 79949-1-BKS

MD Sample Id.	1 3343-1-DLK	_	.oo oampio	ia. 700 to 1 Bite	•	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units Flag
o-Xylene	<1.000	50.00	48.05	96	75-130	ug/L
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits Unit	es .
4-Bromofluorobenzer	ne 103		101		87-109 %	
Dibromofluoromethar	ne 99		98		93-111 %	
Toluene-D8	99		100		91-109 %	

Analytical Method: SW-846 8260 B-Modified

Seq Number: 171328 Matrix: Water Date Prep: 01/22/20

Matrix: Water Date Prep: 01/22/20

MB Sample Id: 80100-1-BLK LCS Sample Id: 80100-1-BKS LCSD Sample Id: 80100-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxane)	<1.000	30.00	26.98	90	34.09	114	50-150	24	20	ug/L	F
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag		.CSD esult	LCSD Flag	Limits	Units		
Toluene-D8	104		105			109		80-120	%		

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

1)*CLIENT	: WSP	*OFFI	CE LOC. H	erndan,	٧A	PSS W	ork Orde	er#: a	100	10	403		281				PAGE		OF		1
*PROJE	CT MGR: Eric John	150/1 *PHO	NE NO.:(70	3) 709-1	6500	Matrix (odes. rface Wtr 1	DW=Drin	king Wt	r GW	Ground		/W=Wa:	ste Wtr	0 =0il	S=Soil	L=Liqu	id SO	L=Solid	A=Air 1	WI=Wipe
	eric.johnson@w)		No.		Preservo	atives i	CIL	HCI				T						
	CTNAME: KOP FIR			1401545 JECT NO.:	00/04	O N	TYPE	Analysis Method Require	13	9/	6	/	/	/	/	/	/	/		/	
						T A	C = COMP	Require	19	826.10	3/		/	/			/	/	/		
	cation: Handver,		P.O.		-	I N	COMP	*/	Ser!	0/	/	/	/	/	/	/	/	/	//		
SAMPLEI	R(s): Shannon Bu		DW CERT			E R	G = GRAB	13	200	3/	/	/	/	/	/	/	/	/	/		
LAB NO.	*SAMPLE IDENTIFI		*DATE (SAMPLED)	*TIME (SAMPLED)	MATRIX (See Codes)	S		/~	13	_									RI	EMAR	KS
	Effluent USP-		1/9/20	0930	WW	3	6	X													
2	Influent VSP-		1/9/20		GW	6	6	Χ	X												
3	TB-010920		1/9/20		_	4	-	X	X												
											_		_								
								H		_											
																	-				-
5 Relinquish	ed Bv: (1)	Date	Time	Received I	Bu-		<u> </u>	*	Beaus	heted	TAT (C	Ine T/	T per	COC	# /	of Cod	lers:		0.	MEP'	
	Bulee	1/9/20	2000000	-4	2	_		□ 5-	Day		3-Da	ау		2-Day			Seal	-	TB:	1.40	_
Relinquish		Date	Time	Received I	By:			Data	Delive	erable	s Req	uired:								p: 6	1.63°L
								COA	QC S	SUMN T	I CLP	LIKE	OI	HER	Sh	nipping	g Carr	ier:	1 New	1_	0,,,
Relinquish	ed By: (3)	Date	Time	Received I	Ву:			Spec	ial Ins										1100		
							Sh	ana	lan	d	10-	tay	T	AT							
Relinquish	ed By: (4)	Date	Time	Received I	Ву:				OMPL S		E? E	DD FC	RMAT	TYP			ATE R				ED TO: HER

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20010903

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 02/13/2020 Date Received 01/09/2020 11:10:00 AM **Delivered By** Client Not Applicable **Tracking No** Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? N/A Temp (deg C) .3 N/A Temp Blank Present Yes Seal(s) Signed / Dated? Sampler Name Shannon Burke Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 3 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 13 **Preservation Total Metals** (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) N/A 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:	Time Woode	Date: 01/09/2020	
	Thomas Wingate	_	

PM Review and Approval:

Date: 01/09/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20012207

March 5, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20012207

Project Name: Kop Flex Project Location: Hanover, MD

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 20012207.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on February 26, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20012207

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 01/22/2020 at 12:15 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20012207-001	Effluent VSP-4	WASTE WATER	01/22/20 10:50	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303

Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20012207

Sample ID: Effluent VSP-4 Date/Time Sampled: 01/22/2020 10:50 PSS Sample ID: 20012207-001

Matrix: WASTE WATER Date/Time Received: 01/22/2020 12:15

Dissolved Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Copper	3.6	ug/L	1.0	1	01/23/20	01/24/20 17:3	1 1064
Lead	ND	ug/L	1.0	1	01/23/20	01/24/20 17:3	1 1064
Nickel	13.3	ug/L	1.00	1	01/23/20	01/24/20 17:3	1 1064
Zinc	22.4	ug/L	20.0	1	01/23/20	01/24/20 17:3	1 1064

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20012207

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20012207

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Batch	Prepared	Analyzed
EPA 200.8	Effluent VSP-4	Initial	20012207-001	W	80106	171411	01/23/2020 16:45	01/24/2020 17:31
	80106-1-BKS	BKS	80106-1-BKS	W	80106	171411	01/23/2020 16:45	01/24/2020 17:14
	80106-1-BLK	BLK	80106-1-BLK	W	80106	171411	01/23/2020 16:45	01/24/2020 17:09
	NPDES 1st Qtr 2020 S	MS	20012203-001 S	W	80106	171411	01/23/2020 16:45	01/24/2020 17:23
	NPDES 1st Qtr 2020 SD	MSD	20012203-001 S	W	80106	171411	01/23/2020 16:45	01/24/2020 17:27

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20012207

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP Seq Number: 171411 Matrix: Water Date Prep: 01/23/20

LCS Sample Id: 80106-1-BKS MB Sample Id: 80106-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Copper	<1.000	40.00	37.46	94	85-115	ug/L	
Lead	<1.000	40.00	38.43	96	85-115	ug/L	
Nickel	<1.000	40.00	39.64	99	85-115	ug/L	
Zinc	<20.00	200	200.1	100	85-115	ug/L	

F = RPD exceeded the laboratory control limits X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

1)*CLIENT	WSP	*OFFI	CE LOC.	terndo	nVA	PSS W	ork Orde	er#: 2	10012	1207					PAG	E	1_ OF	1
	CTMGR: Eric Johns	س×PHO!	NE NO.:(70	3,709-	6500	SW=Su	rface With I	W_Drint	king Wtr C	W_Ground	Wtr W	/W =Wast	te Wtr 0 =	Oil S =8	Soil L =Li	quid SO	L=Solid A =Air	WI=Wipe
EMAIL: 6	ric.johnson@wsp.	CONFAX NO	D.: ()		No.	SAMPLE TYPE	Preserva Used	atives HNX	4								
	CTNAME: KOP Flex		121) 401545. JECT NO.:	010/04	0 N	TYPE	Method Required	1/2/	/ /			//	/ /	' /	/	//	
	ation: Hancver,		P.O. I			A	C = COMP	3/	12/	/	/ /	/ /	/ /			/	//	
	a(s): Shannan Bu		DW CERT N			N E	G = GRAB	*	27/20	/ /	/			/	/ /	/ /	//	
LAB NO.	*SAMPLE IDENTIFIC	Designation of the last of the	*DATE (SAMPLED)	*TIME (SAMPLED)	MATRIX (See Codes)	R S	GNAD	10,00	Solved metals			//	/ /			/	REMA	RKS
	ASP SUB																	1
	Effluent VSF	7-4	1/22/20	1050	WW	1	6	X									Keld F	illered
		197											-		_		الأسوال	
									-	+			-	+	+	-	-	
													+	+	+	+	1	
										+			+	+	+	-		
															+			
												7						7 13
5													- in				and the state of t	
Relinquish	ed By: (1)	Date	Time	Received I	2/		T.	*₁ □ 5-	Request Dav	ed TAT (One TA	AT per	COC)		Coolers			
-				Pagainad	4/2	_		-	Day ext Day Delivera						ody Sea			
Relinquished By: (2) Date Time Received By:			oy.			COA	Delivera QC SUN	MM CLF	LIKE	ОТ	HER	Shipp	oing Ca	PKE rrier: (5 Temp: 3.	3°C		
Relinquished By: (3) Date Time Received By:			Зу:				Cand C		10-	da	4							
Relinquish	ed By: (4)	Date	Time	Received I	Ву:			DW C	OMPLIA S	NCE? E	DD FC	DRMAT	TYPE	MD	STATE DE PA	RESU	LTS REPOR	TED TO: THER

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

Client Name

Sample Receipt Checklist

Received By

Thomas Wingate

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20012207

WSP USA - Herndon

Date Received 01/22/2020 12:15:00 PM **Disposal Date** 02/26/2020 Client **Delivered By** Not Applicable **Tracking No** Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? N/A Temp (deg C) 3.3 Seal(s) Signed / Dated? N/A Temp Blank Present No Sampler Name **Documentation** Shannon Burke COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 1 **Preservation**

Total Metals	(pH<2)	N/A
Dissolved Metals, filtered within 15 minutes of collection	(pH<2)	Yes
Orthophosphorus, filtered within 15 minutes of collection		N/A
Cyanides	(pH>12)	N/A
Sulfide	(pH>9)	N/A
TOC, DOC (field filtered), COD, Phenols	(pH<2)	N/A
TOX, TKN, NH3, Total Phos	(pH<2)	N/A
VOC, BTEX (VOA Vials Rcvd Preserved)	(pH<2)	N/A
Do VOA vials have zero headspace?		N/A
624 VOC (Rcvd at least one unpreserved VOA vial)		N/A
524 VOC (Rcvd with trip blanks)	(pH<2)	N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:	Timer Windle	Date: 01/22/2020	
	Thomas Wingate	<u> </u>	
	0 1 - 4 4 1		

PM Review and Approval:

Amber Confer

Date: 01/22/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20020405

February 18, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20020405

Project Name: Kop Flex Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 20020405.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on March 10, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20020405

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 02/04/2020 at 01:00 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20020405-001	Effluent VSP-4	WASTE WATER	02/04/20 12:20	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20020405

Sample ID: Effluent VSP-4 Date/Time Sampled: 02/04/2020 12:20 PSS Sample ID: 20020405-001

Matrix: WASTE WATER Date/Time Received: 02/04/2020 13:00

Dissolved Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Copper	ND	ug/L	1.0	1	02/07/20	02/07/20 16:59	9 1064
Lead	ND	ug/L	1.0	1	02/07/20	02/07/20 16:59	9 1064
Nickel	1.5	ug/L	1.0	1	02/07/20	02/07/20 16:59	9 1064
Zinc	ND	ug/L	20	1	02/07/20	02/07/20 16:59	1064


Total Metals + Hardness Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL I	Flag Dil	Prepared	Analyzed	Analyst
Copper	ND	ug/L	1.0	1	02/05/20	02/05/20 23:43	1064
Lead	ND	ug/L	1.0	1	02/05/20	02/05/20 23:43	1064
Nickel	4.5	ug/L	1.0	1	02/05/20	02/05/20 23:43	1064
Zinc	ND	ug/L	20	1	02/05/20	02/05/20 23:43	1064
Hardness (Ca & Mg)	13	mg/L	0.66	1	02/05/20	02/05/20 23:43	1064

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

n	H:	=2	

Result	Units	RL FI	ag Dil	Prepared	Analyzed	Analyst
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
ND	ug/L	1.0	1	02/05/20	02/05/20 16:47	1011
	ND N	ND ug/L	ND ug/L 1.0 ND ug/L 1.0	ND ug/L 1.0 1 ND ug/L 1.0 1 <td>ND ug/L 1.0 1 02/05/20 ND ug/L<td>ND ug/L 1.0 1 02/05/20 02/05/20 16:47 ND ug/L 1.0 1 02/05/20 02/05/20 16:47</td></td>	ND ug/L 1.0 1 02/05/20 ND ug/L <td>ND ug/L 1.0 1 02/05/20 02/05/20 16:47 ND ug/L 1.0 1 02/05/20 02/05/20 16:47</td>	ND ug/L 1.0 1 02/05/20 02/05/20 16:47

Date/Time Sampled: 02/04/2020 12:20

Date/Time Received: 02/04/2020 13:00

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

PSS Sample ID: 20020405-001

Kop Flex Project Name: PSS Project No.: 20020405

Sample ID: Effluent VSP-4

Matrix: WASTE WATER Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624 pH=2 Flag Result Units RL Dil **Prepared** Analyzed **Analyst** Bromodichloromethane ND ug/L 1.0 1 02/05/20 02/05/20 16:47 1011 cis-1,3-Dichloropropene ND ug/L 1.0 1 02/05/20 02/05/20 16:47 1011 Toluene ND ug/L 1.0 1 02/05/20 02/05/20 16:47 1011 ND 1.0 02/05/20 02/05/20 16:47 1011 trans-1,3-dichloropropene ug/L 1 1,1,2-Trichloroethane ND ug/L 1.0 02/05/20 02/05/20 16:47 1011 1 Tetrachloroethylene ND ug/L 1.0 1 02/05/20 02/05/20 16:47 1011 Dibromochloromethane ND ug/L 1.0 1 02/05/20 02/05/20 16:47 1011 Chlorobenzene ND ug/L 1.0 1 02/05/20 02/05/20 16:47 1011 Ethylbenzene ND ug/L 1.0 1 02/05/20 02/05/20 16:47 1011 ug/L ND 1.0 02/05/20 02/05/20 16:47 1011 Bromoform 1 1,1,2,2-Tetrachloroethane ND ug/L 1.0 1 02/05/20 02/05/20 16:47 1011 ND ug/L 1.0 1 02/05/20 02/05/20 16:47 1011 1,3-Dichlorobenzene 02/05/20 02/05/20 16:47 1011 1.4-Dichlorobenzene ND ug/L 1.0 1 02/05/20 02/05/20 16:47 1011 1.2-Dichlorobenzene ND ua/L 1.0 1 Surrogate(s) Limits Recovery Dibromofluoromethane 109 % 87-120 1 02/05/20 02/05/20 16:47 1011 4-Bromofluorobenzene 102 % 85-147 1 02/05/20 02/05/20 16:47 1011

Total Suspended Solids

Toluene-D8

Analytical Method: SM 2540D -2011

%

103

Result Units Dil **Prepared Analyzed** RLFlag Analyst 1 02/05/20 02/05/20 09:58 1061 Suspended Solids ND mg/L 1.0

88-110

1

Biochemical Oxygen Demand

Analytical Method: SM 5210B -2011

Start time: 05-Feb-20 15:40

Units Result RL Flag Prepared Analyzed Analyst Biochemical Oxygen Demand, 5 day 02/10/20 02/10/20 14:50 4005 ND mg/L 5.0

02/05/20

02/05/20 16:47 1011

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20020405

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

20020405: Analyses associated with analyst code 4005 were performed by Enviro-Chem Laboratories, Inc., 47 Loveton Circle, Suite K, Sparks, MD 21152

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SM 5210B -2011

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20020405

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical	Batch Prepared	Analyzed
EPA 200.8	Effluent VSP-4	Initial	20020405-001	W	80245	171707	02/05/2020 11:09	02/05/2020 23:43
	80245-1-BKS	BKS	80245-1-BKS	W	80245	171707	02/05/2020 11:09	02/05/2020 23:39
	80245-1-BLK	BLK	80245-1-BLK	W	80245	171707	02/05/2020 11:09	02/05/2020 23:34
	Effluent VSP-4 S	MS	20020405-001 S	W	80245	171707	02/05/2020 11:09	02/05/2020 23:48
	Effluent VSP-4 SD	MSD	20020405-001 S	W	80245	171707	02/05/2020 11:09	02/05/2020 23:53
EPA 200.8	Effluent VSP-4	Initial	20020405-001	W	80285	171760	02/07/2020 12:31	02/07/2020 16:59
	80285-1-BKS	BKS	80285-1-BKS	W	80285	171760	02/07/2020 12:31	02/07/2020 16:55
	80285-1-BLK	BLK	80285-1-BLK	W	80285	171760	02/07/2020 12:31	02/07/2020 16:07
	Effluent VSP-4 S	MS	20020405-001 S	W	80285	171760	02/07/2020 12:31	02/07/2020 17:04
	Effluent VSP-4 SD	MSD	20020405-001 S	W	80285	171760	02/07/2020 12:31	02/07/2020 17:08
EPA 624.1	Effluent VSP-4	Initial	20020405-001	W	80267	171692	02/05/2020 12:31	02/05/2020 16:47
	80267-1-BKS	BKS	80267-1-BKS	W	80267	171692	02/05/2020 12:31	02/05/2020 14:09
	80267-1-BLK	BLK	80267-1-BLK	W	80267	171692	02/05/2020 12:31	02/05/2020 15:40
	Effluent VSP-4 S	MS	20020405-001 S	W	80267	171692	02/05/2020 12:31	02/05/2020 19:48
	Effluent VSP-4 SD	MSD	20020405-001 S	W	80267	171692	02/05/2020 12:31	02/05/2020 20:11
SM 2540D -2011	Effluent VSP-4	Initial	20020405-001	W	171644	171644	02/05/2020 09:58	02/05/2020 09:58
	171644-1-BLK	BLK	171644-1-BLK	W	171644	171644	02/05/2020 09:58	02/05/2020 09:58
	601 D	MD	20020307-002 D	W	171644	171644	02/05/2020 09:58	02/05/2020 09:58
SM 5210B -2011	Effluent VSP-4	Initial	20020405-001	W	171957	171957	02/10/2020 14:50	02/10/2020 14:50

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20020405

Analytical Method: SM 2540D -2011

Seq Number: 171644 Matrix: Water

MB Sample Id: 171644-1-BLK

Parameter MB LOD RL Units Flag

Suspended Solids ND 0.5000 1.000 mg/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 171707 Matrix: Water Date Prep: 02/05/20

MB Sample Id: 80245-1-BLK LCS Sample Id: 80245-1-BKS

MB **Spike** LCS LCS Limits **Units Parameter** Flag Result Result **Amount** %Rec Copper <1.000 40.00 41.18 103 85-115 ug/L Lead <1.000 40.00 39.00 98 85-115 ug/L Nickel <1.000 40.00 38.48 96 85-115 ug/L Zinc <20.00 200 193.4 97 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 171760 Matrix: Water Date Prep: 02/07/20

MB Sample Id: 80285-1-BLK LCS Sample Id: 80285-1-BKS

MB LCS LCS Units **Spike** Limits **Parameter** Flag Amount %Rec Result Result Copper <1.000 40.00 40.63 102 85-115 ug/L <1.000 40.00 41.25 85-115 Lead 103 ug/L Nickel <1.000 40.00 43.27 108 85-115 ug/L Zinc 212 85-115 ug/L <20.00 200 106

Analytical Method: EPA 200.8

Seg Number: 171707 Matrix: Waste Water Date Prep: 02/05/20

Parent Sample Id: 20020405-001 MS Sample Id: 20020405-001 S MSD Sample Id: 20020405-001 SD

MS MS %RPD RPD **Parent** Spike MSD MSD Limits **Units Parameter** Flag Result **Amount** Result %Rec Result %Rec Limit 25 <1.000 41.44 41.92 Copper 40.00 104 105 70-130 1 ug/L Lead <1.000 40.00 39.34 98 38.84 97 70-130 1 25 ug/L Nickel 4.511 40.00 43.88 98 44.34 100 70-130 2 25 ug/L Zinc 200 217.6 109 25 <20.00 213.8 107 70-130 2 ug/L

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20020405

Analytical Method: EPA 200.8Prep Method:E200.8_PREPSeq Number:171760Matrix:Waste WaterDate Prep:02/07/20

Parent Sample Id: 20020405-001 MS Sample Id: 20020405-001 S MSD Sample Id: 20020405-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Copper	<1.000	40.00	40.85	102	39.99	100	70-130	2	25	ug/L	
Lead	<1.000	40.00	39.95	100	39.43	99	70-130	1	25	ug/L	
Nickel	1.492	40.00	44.31	107	43.83	106	70-130	1	25	ug/L	
Zinc	<20.00	200	228.5	114	226.5	113	70-130	1	25	ug/L	

Analytical Method: EPA 624 .1Prep Method:E624PREPSeq Number:171692Matrix:WaterDate Prep:02/05/20

MB Sample Id: 80267-1-BLK LCS Sample Id: 80267-1-BKS

MB Sample Id.	30207-1-DLK	_	oo oampic	, ia. 0020	7 I DIO			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethan	e <1.000	50.00	48.03	96	54-148		ug/L	
Chloromethane	<1.000	50.00	52.52	105	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	56.70	113	5-195		ug/L	
Bromomethane	<1.000	50.00	50.75	102	15-185		ug/L	
Chloroethane	<1.000	50.00	51.19	102	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	54.58	109	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	51.13	102	50-150		ug/L	
Methylene Chloride	<1.000	50.00	51.37	103	60-140		ug/L	
trans-1,2-dichloroethen	e <1.000	50.00	52.49	105	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	51.51	103	70-130		ug/L	
Chloroform	<1.000	50.00	51.32	103	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	52.33	105	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	55.44	111	70-130		ug/L	
Benzene	<1.000	50.00	49.39	99	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	52.64	105	70-130		ug/L	
Trichloroethene	<1.000	50.00	50.49	101	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	51.66	103	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	54.70	109	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	49.93	100	25-175		ug/L	
Toluene	<1.000	50.00	50.59	101	70-130		ug/L	
trans-1,3-dichloroprope	ne <1.000	50.00	50.62	101	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	50.81	102	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	50.94	102	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	49.48	99	70-135		ug/L	
Chlorobenzene	<1.000	50.00	48.61	97	65-135		ug/L	
Ethylbenzene	<1.000	50.00	52.09	104	60-140		ug/L	
Bromoform	<1.000	50.00	49.95	100	70-130		ug/L	
1,1,2,2-Tetrachloroetha	ne <1.000	50.00	45.24	90	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	49.72	99	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	49.11	98	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	49.79	100	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	106		100		87-120	%		
4-Bromofluorobenzene	103		97		85-147	%		
Toluene-D8	101		102		88-110	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20020405

Analytical Method: EPA 624 .1 Prep Method: E624PREP Seq Number: 171692 Matrix: Waste Water Date Prep: 02/05/20

MS Sample Id: 20020405-001 S MSD Sample Id: 20020405-001 SD Parent Sample Id: 20020405-001

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Dichlorodifluoromethane	<1.000	50.00	48.04	96	46.91	94	43-150	2	27	ug/L	
Chloromethane	<1.000	50.00	53.04	106	51.18	102	1-273	4	60	ug/L	
Vinyl Chloride	<1.000	50.00	59.24	118	56.67	113	1-251	4	66	ug/L	
Bromomethane	<1.000	50.00	53.90	108	53.09	106	1-242	2	61	ug/L	
Chloroethane	<1.000	50.00	50.88	102	52.32	105	14-230	3	78	ug/L	
Trichlorofluoromethane	<1.000	50.00	53.80	108	52.36	105	17-181	3	84	ug/L	
1,1-Dichloroethene	<1.000	50.00	54.96	110	51.77	104	1-234	6	32	ug/L	
Methylene Chloride	<1.000	50.00	53.13	106	51.45	103	1-221	3	28	ug/L	
trans-1,2-dichloroethene	<1.000	50.00	49.19	98	48.45	97	54-156	1	45	ug/L	
1,1-Dichloroethane	<1.000	50.00	52.44	105	50.81	102	59-155	3	40	ug/L	
Chloroform	<1.000	50.00	54.15	108	52.72	105	51-138	3	54	ug/L	
1,1,1-Trichloroethane	<1.000	50.00	54.79	110	53.51	107	52-162	3	36	ug/L	
Carbon Tetrachloride	<1.000	50.00	56.72	113	54.92	110	70-140	3	41	ug/L	
Benzene	<1.000	50.00	51.79	104	50.66	101	37-151	3	61	ug/L	
1,2-Dichloroethane	<1.000	50.00	54.58	109	54.26	109	49-155	0	49	ug/L	
Trichloroethene	<1.000	50.00	51.97	104	50.80	102	70-157	2	48	ug/L	
1,2-Dichloropropane	<1.000	50.00	53.21	106	52.77	106	1-210	0	55	ug/L	
Bromodichloromethane	<1.000	50.00	56.64	113	55.37	111	35-155	2	56	ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	50.52	101	50.30	101	1-227	0	58	ug/L	
Toluene	<1.000	50.00	52.63	105	51.03	102	47-150	3	41	ug/L	
trans-1,3-dichloropropene	<1.000	50.00	51.56	103	50.85	102	17-183	1	86	ug/L	
1,1,2-Trichloroethane	<1.000	50.00	52.75	106	52.70	105	52-150	1	45	ug/L	
Tetrachloroethylene	<1.000	50.00	51.18	102	49.51	99	64-148	3	39	ug/L	
Dibromochloromethane	<1.000	50.00	52.00	104	51.99	104	53-149	0	50	ug/L	
Chlorobenzene	<1.000	50.00	51.32	103	50.57	101	37-160	2	53	ug/L	
Ethylbenzene	<1.000	50.00	55.70	111	53.99	108	37-162	3	63	ug/L	
Bromoform	<1.000	50.00	53.76	108	52.39	105	45-169	3	42	ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	51.51	103	52.40	105	46-157	2	61	ug/L	
1,3-Dichlorobenzene	<1.000	50.00	52.32	105	52.36	105	59-156	0	43	ug/L	
1,4-Dichlorobenzene	<1.000	50.00	51.30	103	51.31	103	18-190	0	57	ug/L	
1,2-Dichlorobenzene	<1.000	50.00	53.01	106	53.42	107	18-190	1	57	ug/L	
Surrogate			MS Result	MS Flag			MSD I Flag	Limits	Units		
Dibromofluoromethane			102			102	8	37-120	%		
4-Bromofluorobenzene			100			101	8	35-147	%		
Toluene-D8			102			101	8	38-110	%		

F = RPD exceeded the laboratory control limits
--

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits L = Recovery of BS,BSD or both below the laboratory control limits

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

D*CLIENT	: WSP	*OFFI	CE LOC.	erndan,	VA	PSS W	Vork Orde	er#: 2	2002	040	55						PAGE	1	OF	1	
*PROJE	CT MGR: Eric John					Matrix (SW=Su	Codes: rface Wtr. I	DW =Drinl	king Wt			Wtr W	W =Was	ste Wtr	0 =0il	\$ =Soil	L=Liq:	uid SO I	_=Solid A =	Air WI :	=Wipe
EMAIL: eric, johnson @ WSp. COMFAX NO.: ()						No. C	SAMPLE	Preserva Used	H	al	JA A	H ALL	NOS H	103							
*PROJECT NAME: Kop Flex PROJECT NO.:				O N	TYPE	Analysis Method Required	19	7	/	/	A 1	8	/	/	/	/	//	/			
				T A	C = COMP	Required 3	E	/	/	50	3	/	/ ,			/	/ /		- 14		
				I N	G =	*/	401	\sim	2007	\$5	The last of the state of the st	/	/	/	/	//					
SAMPLE 2	R(S): Shannan	Burke	DW CERT	princes and		E R	GRAB	00/	3/6	3/2	3/3	200	1	/	/	/	/	/	/		
LAB NO.	*SAMPLE IDENTII	FICATION	*DATE (SAMPLED)	*TIME (SAMPLED)	MATRIX (See Codes)	S				1	122	200					_		REN	/ARK	S
	Effluent VS	P-4	2/4/20	1220	WW	7	G	X	X	X	X	X									
					Acres 1																138
		S. J. Mary	9			100															
			ALC: NO.																	15.6	
																			11110	1	7
																		-			
	7 (S. 1987)																				3 / 12
																		-		76	
														4							- 10
5) Relinguish	ned By: (1)	Date	Time	Received I	Bue			*	Reque	ested	TAT (C	ne T/	AT per	COC	#	of Cod	olers:				97
100	ned By: (1) Bulle	2/4/20	1300	-	1 Sin	1		5-	Day		3-Da	ay	y 🔯	2-Day	Cı	ustody	/ Seal	: (TB:	ر . را ملة	
	ned By: (2)	Date	Time	Received I	By:			Data	Delive	erable	s Req	uired:		HER	Ice	e Pres	sent:	70.F	5 Temp:	0 13	1112
								COA	QC S		I CLP			HEK	Sh	nippin	g Cari	rier:	next	0-1	71,1
Relinquish	ned By: (3)	Date	Time	Received I	Ву:	ner.		Spec	ial Ins	struction	ons: [5+01	nda	ard	10)-d	au	7	AT		
				. 2				0155	OIV	ed	me	tals	He	ild-	1811	ere	d				3
Relinquish	ned By: (4)	Date	Time	Received I	Ву:	n- -		DW C	OMPL S		E? E	DD FC	RMAT	TYPE	M			RESUL VA	TS REPO	OTHE	

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20020405

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 03/10/2020 Date Received 02/04/2020 01:00:00 PM **Delivered By** Client Not Applicable **Tracking No** Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 11.5 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 **Preservation Total Metals** (pH<2)Yes Dissolved Metals, filtered within 15 minutes of collection (pH<2)Yes Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides N/A (pH>12)Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

	Acrolein, acrylo	nitrile, and 2	 chloroethyl vii 	nvl ether not	required for EF	³ A 624 sample
--	------------------	----------------	-------------------------------------	---------------	-----------------	---------------------------

Samples Inspected/Checklist Completed By:	Thomas Wingate	Date: 02/04/2020	_
	A L. Y I J		

PM Review and Approval:

Amber Confer

Date: 02/04/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20020406

February 18, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20020406

Project Location: Hanover

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20020406**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on March 10, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20020406

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 02/04/2020 at 01:00 pm

PSS Sample ID	Sample ID	Matrix Date/Time Collected
20020406-001	Effluent VSP-4	WASTE WATER 02/04/20 12:20
20020406-002	TB-020420	WATER 02/04/20 10:44
20020406-002	TB-020420	WATER 02/04/20 10:44

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- If the target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20020406

Sample ID: Effluent VSP-4 Date/Time Sampled: 02/04/2020 12:20 PSS Sample ID: 20020406-001

Matrix: WASTE WATER Date/Time Received: 02/04/2020 13:00

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	02/18/20	02/18/20 13:56	1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	104	%	80-120	1	02/18/20	02/18/20 13:56	3 1045

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20020406

Sample ID: TB-020420 Date/Time Sampled: 02/04/2020 10:44 PSS Sample ID: 20020406-002

Matrix: WATER Date/Time Received: 02/04/2020 13:00

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

n	_	_	_

pH=/							
_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Chloromethane	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Vinyl Chloride	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Bromomethane	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Chloroethane	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Trichlorofluoromethane	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
1,1-Dichloroethene	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Methylene Chloride	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
1,1-Dichloroethane	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Chloroform	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Carbon Tetrachloride	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Benzene	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
1,2-Dichloroethane	ND	ug/L	1.0		02/05/20	02/05/20 17:10	1011
Trichloroethene	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
1,2-Dichloropropane	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Bromodichloromethane	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Toluene	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Tetrachloroethylene	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Dibromochloromethane	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Chlorobenzene	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Ethylbenzene	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Bromoform	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	•	02/05/20	02/05/20 17:10	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	105	%	87-120		1 02/05/20	02/05/20 17:10	1011
4-Bromofluorobenzene	102	%	85-147		1 02/05/20	02/05/20 17:10	1011
Toluene-D8	102	%	88-110		1 02/05/20	02/05/20 17:10	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20020406

Sample ID: TB-020420 Date/Time Sampled: 02/04/2020 10:44 PSS Sample ID: 20020406-002

Matrix: WATER Date/Time Received: 02/04/2020 13:00

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	02/18/20	02/18/20 13:34	1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	104	%	80-120	1	02/18/20	02/18/20 13:34	1 1045

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20020406

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20020406

	Analyzed
80267-1-BKS BKS 80267-1-BKS W 80267 171692 02/05/2020 12:31 02/0	5/2020 17:10
	5/2020 14:09
80267-1-BLK BLK 80267-1-BLK W 80267 171692 02/05/2020 12:31 02/0	5/2020 15:40
Effluent VSP-4 S MS 20020405-001 S W 80267 171692 02/05/2020 12:31 02/0	5/2020 19:48
Effluent VSP-4 SD MSD 20020405-001 S W 80267 171692 02/05/2020 12:31 02/05	5/2020 20:11
SW-846 8260 B- Effluent VSP-4 Initial 20020406-001 W 80391 171982 02/18/2020 10:51 02/18	8/2020 13:56
Modified TB-020420 Initial 20020406-002 W 80391 171982 02/18/2020 10:51 02/18	8/2020 13:34
80391-1-BKS BKS 80391-1-BKS W 80391 171982 02/18/2020 10:51 02/1	8/2020 11:36
80391-1-BLK BLK 80391-1-BLK W 80391 171982 02/18/2020 10:51 02/1	8/2020 13:05
80391-1-BSD BSD 80391-1-BSD W 80391 171982 02/18/2020 10:51 02/1	8/2020 11:58

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20020406

Analytical Method: EPA 624 .1
Seq Number: 171692 Matrix: Water Prep Method: E624PREP
Date Prep: 02/05/20

MB Sample Id: 80267-1-BLK LCS Sample Id: 80267-1-BKS

IVID Sample Iu. 60267	/-I-DLN	<u> </u>	CO Gampie	iu. 00201-1	-BIG			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethane	<1.000	50.00	48.03	96	54-148		ug/L	
Chloromethane	<1.000	50.00	52.52	105	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	56.70	113	5-195		ug/L	
Bromomethane	<1.000	50.00	50.75	102	15-185		ug/L	
Chloroethane	<1.000	50.00	51.19	102	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	54.58	109	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	51.13	102	50-150		ug/L	
Methylene Chloride	<1.000	50.00	51.37	103	60-140		ug/L	
trans-1,2-dichloroethene	<1.000	50.00	52.49	105	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	51.51	103	70-130		ug/L	
Chloroform	<1.000	50.00	51.32	103	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	52.33	105	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	55.44	111	70-130		ug/L	
Benzene	<1.000	50.00	49.39	99	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	52.64	105	70-130		ug/L	
Trichloroethene	<1.000	50.00	50.49	101	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	51.66	103	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	54.70	109	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	49.93	100	25-175		ug/L	
Toluene	<1.000	50.00	50.59	101	70-130		ug/L	
trans-1,3-dichloropropene	<1.000	50.00	50.62	101	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	50.81	102	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	50.94	102	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	49.48	99	70-135		ug/L	
Chlorobenzene	<1.000	50.00	48.61	97	65-135		ug/L	
Ethylbenzene	<1.000	50.00	52.09	104	60-140		ug/L	
Bromoform	<1.000	50.00	49.95	100	70-130		ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	45.24	90	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	49.72	99	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	49.11	98	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	49.79	100	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	106		100		87-120	%		
4-Bromofluorobenzene	103		97		85-147	%		
Toluene-D8	101		102		88-110	%		

Analytical Method: SW-846 8260 B-ModifiedPrep Method:SW5030BSeq Number:171982Matrix:WaterDate Prep:02/18/20MB Sample Id:80391-1-BLKLCS Sample Id:80391-1-BKSLCSD Sample Id:80391-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSE %Red		s %RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxane)	<1.000	30.00	27.18	91	27.94	9	3 50-15	50 2	20	ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag		CSD esult	LCSD Flag	Limits	Units		
Toluene-D8	105		108			104		80-120	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20020406

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

$\mathfrak{D}_{*_{CLIENT}}$	WSP	*OFFI	CE LOC. He	erndon	VA	PSS W	ork Orde	er #:	200	200	106					F	PAGE	1	OF	1	
	CTMGR: ENC Johns					Matrix (SW=Su	Codes: rface Wtr D					Ntr WV	V =Waste	e Wtr 0	=Oil S	=Soil	L=Ligui	id SOL	=Solid A=	Air WI=	Wipe
	enc.johnson@w)		No. C	SAMPLE	Preserva Used	H	CIF	101										
	CT NAME: KOP FIES		3140 PBO	JECT NO.:	104	0 N	TYPE	Analysis Method Required		15	/	/	/	/		/	/		//	/	
	cation: Handver, 1		P.O. I			T A	C = COMP	3/	Sane	62	//	/ /	//		/	/	/ /	/ ,	/ /		
	R(S): Shannon					N E	G =	10	~11					/	/		/	/	/		
LAB NO.	LAB NO. *SAMPLE IDENTIFICATION *DATE (SAMPLED) (See Co.			MATRIX (See Codes)	R	GRAB	14.7	1/2		//	/ /	/ /	//	/ /	/	/		REM	MARKS	3	
	Effluent USP-	-4	2/4/20	-	WW	3	6	X	*	-su	3								1,4-d		~
2	TB-020420					4	-	X	X										THP	610	InK
								181						-	-			279	100		
					The will del							-	+	-	-	_					
												+	+	+	+						
						Get.	- 4												7.7		
										N. T.											
																			7.6		
5					0			4)													
Relinquis	Belle	Date 244/20	Time	Received	2	7		5	Day		TAT (O	У	☐ 2	-Day	3110		olers:	1	T6:	11.40	
Relinquis	ned By: (2)	Date	1300°	Received	By:	1		Data	ext Da Delive	erable	Emer s Requ	iired:			Ice	Pres	entio	De	Temp:	990	1220
196								COA	QC S		CLP	LIKE]	ОТІ	HER					11702		(0-)
Relinquis	ned By: (3)	Date	Time	Received	Ву:	0;															
Relinquis	ned By: (4)	Date	Time	Received	Ву:			DW C	OMPL S [IANC	E? EC	DD FO	RMAT	TYPE	ME	STA D DE	ATE R	ESUL VA	TS REP	OTHE	

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20020406

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 03/10/2020 Date Received 02/04/2020 01:00:00 PM **Delivered By** Client Not Applicable **Tracking No** Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 12.3 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 2 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 **Preservation Total Metals** (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2) N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2) Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein.	acrylonitrile	, and 2-chloroeth	vl vinv	d ether not rec	guired for EPA	624 samples

Samples Inspected/Checklist Completed By:	Time light	Date: 02/04/2020	
	Thomas Wingate		
PM Review and Approval:	July I longer	Data: 02/04/2020	

Version 1.000

Date: 02/04/2020

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20032424

April 7, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20032424

Project Name: Kop Flex Project Location: Hanover, MD

Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 20032424.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on April 28, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20032424

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 03/24/2020 at 12:55 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20032424-001	Effluent VSP-4	WASTE WATER	03/24/20 12:00	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20032424

Sample ID: Effluent VSP-4 Date/Time Sampled: 03/24/2020 12:00 PSS Sample ID: 20032424-001

Matrix: WASTE WATER Date/Time Received: 03/24/2020 12:55

Dissolved Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Copper	3.2	ug/L	1.0	1	03/26/20	03/26/20 19:08	3 1051
Lead	ND	ug/L	1.0	1	03/26/20	03/26/20 19:08	3 1051
Nickel	11.6	ug/L	1.00	1	03/26/20	03/26/20 19:08	3 1051
Zinc	22.4	ug/L	20.0	1	03/26/20	03/26/20 19:08	3 1051

Total Metals + Hardness Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL F	Flag Dil	Prepared	Analyzed	Analyst
Copper	3.3	ug/L	1.0	1	03/26/20	03/26/20 18:54	1 1051
Lead	ND	ug/L	1.0	1	03/26/20	03/26/20 18:54	1 1051
Nickel	9.2	ug/L	1.0	1	03/26/20	03/26/20 18:54	1 1051
Zinc	23.2	ug/L	20.0	1	03/26/20	03/26/20 18:54	1 1051
Hardness (Ca & Mg)	17	mg/L	0.66	1	03/26/20	03/26/20 18:54	1 1051

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

pH=2

•	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
Chloromethane	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
Vinyl Chloride	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
Bromomethane	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
Chloroethane	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
Trichlorofluoromethane	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
Methylene Chloride	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
Chloroform	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
Carbon Tetrachloride	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
Benzene	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
Trichloroethene	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	03/25/20	03/25/20 13:46	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Kop Flex Project Name: PSS Project No.: 20032424

Sample ID: Effluent VSP-4 PSS Sample ID: 20032424-001 Date/Time Sampled: 03/24/2020 12:00 Date/Time Received: 03/24/2020 12:55 **Matrix: WASTE WATER** Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624 pH=2 Flag Result Units RL Dil **Prepared** Analyzed **Analyst** Bromodichloromethane ND ug/L 1.0 1 03/25/20 03/25/20 13:46 1011 cis-1,3-Dichloropropene ND ug/L 1.0 1 03/25/20 03/25/20 13:46 1011 Toluene ND ug/L 1.0 1 03/25/20 03/25/20 13:46 1011 ND 1.0 03/25/20 03/25/20 13:46 1011 trans-1,3-dichloropropene ug/L 1 1,1,2-Trichloroethane ND ug/L 1.0 03/25/20 03/25/20 13:46 1011 1 Tetrachloroethylene ND ug/L 1.0 1 03/25/20 03/25/20 13:46 1011 Dibromochloromethane ND ug/L 1.0 1 03/25/20 03/25/20 13:46 1011 Chlorobenzene ND ug/L 1.0 03/25/20 03/25/20 13:46 1011 1 Ethylbenzene ND ug/L 1.0 03/25/20 03/25/20 13:46 1011 1 ug/L ND 1.0 03/25/20 03/25/20 13:46 1011 Bromoform 1 1,1,2,2-Tetrachloroethane ND ug/L 1.0 1 03/25/20 03/25/20 13:46 1011 ND ug/L 1.0 1 03/25/20 03/25/20 13:46 1011 1,3-Dichlorobenzene 03/25/20 03/25/20 13:46 1011 1.4-Dichlorobenzene ND ug/L 1.0 1 03/25/20 03/25/20 13:46 1011 1.2-Dichlorobenzene ND ua/L 1.0 1 Surrogate(s) Limits Recovery Dibromofluoromethane 103 % 87-120 1 03/25/20 03/25/20 13:46 1011 4-Bromofluorobenzene 97 % 85-147 1 03/25/20 03/25/20 13:46 1011 Toluene-D8 101 % 88-110 1 03/25/20 03/25/20 13:46 1011 **Total Suspended Solids** Analytical Method: SM 2540D -2011 Result Units Dil **Prepared Analyzed** RLFlag Analyst 1 03/25/20 03/25/20 11:05 1061 Suspended Solids ND mg/L 1.0 **Biochemical Oxygen Demand** Analytical Method: SM 5210B -2011 Start time: 25-Mar-20 13:00 **Units** Result RL Flag Prepared **Analyzed** Analyst Biochemical Oxygen Demand, 5 day 03/30/20 03/30/20 15:42 4005

5.0

ND

mg/L

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20032424

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

20032424: Analyses associated with analyst code 4005 were performed by Enviro-Chem Laboratories, Inc., 47 Loveton Circle, Suite K, Sparks, MD 21152

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SM 5210B -2011

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20032424

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical	Batch Prepared	Analyzed
EPA 200.8	Effluent VSP-4	Initial	20032424-001	W	80909	173053	03/26/2020 16:41	03/26/2020 18:54
	80909-1-BKS	BKS	80909-1-BKS	W	80909	173053	03/26/2020 16:41	03/26/2020 18:10
	80909-1-BLK	BLK	80909-1-BLK	W	80909	173053	03/26/2020 16:41	03/26/2020 18:05
	20C0051-01 S	MS	20032402-001 S	W	80909	173053	03/26/2020 16:41	03/26/2020 18:20
	20C0051-01 SD	MSD	20032402-001 S	W	80909	173053	03/26/2020 16:41	03/26/2020 18:24
EPA 200.8	Effluent VSP-4	Initial	20032424-001	W	80910	173054	03/26/2020 16:50	03/26/2020 19:08
	80910-1-BKS	BKS	80910-1-BKS	W	80910	173054	03/26/2020 16:50	03/26/2020 19:04
	80910-1-BLK	BLK	80910-1-BLK	W	80910	173054	03/26/2020 16:50	03/26/2020 18:59
	Effluent VSP-4 S	MS	20032424-001 S	W	80910	173054	03/26/2020 16:50	03/26/2020 19:13
	Effluent VSP-4 SD	MSD	20032424-001 S	W	80910	173054	03/26/2020 16:50	03/26/2020 19:18
EPA 624.1	Effluent VSP-4	Initial	20032424-001	W	80913	173041	03/27/2020 08:25	03/25/2020 13:46
	80913-1-BKS	BKS	80913-1-BKS	W	80913	173041	03/27/2020 08:25	03/25/2020 10:45
	80913-1-BLK	BLK	80913-1-BLK	W	80913	173041	03/27/2020 08:25	03/25/2020 11:53
	Effluent VSP-4 S	MS	20032424-001 S	W	80913	173041	03/27/2020 08:25	03/25/2020 14:54
	Effluent VSP-4 SD	MSD	20032424-001 S	W	80913	173041	03/27/2020 08:25	03/25/2020 15:17
SM 2540D -2011	Effluent VSP-4	Initial	20032424-001	W	173002	173002	03/25/2020 11:05	03/25/2020 11:05
	173002-1-BLK	BLK	173002-1-BLK	W	173002	173002	03/25/2020 11:05	03/25/2020 11:05
	ML-DR-01 D	MD	20032420-001 D	W	173002	173002	03/25/2020 11:05	03/25/2020 11:05
SM 5210B -2011	Effluent VSP-4	Initial	20032424-001	W	173272	173272	03/30/2020 15:42	03/30/2020 15:42

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20032424

Analytical Method: SM 2540D -2011

Seg Number: 173002 Matrix: Water

MB Sample Id: 173002-1-BLK

Parameter MB LOD RL Units Flag

Suspended Solids ND 0.5000 1.000 mg/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 173053 Matrix: Water Date Prep: 03/26/20

MB Sample Id: 80909-1-BLK LCS Sample Id: 80909-1-BKS

MB **Spike** LCS LCS Limits Units **Parameter** Flag Result Amount Result %Rec Copper <1.000 40.00 37.97 95 85-115 ug/L Lead <1.000 40.00 38.50 96 85-115 ug/L Nickel <1.000 40.00 40.10 100 85-115 ug/L Zinc <20.00 200 202.4 101 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 173054 Matrix: Water Date Prep: 03/26/20

MB Sample Id: 80910-1-BLK LCS Sample Id: 80910-1-BKS

MB LCS LCS Units **Spike** Limits **Parameter** Flag Result Amount %Rec Result Copper <1.000 40.00 37.85 95 85-115 ug/L Lead <1.000 40.00 39.30 85-115 98 ug/L Nickel <1.000 40.00 37.00 93 85-115 ug/L Zinc 192.3 96 85-115 ug/L <20.00 200

Analytical Method: EPA 200.8

Seg Number: 173054

Matrix: Waste Water

Prep Method: E200.8_PREP

Date Prep: 03/26/20

Parent Sample Id: 20032424-001 MS Sample Id: 20032424-001 S MSD Sample Id: 20032424-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Copper	3.177	40.00	41.86	97	41.60	96	70-130	1	25	ug/L	
Lead	<1.000	40.00	38.20	96	38.44	96	70-130	0	25	ug/L	
Nickel	11.56	40.00	49.51	95	48.92	93	70-130	2	25	ug/L	
Zinc	22.40	200	221.1	99	219.4	99	70-130	0	25	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20032424

Analytical Method: EPA 624 .1Prep Method:E624PREPSeq Number:173041Matrix:WaterDate Prep:03/27/20

MB Sample Id:	80913-1-BLK	L	.CS Sample	e ld: 8091	13-1-BKS	•		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethan	ne <1.000	50.00	44.53	89	54-148		ug/L	
Chloromethane	<1.000	50.00	44.07	88	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	46.01	92	5-195		ug/L	
Bromomethane	<1.000	50.00	44.17	88	15-185		ug/L	
Chloroethane	<1.000	50.00	43.47	87	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	44.94	90	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	44.94	90	50-150		ug/L	
Methylene Chloride	<1.000	50.00	45.60	91	60-140		ug/L	
trans-1,2-dichloroether	ne <1.000	50.00	45.65	91	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	45.11	90	70-130		ug/L	
Chloroform	<1.000	50.00	47.65	95	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	47.06	94	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	49.95	100	70-130		ug/L	
Benzene	<1.000	50.00	47.54	95	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	46.61	93	70-130		ug/L	
Trichloroethene	<1.000	50.00	48.40	97	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	48.50	97	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	50.28	101	65-135		ug/L	
cis-1,3-Dichloropropen	e <1.000	50.00	47.50	95	25-175		ug/L	
Toluene	<1.000	50.00	49.47	99	70-130		ug/L	
trans-1,3-dichloroprope	ene <1.000	50.00	47.55	95	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	49.82	100	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	51.19	102	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	49.27	99	70-135		ug/L	
Chlorobenzene	<1.000	50.00	49.12	98	65-135		ug/L	
Ethylbenzene	<1.000	50.00	49.91	100	60-140		ug/L	
Bromoform	<1.000	50.00	51.43	103	70-130		ug/L	
1,1,2,2-Tetrachloroetha	ane <1.000	50.00	46.08	92	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	50.40	101	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	49.36	99	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	50.94	102	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Resul	LCS t Flag	Limits	Units		
Dibromofluoromethane	101		99		87-120	%		
4-Bromofluorobenzene	96		93		85-147	%		
Toluene-D8	99		100		88-110	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20032424

Analytical Method: EPA 624 .1 Prep Method: E624PREP Seq Number: 173041 03/27/20 Matrix: Waste Water Date Prep:

MS Sample Id: 20032424-001 S MSD Sample Id: 20032424-001 SD Parent Sample Id: 20032424-001

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Dichlorodifluoromethane	<1.000	50.00	48.16	96	46.48	93	43-150	3	27	ug/L	
Chloromethane	<1.000	50.00	47.85	96	46.79	94	1-273	2	60	ug/L	
Vinyl Chloride	<1.000	50.00	52.90	106	50.12	100	1-251	6	66	ug/L	
Bromomethane	<1.000	50.00	48.90	98	47.70	95	1-242	3	61	ug/L	
Chloroethane	<1.000	50.00	47.69	95	46.31	93	14-230	2	78	ug/L	
Trichlorofluoromethane	<1.000	50.00	49.64	99	47.42	95	17-181	4	84	ug/L	
1,1-Dichloroethene	<1.000	50.00	49.75	100	48.16	96	1-234	4	32	ug/L	
Methylene Chloride	<1.000	50.00	48.65	97	48.56	97	1-221	0	28	ug/L	
trans-1,2-dichloroethene	<1.000	50.00	51.01	102	49.42	99	54-156	3	45	ug/L	
1,1-Dichloroethane	<1.000	50.00	50.14	100	48.53	97	59-155	3	40	ug/L	
Chloroform	<1.000	50.00	52.15	104	51.04	102	51-138	2	54	ug/L	
1,1,1-Trichloroethane	<1.000	50.00	53.11	106	51.12	102	52-162	4	36	ug/L	
Carbon Tetrachloride	<1.000	50.00	55.48	111	53.37	107	70-140	4	41	ug/L	
Benzene	<1.000	50.00	52.59	105	51.04	102	37-151	3	61	ug/L	
1,2-Dichloroethane	<1.000	50.00	49.63	99	48.69	97	49-155	2	49	ug/L	
Trichloroethene	<1.000	50.00	52.36	105	51.33	103	70-157	2	48	ug/L	
1,2-Dichloropropane	<1.000	50.00	52.58	105	51.19	102	1-210	3	55	ug/L	
Bromodichloromethane	<1.000	50.00	53.95	108	53.49	107	35-155	1	56	ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	49.91	100	49.29	99	1-227	1	58	ug/L	
Toluene	<1.000	50.00	54.78	110	53.24	106	47-150	4	41	ug/L	
trans-1,3-dichloropropene	<1.000	50.00	50.23	100	49.02	98	17-183	2	86	ug/L	
1,1,2-Trichloroethane	<1.000	50.00	52.91	106	52.18	104	52-150	2	45	ug/L	
Tetrachloroethylene	<1.000	50.00	55.34	111	53.31	107	64-148	4	39	ug/L	
Dibromochloromethane	<1.000	50.00	51.63	103	51.64	103	53-149	0	50	ug/L	
Chlorobenzene	<1.000	50.00	52.43	105	52.17	104	37-160	1	53	ug/L	
Ethylbenzene	<1.000	50.00	53.17	106	52.86	106	37-162	0	63	ug/L	
Bromoform	<1.000	50.00	53.09	106	53.47	107	45-169	1	42	ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	48.78	98	51.16	102	46-157	4	61	ug/L	
1,3-Dichlorobenzene	<1.000	50.00	52.28	105	53.51	107	59-156	2	43	ug/L	
1,4-Dichlorobenzene	<1.000	50.00	51.02	102	52.27	105	18-190	3	57	ug/L	
1,2-Dichlorobenzene	<1.000	50.00	53.31	107	54.48	109	18-190	2	57	ug/L	
Surrogate			MS Result	MS Flag			MSD Flag	Limits	Units		
Dibromofluoromethane			100			100	;	87-120	%		
4-Bromofluorobenzene			93			93	;	85-147	%		

Toluene-D8

100

100

88-110

%

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits L = Recovery of BS,BSD or both below the laboratory control limits

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

$\mathfrak{D}_{*_{CLIENT}}$: WSP	*OFFI	ICE LOC.	emda	nVA	PSS W	ork Orde	er#:	200	,30	142	4					PAGE		OF	t	
	CT MGR: Eric John					Matrix C SW=Sur	odes: face Wtr [0 =0il	S =Soil	L=Ligt	uid SO L	.=Solid A =	Air WI =W	Vipe
				-		No. C	SAMPLE	Preserva Used	tives H	a	100 X	H	NG H	NO3H	-						
***************************************	ric.johnson@ws	Pletinin	3	401545	010/04	O N	TYPE	Analysis Method	/_	/	/	100	2/5	1300	3	/	/	/	/	/	
						T A	C = COMP	Required 3	12	/	/ /	5/2	126 P	52	/				/ /		
	CATION: Hanover,					I N	G =	*	9/	_/	/.	10 mg	62	Jahren J.	/	/	/	/			
SAMPLEI	a(s): Shannan B	urke	THE RESERVE OF			E R	GRAB	1/8	3/2	3/0	3/0	olle	1/3	0	/	/	/	/	/		
LAB NO.	*SAMPLE IDENTIFIC		*DATE (SAMPLED)		MATRIX (See Codes)	S			18	15	10	Dess	7	/		_	_	_	REI	MARKS	
	Effluent VSP-	-4	3/24/20	1200	WW	7	G	X	X	X	X	X	X								
	1-1-4-36-5-3		162																	100	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2										- 4										
			1																		- 3
												-						-		-	
														_							
			F - 18		97.114.12																
	e e e e e e e e e e e e e e e e e e e					2															
Relinquish	ned By: (1)	Date	Time	Received	By		-	*	Reque	ested	TAT (C	ne TA	AT per	COC	#	of Co	olers:	1	TB	:1.40	L
Dera	Bulee	3/24/20	1255	-	4/2			5- N	Day ext Da	y L] 3-Da	y rgenc	у 🔀	2-Day Other	C	ustody	y Seal	Cool	e-In-	tact	
Relinquish	ned By: (2)	Date	Time	Received I	Ву:						s Requ				Ic	e Pres	sent:-	PEES	Temp	3.1-3	3.40
		- Mad				. 187			Г			7			S	hippin	g Car	rier:_	HE.	Clies	
Relinquish	ned By: (3)	Date	Time	Received I	Ву:			Spec	al Ins	struction	ons: S	itar 1, Ph	idai	d I	7155	dan	edere	me d in	13/2×	sam eld,	ple
Relinquish	ned By: (4)	Date	Time	Received I	Зу:			DW C	OMPL S	LIANC	E? EI	DD FC	DRMA	ГТҮР	니	SI	AILL	RESUL VA	IS HEP	ORTED OTHER	10:

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20032424

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 04/28/2020 Date Received 03/24/2020 12:55:00 PM **Delivered By** Client **Tracking No** Not Applicable Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 3.4 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 **Preservation Total Metals** (pH<2)Yes Dissolved Metals, filtered within 15 minutes of collection (pH<2) Yes Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides N/A (pH>12)Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2) Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein.	acrylonitrile	, and 2-chloroeth	vl vinv	d ether not rec	guired for EPA	624 samples

Samples Inspected/Checklist Completed By:	Time With	Date: 03/24/2020	
	Thomas Wingate		
PM Review and Approval:	Ale I longer	Data: 02/24/2020	

Date: 03/24/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20032425

April 7, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20032425

Project Name: Kop Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 20032425.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on April 28, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20032425

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 03/24/2020 at 12:55 pm

PSS Sample ID	Sample ID	Matrix Date/Time Collected
20032425-001	Effluent VSP-4	WASTE WATER 03/24/20 12:00
20032425-002	TB-032420	WATER 03/24/20 11:16

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20032425

Sample ID: Effluent VSP-4 Date/Time Sampled: 03/24/2020 12:00 PSS Sample ID: 20032425-001

Matrix: WASTE WATER Date/Time Received: 03/24/2020 12:55

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL F	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	04/07/20	04/07/20 11:38	8 1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	95	%	80-120	1	04/07/20	04/07/20 11:3	8 1045

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20032425

Sample ID: TB-032420 Date/Time Sampled: 03/24/2020 11:16 PSS Sample ID: 20032425-002

Matrix: WATER Date/Time Received: 03/24/2020 12:55

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

рH=2							
	Result	Units		Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0		03/25/20		
Chloromethane	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Vinyl Chloride	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Bromomethane	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Chloroethane	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Trichlorofluoromethane	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
1,1-Dichloroethene	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Methylene Chloride	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
trans-1,2-dichloroethene	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
1,1-Dichloroethane	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Chloroform	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
1,1,1-Trichloroethane	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Carbon Tetrachloride	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Benzene	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
1,2-Dichloroethane	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Trichloroethene	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
1,2-Dichloropropane	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Bromodichloromethane	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Toluene	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
trans-1,3-dichloropropene	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
1,1,2-Trichloroethane	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Tetrachloroethylene	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Dibromochloromethane	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Chlorobenzene	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Ethylbenzene	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
Bromoform	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
1,3-Dichlorobenzene	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
1,4-Dichlorobenzene	ND	ug/L	1.0		03/25/20	03/25/20 13:23	1011
1,2-Dichlorobenzene	ND	ug/L	1.0		1 03/25/20	03/25/20 13:23	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	103	%	87-120		1 03/25/20	03/25/20 13:23	1011
4-Bromofluorobenzene	95	%	85-147		1 03/25/20	03/25/20 13:23	1011
Toluene-D8	100	%	88-110		1 03/25/20	03/25/20 13:23	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20032425

Sample ID: TB-032420 Date/Time Sampled: 03/24/2020 11:16 PSS Sample ID: 20032425-002

Matrix: WATER Date/Time Received: 03/24/2020 12:55

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	04/07/20	04/07/20 11:16	6 1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	96	%	80-120	1	04/07/20	04/07/20 11:1	6 1045

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20032425

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20032425

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Batch	Prepared	Analyzed
EPA 624.1	TB-032420	Initial	20032425-002	W	80913	173041	03/27/2020 08:25	03/25/2020 13:23
	80913-1-BKS	BKS	80913-1-BKS	W	80913	173041	03/27/2020 08:25	03/25/2020 10:45
	80913-1-BLK	BLK	80913-1-BLK	W	80913	173041	03/27/2020 08:25	03/25/2020 11:53
	Effluent VSP-4 S	MS	20032424-001 S	W	80913	173041	03/27/2020 08:25	03/25/2020 14:54
	Effluent VSP-4 SD	MSD	20032424-001 S	W	80913	173041	03/27/2020 08:25	03/25/2020 15:17
SW-846 8260 B-	Effluent VSP-4	Initial	20032425-001	W	81044	173312	04/07/2020 12:32	04/07/2020 11:38
Modified	TB-032420	Initial	20032425-002	W	81044	173312	04/07/2020 12:32	04/07/2020 11:16
	81044-1-BKS	BKS	81044-1-BKS	W	81044	173312	04/07/2020 12:32	04/07/2020 09:24
	81044-1-BLK	BLK	81044-1-BLK	W	81044	173312	04/07/2020 12:32	04/07/2020 10:53
	81044-1-BSD	BSD	81044-1-BSD	W	81044	173312	04/07/2020 12:32	04/07/2020 09:46

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20032425

Analytical Method: EPA 624 .1

Seq Number: 173041

Matrix: Water

Prep Method: E624PREP

Date Prep: 03/27/20

MB Sample Id: 80913-1-BLK LCS Sample Id: 80913-1-BKS

Parameter 00010	MB	Spike	LCS	LCS	Limits		Units	Flag
Dialalana diffusana asatha a	Result	Amount	Result	%Rec	54.440		/1	
Dichlorodifluoromethane	<1.000	50.00	44.53	89	54-148		ug/L	
Chloromethane	<1.000	50.00	44.07	88	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	46.01	92	5-195		ug/L	
Bromomethane	<1.000	50.00	44.17	88	15-185		ug/L	
Chloroethane	<1.000	50.00	43.47	87	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	44.94	90	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	44.94	90	50-150		ug/L	
Methylene Chloride	<1.000	50.00	45.60	91	60-140		ug/L	
trans-1,2-dichloroethene	<1.000	50.00	45.65	91	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	45.11	90	70-130		ug/L	
Chloroform	<1.000	50.00	47.65	95	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	47.06	94	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	49.95	100	70-130		ug/L	
Benzene	<1.000	50.00	47.54	95	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	46.61	93	70-130		ug/L	
Trichloroethene	<1.000	50.00	48.40	97	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	48.50	97	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	50.28	101	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	47.50	95	25-175		ug/L	
Toluene	<1.000	50.00	49.47	99	70-130		ug/L	
trans-1,3-dichloropropene	<1.000	50.00	47.55	95	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	49.82	100	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	51.19	102	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	49.27	99	70-135		ug/L	
Chlorobenzene	<1.000	50.00	49.12	98	65-135		ug/L	
Ethylbenzene	<1.000	50.00	49.91	100	60-140		ug/L	
Bromoform	<1.000	50.00	51.43	103	70-130		ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	46.08	92	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	50.40	101	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	49.36	99	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	50.94	102	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	101		99		87-120	%		
4-Bromofluorobenzene	96		93		85-147	%		
Toluene-D8	99		100		88-110	%		

Analytical Method: SW-846 8260 B-ModifiedPrep Method:SW5030BSeq Number:173312Matrix:WaterDate Prep:04/07/20MB Sample Id:81044-1-BLKLCS Sample Id:81044-1-BKSLCSD Sample Id:81044-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec		%RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxane)	<1.000	30.00	27.94	93	29.00	97	7 50-150	4	20	ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag		CSD esult	LCSD Flag	Limits	Units		
Toluene-D8	95		97			98		80-120	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20032425

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM

www.phaseonline.com email: info@phaseonline.com

PHASE SEPARATION SCIENCE, INC.

D*CLIENT:	WSP	*OFFI	CE LOC. H	erndon,	VA		ork Orde	r#:	200	320	125				P	AGE_	1	_ OF
	ET MGR: Etic Johnson	PHOI	NE NO.: (70 ³	3,709 (500			W=Drin	king Wtr	GW =Gr	ound Wtr	WW =Wa	ste Wtr C	=0il S	=Soil L	L=Liguio	d SOL	=Solid A =Air WI =Wipe
EMAIL: 6	nc.johnson@wsp	, COMPAX NO	O.: ()		No.	SAMPLE	Used Analysis	atives H	U)HE	-1))		_	\perp		\perp	
*PROJEC	CT NAME: KOO FIEX		S(L PRO	JECT NO.:	10/04	O N	TYPE	Method Required	1/2	F (F	/ $/$		/	/ ,				
SITE LOCATION: Hanover, MD P.O. NO.:						A	C = COMP	3/	200	(47.9)		/ /	/ /	/	/	/	/	/ /
SAMPLER(S): Shannon Burkedwcert No.:						N E	G = GRAB	* / 3	30	3/	//	/ /						
LAB NO *SAMPLE IDENTIFICATION *DATE *TIME MATRIX					MATRIX (See Codes)	R S	UNAD	144	A STATE OF THE STA	/ /	//	/	//	/ /	/ /	/ /	/	REMARKS
1	Effluent US	P-4	3/24/20	7-1-1	WW	3	G	X										
2	T6-032420	1				-4	-	X	X									Trip blank
										-								
				300									- 190	200	- 92			
											-		-	-	-			
										1				1				
	7																	
5																		
Relinquish	ed By: (1) Bulee	Date 3/24/20	Time 1255	Received I	By	1		5-	Reque Day	ested T	AT (One 3-Day Emerge	TAT pe	r COC) 2-Day	1311316	f Cool		1	18:1.42 1-Intak
Relinquish		Date	Time	Received I	By:	n												Temp: 3.1-3.42
								COA	QC S		Require CLP LIK	E 0	IHER	Shi	pping	Carrie	er:	E CINA
Relinquished By: (3) Date Time Received By:			Ву:			Spec	cial Ins	truction	ns: 5 16	ndo	ard	10	-de	ay	TH	T 31en n		
Relinquish	ed By: (4)	Date	Time	Received E	Зу:			101000000000000000000000000000000000000	OMPL	IANCE	? EDD	FORMA	T TYPE	MC		TE RE		TS REPORTED TO: WV OTHER

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20032425

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 04/28/2020 Date Received 03/24/2020 12:55:00 PM **Delivered By** Client **Tracking No** Not Applicable Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 3.4 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 2 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 **Preservation Total Metals** (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2) N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2) Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein.	acrylonitrile	, and 2-chloroeth	vl vinv	d ether not rec	guired for EPA	624 samples

Samples Inspected/Checklist Completed By:	Time With	Date: 03/24/2020	
	Thomas Wingate		
PM Review and Approval:	Ale I longer	Data: 02/24/2020	

Date: 03/24/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20040717

April 21, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20040717

Project Name: Kop Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 20040717.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on May 12, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20040717

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 04/07/2020 at 01:00 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20040717-001	Effluent VSP-4	WASTE WATER	04/07/20 12:00	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20040717

Sample ID: Effluent VSP-4 Date/Time Sampled: 04/07/2020 12:00 PSS Sample ID: 20040717-001

Matrix: WASTE WATER Date/Time Received: 04/07/2020 13:00

Dissolved Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL Fla	g Dil	Prepared	Analyzed	Analyst
Copper	1.3	ug/L	1.0	1	04/12/20	04/13/20 18:12	1051
Lead	ND	ug/L	1.0	1	04/12/20	04/13/20 18:12	1051
Nickel	13.8	ug/L	1.00	1	04/12/20	04/13/20 18:12	1051
Zinc	25.1	ug/L	20.0	1	04/12/20	04/13/20 18:12	1051

Total Metals + Hardness Analytical Method: EPA 200.8 Preparation Method: 200.8


	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Copper	1.8	ug/L	1.0	1	04/09/20	04/09/20 21:22	2 1051
Lead	ND	ug/L	1.0	1	04/09/20	04/09/20 21:22	2 1051
Nickel	14.3	ug/L	1.00	1	04/09/20	04/09/20 21:22	2 1051
Zinc	32.1	ug/L	20.0	1	04/09/20	04/09/20 21:22	2 1051
Hardness (Ca & Mg)	20	mg/L	0.66	1	04/09/20	04/09/20 21:2:	2 1051

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 173365 on Case Narrative.

pH=2

μ	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	
Chloromethane	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	1011
Vinyl Chloride	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	1011
Bromomethane	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	1011
Chloroethane	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	1011
Trichlorofluoromethane	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	1011
Methylene Chloride	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	1011
Chloroform	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	1011
Carbon Tetrachloride	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
Benzene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
Trichloroethene	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	04/08/20 (04/08/20 16:35	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20040717

Sample ID: Effluent VSP-4 Date/Time Sampled: 04/07/2020 12:00 PSS Sample ID: 20040717-001

Matrix: WASTE WATER Date/Time Received: 04/07/2020 13:00

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 173365 on Case Narrative.

pH=2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Bromodichloromethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
Toluene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
Tetrachloroethylene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
Dibromochloromethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
Chlorobenzene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
Ethylbenzene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
Bromoform	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:35	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	105	%	87-120	1	04/08/20	04/08/20 16:35	1011
4-Bromofluorobenzene	106	%	85-147	1	04/08/20	04/08/20 16:35	1011
Toluene-D8	99	%	88-110	1	04/08/20	04/08/20 16:35	1011

Total Suspended Solids

Analytical Method: SM 2540D -2011

	Result	Units	RL Flag	Dil	Prepared Analyzed Analyst
Suspended Solids	ND	mg/L	1.0	1	04/07/20 04/07/20 16:25 1061

Biochemical Oxygen Demand

Analytical Method: SM 5210B -2011

Start time: 08-Apr-20 15:00

Ctart time: 00 7 pr 20 10:00						
	Result	Units	RL Flag	Prepared	Analyzed	Analyst
Biochemical Oxygen Demand, 5 day	ND	mg/L	5.0	04/13/20	04/13/20 11:4	5 4005

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20040717

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

20040717: Analyses associated with analyst code 4005 were performed by Enviro-Chem Laboratories, Inc., 47 Loveton Circle, Suite K, Sparks, MD 21152

Analytical:

Volatile Organics Compounds (TVO)

Batch: 173365

A target analyte was detected in the method blank: Chloromethane was 0.15ppb.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SM 5210B -2011

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20040717

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical	Batch Prepared	Analyzed
EPA 200.8	Effluent VSP-4	Initial	20040717-001	W	81090	173442	04/09/2020 19:06	04/09/2020 21:22
	81090-1-BKS	BKS	81090-1-BKS	W	81090	173442	04/09/2020 19:06	04/09/2020 21:17
	81090-1-BLK	BLK	81090-1-BLK	W	81090	173442	04/09/2020 19:06	04/09/2020 21:12
	Effluent VSP-4 S	MS	20040717-001 S	W	81090	173442	04/09/2020 19:06	04/09/2020 21:26
	Effluent VSP-4 SD	MSD	20040717-001 S	W	81090	173442	04/09/2020 19:06	04/09/2020 21:31
EPA 200.8	Effluent VSP-4	Initial	20040717-001	W	81105	173487	04/12/2020 17:05	04/13/2020 18:12
	81105-1-BKS	BKS	81105-1-BKS	W	81105	173487	04/12/2020 17:05	04/13/2020 18:07
	81105-1-BLK	BLK	81105-1-BLK	W	81105	173487	04/12/2020 17:05	04/13/2020 18:02
	Effluent VSP-4 S	MS	20040717-001 S	W	81105	173487	04/12/2020 17:05	04/13/2020 18:17
	Effluent VSP-4 SD	MSD	20040717-001 S	W	81105	173487	04/12/2020 17:05	04/13/2020 18:22
EPA 624.1	Effluent VSP-4	Initial	20040717-001	W	81072	173365	04/08/2020 09:40	04/08/2020 16:35
	81072-1-BKS	BKS	81072-1-BKS	W	81072	173365	04/08/2020 09:40	04/08/2020 11:14
	81072-1-BLK	BLK	81072-1-BLK	W	81072	173365	04/08/2020 09:40	04/08/2020 13:07
	Combined Effluent- 040620 S	MS	20040716-001 S	W	81072	173365	04/08/2020 09:40	04/08/2020 17:20
	Combined Effluent- 040620 SD	MSD	20040716-001 S	W	81072	173365	04/08/2020 09:40	04/08/2020 17:43
SM 2540D -2011	Effluent VSP-4	Initial	20040717-001	W	173317	173317	04/07/2020 16:25	04/07/2020 16:25
	173317-1-BLK	BLK	173317-1-BLK	W	173317	173317	04/07/2020 14:35	04/07/2020 14:35
	601 D	MD	20040610-002 D	W	173317	173317	04/07/2020 14:35	04/07/2020 14:35
SM 5210B -2011	Effluent VSP-4	Initial	20040717-001	W	173642	173642	04/13/2020 11:45	04/13/2020 11:45

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20040717

Analytical Method: SM 2540D -2011

173317 Matrix: Water Seq Number:

MB Sample Id: 173317-1-BLK

LOD MB **Units** RL **Parameter** Flag Result

Suspended Solids ND 0.5000 1.000 mg/L

E200.8_PREP Analytical Method: EPA 200.8 Prep Method:

Seq Number: 173442 Matrix: Water Date Prep: 04/09/20

LCS Sample Id: 81090-1-BKS MB Sample Id: 81090-1-BLK

MB **Spike** LCS LCS Limits Units **Parameter** Flag Result Amount Result %Rec Copper <1.000 40.00 39.85 100 85-115 ug/L Lead <1.000 40.00 39.07 98 85-115 ug/L Nickel <1.000 40.00 39.06 98 85-115 ug/L Zinc <20.00 200 186.9 93 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 173487 Matrix: Water Date Prep: 04/12/20

LCS Sample Id: 81105-1-BKS MB Sample Id: 81105-1-BLK

MB LCS LCS Units **Spike** Limits **Parameter** Flag Result Amount %Rec Result Copper <1.000 40.00 40.01 100 85-115 ug/L Lead <1.000 40.00 44.07 110 85-115 ug/L Nickel <1.000 40.00 40.63 102 85-115 ug/L Zinc 206.7 103 85-115 ug/L <20.00 200

Analytical Method: EPA 200.8 E200.8_PREP Prep Method: Seq Number: 173442 Matrix: Waste Water Date Prep: 04/09/20

MS Sample Id: 20040717-001 S MSD Sample Id: 20040717-001 SD

Parent Sample Id: 20040717-001

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Copper	1.830	40.00	43.50	104	44.09	106	70-130	2	25	ug/L	
Lead	<1.000	40.00	37.32	93	38.62	97	70-130	4	25	ug/L	
Nickel	14.26	40.00	55.58	103	56.38	105	70-130	2	25	ug/L	
Zinc	32.11	200	226.7	97	229	98	70-130	1	25	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20040717

Analytical Method: EPA 200.8Prep Method:E200.8_PREPSeq Number:173487Matrix: Waste WaterDate Prep:04/12/20

Parent Sample Id: 20040717-001 MS Sample Id: 20040717-001 S MSD Sample Id: 20040717-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Copper	1.312	40.00	42.68	103	43.70	106	70-130	3	25	ug/L	
Lead	<1.000	40.00	42.99	107	41.82	105	70-130	2	25	ug/L	
Nickel	13.77	40.00	55.49	104	56.82	108	70-130	4	25	ug/L	
Zinc	25.05	200	241	108	245.4	110	70-130	2	25	ug/L	

Analytical Method: EPA 624 .1Prep Method:E624PREPSeq Number:173365Matrix: WaterDate Prep:04/08/20

MB Sample Id: 81072-1-BLK LCS Sample Id: 81072-1-BKS

IVID Sample Id. 61072	I-I-DLK	_	oo oampio	ia. 01072 1	Bito			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethane	<1.000	50.00	56.06	112	54-148		ug/L	
Chloromethane	<1.000	50.00	53.80	108	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	66.75	134	5-195		ug/L	
Bromomethane	<1.000	50.00	45.82	92	15-185		ug/L	
Chloroethane	<1.000	50.00	52.51	105	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	55.90	112	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	48.47	97	50-150		ug/L	
Methylene Chloride	<1.000	50.00	49.47	99	60-140		ug/L	
trans-1,2-dichloroethene	<1.000	50.00	48.53	97	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	52.71	105	70-130		ug/L	
Chloroform	<1.000	50.00	52.71	105	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	49.09	98	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	50.22	100	70-130		ug/L	
Benzene	<1.000	50.00	49.01	98	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	53.00	106	70-130		ug/L	
Trichloroethene	<1.000	50.00	47.74	95	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	51.36	103	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	54.81	110	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	52.91	106	25-175		ug/L	
Toluene	<1.000	50.00	48.55	97	70-130		ug/L	
trans-1,3-dichloropropene	<1.000	50.00	48.25	97	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	50.71	101	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	45.51	91	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	49.16	98	70-135		ug/L	
Chlorobenzene	<1.000	50.00	48.20	96	65-135		ug/L	
Ethylbenzene	<1.000	50.00	50.85	102	60-140		ug/L	
Bromoform	<1.000	50.00	48.18	96	70-130		ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	50.47	101	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	48.99	98	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	48.54	97	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	49.07	98	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	104		103		87-120	%		
4-Bromofluorobenzene	104		101		85-147	%		
Toluene-D8	100		100		88-110	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20040717

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

$\mathfrak{p}_{st_{CLIENT}}$: WSP USA	*OFF	ICE LOC. H	erndon,	VA		ork Orde	er#: _	200	40	716	2	000	107	רו	PAG	E_	1	OF	1
*PROJE	CT MGR: Eric Johns	on *PHO	NE NO.:(70	3,709-6	500		Codes: rface Wtr [r GW=	Ground	Wtr W	W =Wast	te Wtr O	=0il S =	Soil L =L	iguid S	OL=Sol	d A =Air	WI=Wipe
	eric, johnson @WSp.)		No.	SAMPLE	Preserva Used	H	KI		14	NO3 H	NO						
	CTNAME: KOP Flex		314 PRO	01545.0 JECT NO.:	10/04	O N T	TYPE	Analysis Method Required	/_			/s	to se	/ /	/ /	/ /		/ /	/	
SITE LOC	cation: Hanaver, 1	MD	P.O.	NO.:		Ā	C = COMP	3/	173	/ /	Total mer	2/2/2	18	/				/		
SAMPLE	R(S): Shannon Bu	irke	DW CERT	NO.:		N E	G = GRAB	*/,	2/4	7/5	2/2	3	P		/	/ /	/ /	/ /	2	
LAB NO.	*SAMPLE IDENTIFIC		*DATE (SAMPLED)	*TIME (SAMPLED)	MATRIX (See Codes)	R		VOC	14	0	1000	01550		/ /				1	REMAI	
	Effluent VSP	-4	4/9/20		NN	7	G	X	×	X	X	×			1			fre	solved i ld-fill	netals tered
							1								+		+	-		
															+		+	+		Are i
												- 0					6		137	
																			Washington, and the same of th	
							- 9								+	_	+	+		- 12
														-	-	-	-			1000
				e in the		e-man							100		+		+			
Relinquish	ned By: (1)	Date	Time	Received	W/		-	*	Reque	ested	TAT (C	One T/	AT per	COC)	# of	Cooler	s: 2			
Sho	ned By: (1) where	4/7/20	1300	1	4			5- N	Day ext Da	ıy [3-Da	ay ergend	y X	2-Day Other	Cust	ody Se	al:Co	oler:	Irla	+
Relinquish	ned By: (2)	Date	Time	Received I	By:			Data COA	QC S	erable SUMM	s Req I CLP	uired: LIKE T	ОТ	HER	Ice F	resent	PPE.	CIN	emp ² .	124.87
Relinquish	ned By: (3)	Date	Time	Received I	Ву:		- 25				ons:	<u> </u>	915 =	= Ci				CII		
								- 100 par						1						
Relinquish	ned By: (4)	Date	Time	Received I	Зу:	1			OMPL S		E? EI	DD FO	ORMAT	TYPE	MD	STATE DE F				TED TO: THER

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20040717

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 05/12/2020 Date Received 04/07/2020 01:00:00 PM **Delivered By** Client **Tracking No** Not Applicable Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 4.2 Temp Blank Present No Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke **Documentation** COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 **Preservation Total Metals** (pH<2)Yes Dissolved Metals, filtered within 15 minutes of collection (pH<2) Yes Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides N/A (pH>12)Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein.	acrylonitrile	, and 2-chloroeth	vl vinv	d ether not rec	guired for EPA	624 samples

Samples Inspected/Checklist Completed By:	Time Winde	Date: 04/07/2020	
	Thomas Wingate		
	n 1. 4 1 1		

PM Review and Approval:

Amber Confer

Date: 04/08/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20040718

April 21, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20040718

Project Name: Kop Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20040718**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on May 12, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20040718

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 04/07/2020 at 01:00 pm

PSS Sample ID	Sample ID	Matrix Date/Time Collected
20040718-001	Effluent VSP-4	WASTE WATER 04/07/20 12:00
20040718-002	Influent VSP-1	GROUND WATER 04/07/20 12:20
20040718-003	TB-040720	WATER 04/07/20 00:00

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20040718

Sample ID: Effluent VSP-4 Date/Time Sampled: 04/07/2020 12:00 PSS Sample ID: 20040718-001

Matrix: WASTE WATER Date/Time Received: 04/07/2020 13:00

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL Flag	Dil	Prepared Analyzed Analys	it_
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	04/21/20 04/21/20 01:22 1045	
Surrogate(s)	Recovery		Limits			
Toluene-D8	94	%	80-120	1	04/21/20 04/21/20 01:22 1045	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20040718

Sample ID: Influent VSP-1 Date/Time Sampled: 04/07/2020 12:20 PSS Sample ID: 20040718-002

Matrix: GROUND WATER Date/Time Received: 04/07/2020 13:00

TCL Volatile Organic Compounds Analytical Method: SW-846 8260 B Preparation Method: 5030B

	yzed An	nalyst
Acetone ND ug/L 5.0 1 04/10/20 04/10/20	20 17:06 1	011
Benzene ND ug/L 1.0 1 04/10/20 04/10/2	20 17:06 1	011
Bromochloromethane ND ug/L 1.0 1 04/10/20 04/10/2	20 17:06 1	011
Bromodichloromethane ND ug/L 1.0 1 04/10/20 04/10/20	20 17:06 1	011
Bromoform ND ug/L 1.0 1 04/10/20 04/10/2	20 17:06 1	011
Bromomethane ND ug/L 1.0 1 04/10/20 04/10/20	20 17:06 1	011
2-Butanone (MEK) ND ug/L 5.0 1 04/10/20 04/10/	20 17:06 1	011
Carbon Disulfide ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
Carbon tetrachloride ND ug/L 1.0 1 04/10/20 04/10/20	20 17:06 1	011
Chlorobenzene ND ug/L 1.0 1 04/10/20 04/10/20	20 17:06 1	011
Chloroethane 3.7 ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
Chloroform ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
Chloromethane ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
Cyclohexane ND ug/L 10 1 04/10/20 04/10/	20 17:06 1	011
1,2-Dibromo-3-chloropropane ND ug/L 5.0 1 04/10/20 04/10/	20 17:06 1	011
Dibromochloromethane ND ug/L 1.0 1 04/10/20 04/10/20	20 17:06 1	011
1,2-Dibromoethane ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
1,2-Dichlorobenzene ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
1,3-Dichlorobenzene ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
Dichlorodifluoromethane ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
1,4-Dichlorobenzene ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
1,1-Dichloroethane 45 ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
1,2-Dichloroethane 1.5 ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
cis-1,2-Dichloroethene 1.2 ug/L 1.0 1 04/10/20 04/10/20	20 17:06 1	011
1,1-Dichloroethene 220 ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
1,2-Dichloropropane ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
cis-1,3-Dichloropropene ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
trans-1,3-Dichloropropene ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
trans-1,2-Dichloroethene ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
Ethylbenzene ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
2-Hexanone (MBK) ND ug/L 5.0 1 04/10/20 04/10/	20 17:06 1	011
Isopropylbenzene ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011
Methyl Acetate ND ug/L 10 1 04/10/20 04/10/	20 17:06 1	011
Methylcyclohexane ND ug/L 10 1 04/10/20 04/10/	20 17:06 1	011
Methylene chloride ND ug/L 1.0 1 04/10/20 04/10/	20 17:06 1	011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20040718

Sample ID: Influent VSP-1 Date/Time Sampled: 04/07/2020 12:20 PSS Sample ID: 20040718-002

Matrix: GROUND WATER Date/Time Received: 04/07/2020 13:00

TCL Volatile Organic Compounds Analytical Method: SW-846 8260 B Preparation Method: 5030B

TCL Volatile Organic Compounds	Analytica	I Method:	SW-846 8260	Preparation Method: 5030B				
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
4-Methyl-2-Pentanone (MIBK)	ND	ug/L	5.0		1	04/10/20	04/10/20 17:06	6 1011
Methyl-t-Butyl Ether	ND	ug/L	1.0		1	04/10/20	04/10/20 17:06	6 1011
Naphthalene	ND	ug/L	1.0		1	04/10/20	04/10/20 17:06	5 1011
Styrene	ND	ug/L	1.0		1	04/10/20	04/10/20 17:06	5 1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0		1	04/10/20	04/10/20 17:06	5 1011
Tetrachloroethene	ND	ug/L	1.0		1	04/10/20	04/10/20 17:06	5 1011
Toluene	ND	ug/L	1.0		1	04/10/20	04/10/20 17:06	6 1011
1,2,3-Trichlorobenzene	ND	ug/L	1.0		1	04/10/20	04/10/20 17:06	6 1011
1,2,4-Trichlorobenzene	ND	ug/L	1.0		1	04/10/20	04/10/20 17:06	5 1011
1,1,1-Trichloroethane	21	ug/L	1.0		1	04/10/20	04/10/20 17:06	5 1011
Trichloroethene	1.2	ug/L	1.0		1	04/10/20	04/10/20 17:06	5 1011
1,1,2-Trichloroethane	ND	ug/L	1.0		1	04/10/20	04/10/20 17:06	5 1011
Trichlorofluoromethane	ND	ug/L	1.0		1	04/10/20	04/10/20 17:06	5 1011
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0		1	04/10/20	04/10/20 17:06	5 1011
Vinyl chloride	ND	ug/L	1.0		1	04/10/20	04/10/20 17:06	5 1011
m&p-Xylene	ND	ug/L	2.0		1	04/10/20	04/10/20 17:06	5 1011
o-Xylene	ND	ug/L	1.0		1	04/10/20	04/10/20 17:06	5 1011
Surrogate(s)	Recovery		Limits					
4-Bromofluorobenzene	107	%	87-109		1	04/10/20	04/10/20 17:00	6 1011
Dibromofluoromethane	95	%	93-111		1	04/10/20	04/10/20 17:00	6 1011
Toluene-D8	104	%	91-109		1	04/10/20	04/10/20 17:0	6 1011
1,4-Dioxane by GC/MS - SIM	Analytica	l Method:	SW-846 8260	B-Modifie	d	Preparation Met	nod: 5030B	
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	260	ug/L	10		10	04/21/20	04/21/20 01:44	1 1045
Surrogate(s)	Recovery		Limits					

	Result	Units	RL FI	ag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	260	ug/L	10	10	04/21/20	04/21/20 01:44	4 1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	93	%	80-120	10	04/21/20	04/21/20 01:4	4 1045

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20040718

Sample ID: TB-040720 Date/Time Sampled: 04/07/2020 00:00 PSS Sample ID: 20040718-003

Matrix: WATER Date/Time Received: 04/07/2020 13:00

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 173365 on Case Narrative.

pH=2

ρ π= 2							
<u> </u>	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Chloromethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Vinyl Chloride	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Bromomethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Chloroethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Trichlorofluoromethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Methylene Chloride	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Chloroform	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Carbon Tetrachloride	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Benzene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Trichloroethene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Bromodichloromethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Toluene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Tetrachloroethylene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Dibromochloromethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Chlorobenzene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Ethylbenzene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Bromoform	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	04/08/20	04/08/20 16:57	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	107	%	87-120	1	04/08/20	04/08/20 16:57	1011
4-Bromofluorobenzene	108	%	85-147	1	04/08/20	04/08/20 16:57	1011
Toluene-D8	101	%	88-110	1	04/08/20	04/08/20 16:57	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20040718

Sample ID: TB-040720 Date/Time Sampled: 04/07/2020 00:00 PSS Sample ID: 20040718-003

Matrix: WATER Date/Time Received: 04/07/2020 13:00

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	04/21/20	04/21/20 00:59	1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	3 93	%	80-120	1	04/21/20	04/21/20 00:50	9 1045

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20040718

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

General Comments:

Per client, analyze trip blank for 1,4 dioxane and EPA 624.

Analytical:

Volatile Organics Compounds (TVO)

Batch: 173365

A target analyte was detected in the method blank: Chloromethane was 0.15ppb.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20040718

M-41 J	Client Comple ID	Analysis Type	DCC Comple ID	M4	Duan Datah	Amalatical 1	Datah Duamanad	Amalagad
Method	Client Sample ID	Analysis Type	PSS Sample ID	IVILX	Prep Batch	Analytical	Batch Prepared	Analyzed
EPA 624.1	TB-040720	Initial	20040718-003	W	81072	173365	04/08/2020 09:40	04/08/2020 16:57
	81072-1-BKS	BKS	81072-1-BKS	W	81072	173365	04/08/2020 09:40	04/08/2020 11:14
	81072-1-BLK	BLK	81072-1-BLK	W	81072	173365	04/08/2020 09:40	04/08/2020 13:07
	Combined Effluent- 040620 S	MS	20040716-001 S	W	81072	173365	04/08/2020 09:40	04/08/2020 17:20
	Combined Effluent- 040620 SD	MSD	20040716-001 S	W	81072	173365	04/08/2020 09:40	04/08/2020 17:43
SW-846 8260 B	Influent VSP-1	Initial	20040718-002	W	81108	173460	04/10/2020 07:43	04/10/2020 17:06
	81108-1-BKS	BKS	81108-1-BKS	W	81108	173460	04/10/2020 07:43	04/10/2020 08:48
	81108-1-BLK	BLK	81108-1-BLK	W	81108	173460	04/10/2020 07:43	04/10/2020 10:41
	13850-MWB-4/20 S	MS	20040303-002 S	W	81108	173460	04/10/2020 07:43	04/10/2020 18:37
	13850-MWB-4/20 SD	MSD	20040303-002 S	W	81108	173460	04/10/2020 07:43	04/10/2020 18:59
SW-846 8260 B-	Effluent VSP-4	Initial	20040718-001	W	81197	173653	04/21/2020 12:37	04/21/2020 01:22
Modified	Influent VSP-1	Initial	20040718-002	W	81197	173653	04/21/2020 12:37	04/21/2020 01:44
	TB-040720	Initial	20040718-003	W	81197	173653	04/21/2020 12:37	04/21/2020 00:59
	81197-1-BKS	BKS	81197-1-BKS	W	81197	173653	04/21/2020 12:37	04/20/2020 22:45
	81197-1-BLK	BLK	81197-1-BLK	W	81197	173653	04/21/2020 12:37	04/21/2020 00:37
	81197-1-BSD	BSD	81197-1-BSD	W	81197	173653	04/21/2020 12:37	04/20/2020 23:08

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20040718

Analytical Method: EPA 624 .1 Prep Method: E624PREP Seq Number: 173365 Matrix: Water Date Prep: 04/08/20

MB Sample Id:	31072-1-BLK	L	CS Sample	ld: 8107	2-1-BKS			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethan	e <1.000	50.00	56.06	112	54-148		ug/L	
Chloromethane	<1.000	50.00	53.80	108	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	66.75	134	5-195		ug/L	
Bromomethane	<1.000	50.00	45.82	92	15-185		ug/L	
Chloroethane	<1.000	50.00	52.51	105	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	55.90	112	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	48.47	97	50-150		ug/L	
Methylene Chloride	<1.000	50.00	49.47	99	60-140		ug/L	
trans-1,2-dichloroethen	e <1.000	50.00	48.53	97	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	52.71	105	70-130		ug/L	
Chloroform	<1.000	50.00	52.71	105	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	49.09	98	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	50.22	100	70-130		ug/L	
Benzene	<1.000	50.00	49.01	98	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	53.00	106	70-130		ug/L	
Trichloroethene	<1.000	50.00	47.74	95	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	51.36	103	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	54.81	110	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	52.91	106	25-175		ug/L	
Toluene	<1.000	50.00	48.55	97	70-130		ug/L	
trans-1,3-dichloroprope	ne <1.000	50.00	48.25	97	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	50.71	101	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	45.51	91	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	49.16	98	70-135		ug/L	
Chlorobenzene	<1.000	50.00	48.20	96	65-135		ug/L	
Ethylbenzene	<1.000	50.00	50.85	102	60-140		ug/L	
Bromoform	<1.000	50.00	48.18	96	70-130		ug/L	
1,1,2,2-Tetrachloroetha		50.00	50.47	101	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	48.99	98	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	48.54	97	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	49.07	98	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	104		103		87-120	%		
4-Bromofluorobenzene	104		101		85-147	%		
Toluene-D8	100		100		88-110	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20040718

Analytical Method: SW-846 8260 B
Seq Number: 173460 Matrix: Water Date Prep: 04/10/20

MB Sample Id: 81108-1-BLK LCS Sample Id: 81108-1-BKS

MB Sample Id: 81108-1-	BLK	L	CS Sample	e ld: 8110	8-1-BKS		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Acetone	<5.000	50.00	34.54	69	55-120	ug/L	
Benzene	<1.000	50.00	48.66	97	87-123	ug/L	
Bromochloromethane	<1.000	50.00	47.33	95	74-136	ug/L	
Bromodichloromethane	<1.000	50.00	48.28	97	83-125	ug/L	
Bromoform	<1.000	50.00	46.78	94	72-129	ug/L	
Bromomethane	<1.000	50.00	49.20	98	45-167	ug/L	
2-Butanone (MEK)	<5.000	50.00	36.10	72	45-136	ug/L	
Carbon Disulfide	<1.000	50.00	50.66	101	87-123	ug/L	
Carbon tetrachloride	<1.000	50.00	51.63	103	79-133	ug/L	
Chlorobenzene	<1.000	50.00	49.06	98	87-127	ug/L	
Chloroethane	<1.000	50.00	44.36	89	81-122	ug/L	
Chloroform	<1.000	50.00	46.86	94	76-129	ug/L	
Chloromethane	<1.000	50.00	43.78	88	59-121	ug/L	
Cyclohexane	<10.00	50.00	50.80	102	83-122	ug/L	
1,2-Dibromo-3-chloropropane	<5.000	50.00	44.31	89	63-140	ug/L	
Dibromochloromethane	<1.000	50.00	47.90	96	73-139	ug/L	
1,2-Dibromoethane	<1.000	50.00	50.42	101	80-127	ug/L	
1,2-Dichlorobenzene	<1.000	50.00	50.76	102	82-129	ug/L	
1,3-Dichlorobenzene	<1.000	50.00	51.28	103	88-127	ug/L	
Dichlorodifluoromethane	<1.000	50.00	48.77	98	70-131	ug/L	
1,4-Dichlorobenzene	<1.000	50.00	49.19	98	84-129	ug/L	
1,1-Dichloroethane	<1.000	50.00	47.70	95	85-120	ug/L	
1,2-Dichloroethane	<1.000	50.00	47.27	95	86-125	ug/L	
cis-1,2-Dichloroethene	<1.000	50.00	44.36	89	86-126	ug/L	
1,1-Dichloroethene	<1.000	50.00	48.44	97	85-123	ug/L	
1,2-Dichloropropane	<1.000	50.00	50.13	100	83-120	ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	49.16	98	81-125	ug/L	
trans-1,3-Dichloropropene	<1.000	50.00	49.37	99	79-121	ug/L	
trans-1,2-Dichloroethene	<1.000	50.00	47.90	96	87-120	ug/L	
Ethylbenzene	<1.000	50.00	53.04	106	82-128	ug/L	
2-Hexanone (MBK)	<5.000	50.00	39.89	80	56-116	ug/L	
Isopropylbenzene	<1.000	50.00	48.06	96	81-128	ug/L	
Methyl Acetate	<10.00	50.00	45.33	91	68-129	ug/L	
Methylcyclohexane	<10.00	50.00	53.63	107	84-127	ug/L	
Methylene chloride	<1.000	50.00	46.75	94	85-119	ug/L	
4-Methyl-2-Pentanone (MIBK)	<5.000	50.00	43.41	87	57-116	ug/L	
Methyl-t-Butyl Ether	<1.000	50.00	48.39	97	61-130	ug/L	
Naphthalene	<1.000	50.00	48.19	96	74-114	ug/L	
Styrene	<1.000	50.00	48.89	98	76-130	ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	46.44	93	79-131	ug/L	
Tetrachloroethene	<1.000	50.00	49.70	99	85-131	ug/L	
Toluene	<1.000	50.00	50.11	100	82-127	ug/L	
1,2,3-Trichlorobenzene	<1.000	50.00	54.57	109	79-123	ug/L	
1,2,4-Trichlorobenzene	<1.000	50.00	51.03	102	78-123	ug/L	
1,1,1-Trichloroethane	<1.000	50.00	50.34	101	87-125	ug/L	
Trichloroethene	<1.000	50.00	49.83	100	87-124	ug/L	
1,1,2-Trichloroethane	<1.000	50.00	48.85	98	84-127	ug/L	
Trichlorofluoromethane	<1.000	50.00	48.05	96	85-130	ug/L	
1,1,2-Trichlorotrifluoroethane	<1.000	50.00	49.35	99	81-132	ug/L	
Vinyl chloride	<1.000	50.00	45.77	92	66-133	ug/L	
m&p-Xylene	<2.000	100	97.13	97	78-126	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20040718

Analytical Method: SW-846 8260 B
Seq Number: 173460 Matrix: Water Prep: 04/10/20

MB Sample Id: 81108-1-BLK LCS Sample Id: 81108-1-BKS

Wib Gampic Id.	OTTOO T DEIX	_				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units Flag
o-Xylene	<1.000	50.00	48.11	96	75-130	ug/L
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits Uni	ts
4-Bromofluorobenze	ne 106		98		87-109 %	
Dibromofluorometha	ne 100		96		93-111 %	
Toluene-D8	99		101		91-109 %	

Analytical Method: SW-846 8260 B-ModifiedPrep Method: SW5030BSeq Number:173653Matrix: WaterDate Prep: 04/21/20MB Sample Id:81197-1-BLKLCS Sample Id: 81197-1-BKSLCSD Sample Id: 81197-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxane)	<1.000	30.00	26.45	88	32.95	110	50-150	22	20	ug/L	F
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag			LCSD Flag	Limits	Units		
Toluene-D8	93		96			95		80-120	%		

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

1)*CLIENT	WSP USA	*OFF	ICE LOC. H	erndon,	VA		ork Orde	er#: ć	2004	40	718					PAGE	1	OF _	1_
*PROJE	CT MGR: Eric Johns	On *PHO	NE NO.:(70	3,709-0	500	Matrix (SW=Su				GW=G	Ground Wt	r WW =V	/aste Wtr	0 =0il	S=Soil	L=Liqu	id SOL	=Solid A =A	ir WI=Wipe
	ric. johnson Quap.		O.: ()		No. C	SAMPLE	Preserva Used		CIH	CI								
	CT NAME: KOD FIEX		3/4 PRO	01545.0 JECT NO.:	0/04	O N T	TYPE	Analysis Method Require	1/2	3/2	//	/ /						//	
	cation: Hanover, n		P.O. I	NO.:		A	C = COMP	3/	088	(8007.8)	//		//	/ /	/ /	/ /	//	/ /	
SAMPLE	R(s): Shannan E	Burke	DW CERT I	NO.:		N E	G = GRAB	* 010	30	3	/	/ /	//	/		/	/		
LAB NO.	*SAMPLE IDENTIFIC	CATION	*DATE (SAMPLED)	*TIME (SAMPLED)	MATRIX (See Codes)	R S		1.	100	/ /	//							REM	ARKS
2	Effluent VSP-L	i	4/7/20		WW	3	6	X											
7	Influent VSP-1		4/7/20	1220	GW	6	G	X	X										
3	TB-040720		4/7/20	-	W	4	_	X	X		+							Trip k	danK
																- 350			. 9
	4.7										_	-	-						M 100 P
																	2		
5					2														
Relinquish	ned By: (1) Whlee	Date	Time	Received	5y:			*	Reque Day	ested 1	[AT (On	e TAT p	er COC	100		olers:	0		
1 con	- Brile	4/7/20	1300	1/2	///	/		□ N	ext Day	y \square] Emerg	ency D		Ci					Hut
Relinquish	ned By: (2)	Date	Time	Received I	By:			Data COA	Delive QC S	erables UMM	Requir CLP LI	ed: KE	OTHER					F Temp:	2.32.4.72
Relinquish	ned By: (3)	Date	Time	Received I	By:			_	cial Ins	tructio	ins:	_		-1		3		112	
											10-	dau) T	AT					
Relinquish	ned By: (4)	Date	Time	Received I	Зу:				OMPL S		E? EDC	FORM	IAT TYP	E M	ST. D DE	ATE R	VA	TS REPO	RTED TO: OTHER

6630 Baltimore National Pike • Route 40 West • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047 • Fax (410) 788-8723

The client (Client Name), by signing, or having client's agent sign, this "Sample Chain of Custody/Agreement Form", agrees to pay for the above requested services per the latest version of the Service Brochure or PSS-provided quotation including any and all attorney's or other reasonable fees if collection becomes necessary. * = REQUIRED

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20040718

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 05/12/2020 Date Received 04/07/2020 01:00:00 PM **Delivered By** Client Not Applicable **Tracking No** Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 4.2 Temp Blank Present No Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke **Documentation** COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 3 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 13 **Preservation Total Metals** (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein.	acrylonitrile.	. and 2-chloroeth	vl vin،	/l ether not r	required for	r EPA 6	324 samı	oles.

Samples Inspected/Checklist Completed By:	There Winds	Date: 04/07/2020	
	Thomas Wingate		

PM Review and Approval:

Amber Confer

Date: 04/08/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20052809

June 11, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20052809

Project Name: Kop Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 20052809.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on July 2, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20052809

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 05/28/2020 at 12:58 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20052809-001	Effluent VSP-4	WASTE WATER	05/28/20 12:00	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20052809

Sample ID: Effluent VSP-4 Date/Time Sampled: 05/28/2020 12:00 PSS Sample ID: 20052809-001

Matrix: WASTE WATER Date/Time Received: 05/28/2020 12:58

Dissolved Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL Flag	g Dil	Prepared	Analyzed	Analyst
Copper	1.2	ug/L	1.0	1	06/01/20	06/01/20 18:21	1064
Lead	ND	ug/L	1.0	1	06/01/20	06/01/20 18:21	1064
Nickel	14.9	ug/L	1.00	1	06/01/20	06/01/20 18:21	1064
Zinc	23.4	ug/L	20.0	1	06/01/20	06/01/20 18:21	1064

Total Metals + Hardness Analytical Method: EPA 200.8 Preparation Method: 200.8

	5	11-26-	DI Flori	D.11	D	A l	A l 1
	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Copper	2.6	ug/L	1.0	1	06/01/20	06/01/20 16:1	0 1064
Lead	ND	ug/L	1.0	1	06/01/20	06/01/20 16:1	0 1064
Nickel	15.8	ug/L	1.00	1	06/01/20	06/01/20 16:1	0 1064
Zinc	32.4	ug/L	20.0	1	06/01/20	06/01/20 16:1	0 1064
Hardness (Ca & Mg)	18	mg/L	0.66	1	06/01/20	06/01/20 16:1	0 1064

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 174750 on Case Narrative.

pH=2

•	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
Chloromethane	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
Vinyl Chloride	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
Bromomethane	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
Chloroethane	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
Trichlorofluoromethane	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
1,1-Dichloroethene	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
Methylene Chloride	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
1,1-Dichloroethane	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
Chloroform	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
Carbon Tetrachloride	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
Benzene	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
1,2-Dichloroethane	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
Trichloroethene	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011
1,2-Dichloropropane	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	3 1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20052809

Sample ID: Effluent VSP-4 Date/Time Sampled: 05/28/2020 12:00 PSS Sample ID: 20052809-001

Matrix: WASTE WATER Date/Time Received: 05/28/2020 12:58

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 174750 on Case Narrative.

pH=2

·	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Bromodichloromethane	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
Toluene	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
Tetrachloroethylene	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
Dibromochloromethane	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
Chlorobenzene	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
Ethylbenzene	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
Bromoform	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	05/29/20	05/29/20 14:53	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	108	%	87-120	1	05/29/20	05/29/20 14:53	1011
4-Bromofluorobenzene	103	%	85-147	1	05/29/20	05/29/20 14:53	1011
Toluene-D8	99	%	88-110	1	05/29/20	05/29/20 14:53	1011

Total Suspended Solids Ana

Analytical Method: SM 2540D -2011

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Suspended Solids	ND	ma/l	1.0	1	05/29/20	05/29/20 14:3	23 1061

Biochemical Oxygen Demand

Analytical Method: SM 5210B -2011

Start time: 28-May-20 15:00

ResultUnitsRLFlagPreparedAnalyzedAnalystBiochemical Oxygen Demand, 5 dayNDmg/L5.006/02/2006/02/2014:454005

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20052809

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

20052809: Analyses associated with analyst code 4005 were performed by Enviro-Chem Laboratories, Inc., 47 Loveton Circle, Suite K, Sparks, MD 21152

Analytical:

Volatile Organics Compounds (TVO)

Batch: 174750

Method exceedance: A target analyte was detected in the method blank; Methylene Chloride was 0.39 ppb and Toluene was 0.26 ppb in method blank.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SM 5210B -2011

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20052809

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical I	Batch Prepared	Analyzed
- Tricinou		, J			F			
EPA 200.8	Effluent VSP-4	Initial	20052809-001	W	81686	174805	06/01/2020 15:11	06/01/2020 16:10
	81686-1-BKS	BKS	81686-1-BKS	W	81686	174805	06/01/2020 15:11	06/01/2020 16:05
	81686-1-BLK	BLK	81686-1-BLK	W	81686	174805	06/01/2020 15:11	06/01/2020 16:00
	Kitchen Sink S	MS	20052801-001 S	W	81686	174805	06/01/2020 15:16	06/01/2020 17:37
	Effluent VSP-4 S	MS	20052809-001 S	W	81686	174805	06/01/2020 15:11	06/01/2020 16:14
	Effluent VSP-4 SD	MSD	20052809-001 S	W	81686	174805	06/01/2020 15:11	06/01/2020 16:19
EPA 200.8	Effluent VSP-4	Initial	20052809-001	W	81687	174811	06/01/2020 15:12	06/01/2020 18:21
	81687-1-BKS	BKS	81687-1-BKS	W	81687	174811	06/01/2020 15:12	06/01/2020 18:16
	81687-1-BLK	BLK	81687-1-BLK	W	81687	174811	06/01/2020 15:12	06/01/2020 18:11
	Effluent VSP-4 S	MS	20052809-001 S	W	81687	174811	06/01/2020 15:12	06/01/2020 18:25
	Effluent VSP-4 SD	MSD	20052809-001 S	W	81687	174811	06/01/2020 15:12	06/01/2020 18:30
EPA 624.1	Effluent VSP-4	Initial	20052809-001	W	81676	174750	05/29/2020 10:19	05/29/2020 14:53
	81676-1-BKS	BKS	81676-1-BKS	W	81676	174750	05/29/2020 10:19	05/29/2020 11:52
	81676-1-BLK	BLK	81676-1-BLK	W	81676	174750	05/29/2020 10:19	05/29/2020 13:45
	Effluent VSP-4 S	MS	20052809-001 S	W	81676	174750	05/29/2020 10:19	05/29/2020 18:39
	Effluent VSP-4 SD	MSD	20052809-001 S	W	81676	174750	05/29/2020 10:19	05/29/2020 19:02
SM 2540D -2011	Effluent VSP-4	Initial	20052809-001	W	174724	174724	05/29/2020 14:23	05/29/2020 14:23
	174724-1-BLK	BLK	174724-1-BLK	W	174724	174724	05/29/2020 14:23	05/29/2020 14:23
	Basin 1 D	MD	20052805-001 D	W	174724	174724	05/29/2020 14:23	05/29/2020 14:23
SM 5210B -2011	Effluent VSP-4	Initial	20052809-001	W	175079	175079	06/02/2020 14:45	06/02/2020 14:45

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20052809

Analytical Method: SM 2540D -2011

Seg Number: 174724 Matrix: Water

MB Sample Id: 174724-1-BLK

Parameter MB LOD RL Units Flag

Suspended Solids ND 0.5000 1.000 mg/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 174805 Matrix: Water Date Prep: 06/01/20

MB Sample Id: 81686-1-BLK LCS Sample Id: 81686-1-BKS

MB **Spike** LCS LCS Limits Units **Parameter** Flag Result Result Amount %Rec Copper <1.000 40.00 42.15 105 85-115 ug/L Lead <1.000 40.00 39.85 100 85-115 ug/L Nickel <1.000 40.00 39.69 99 85-115 ug/L Zinc <20.00 200 213.6 107 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 174811 Matrix: Water Date Prep: 06/01/20

MB Sample Id: 81687-1-BLK LCS Sample Id: 81687-1-BKS

MB LCS LCS Units Limits **Spike Parameter** Flag Result Amount Result %Rec Copper <1.000 40.00 40.00 100 85-115 ug/L <1.000 40.00 38.80 85-115 Lead 97 ug/L Nickel <1.000 40.00 37.60 85-115 94 ug/L 85-115 ug/L Zinc <20.00 200 199 100

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 174805 Matrix: Waste Water Date Prep: 06/01/20

Parent Sample Id: 20052809-001 MS Sample Id: 20052809-001 S MSD Sample Id: 20052809-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Copper	2.589	40.00	43.26	102	43.15	101	70-130	1	25	ug/L	
Lead	<1.000	40.00	40.30	101	40.17	100	70-130	1	25	ug/L	
Nickel	15.79	40.00	55.95	100	54.45	97	70-130	3	25	ug/L	
Zinc	32.43	200	224.4	96	223.4	95	70-130	1	25	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20052809

Analytical Method: EPA 200.8Prep Method:E200.8_PREPSeq Number:174811Matrix:Waste WaterDate Prep:06/01/20

Parent Sample Id: 20052809-001 MS Sample Id: 20052809-001 S MSD Sample Id: 20052809-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Copper	1.232	40.00	40.18	97	40.40	98	70-130	1	25	ug/L	
Lead	<1.000	40.00	44.82	112	47.70	119	70-130	6	25	ug/L	
Nickel	14.90	40.00	52.97	95	53.52	97	70-130	2	25	ug/L	
Zinc	23.44	200	220.7	99	222.3	99	70-130	0	25	ug/L	

Analytical Method: EPA 624 .1Prep Method:E624PREPSeq Number:174750Matrix:WaterDate Prep:05/29/20

MB Sample Id: 81676-1-BLK LCS Sample Id: 81676-1-BKS

MB Sample Id. 61070)- I-DLN	_	.oo oampio	ia. 01070 i	DINO		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Dichlorodifluoromethane	<1.000	50.00	43.22	86	54-148	ug/L	
Chloromethane	<1.000	50.00	43.51	87	1-205	ug/L	
Vinyl Chloride	<1.000	50.00	44.17	88	5-195	ug/L	
Bromomethane	<1.000	50.00	47.24	94	15-185	ug/L	
Chloroethane	<1.000	50.00	43.75	88	40-160	ug/L	
Trichlorofluoromethane	<1.000	50.00	47.38	95	50-150	ug/L	
1,1-Dichloroethene	<1.000	50.00	49.70	99	50-150	ug/L	
Methylene Chloride	<1.000	50.00	47.96	96	60-140	ug/L	
trans-1,2-dichloroethene	<1.000	50.00	50.53	101	70-130	ug/L	
1,1-Dichloroethane	<1.000	50.00	50.69	101	70-130	ug/L	
Chloroform	<1.000	50.00	50.48	101	70-135	ug/L	
1,1,1-Trichloroethane	<1.000	50.00	53.93	108	70-130	ug/L	
Carbon Tetrachloride	<1.000	50.00	53.98	108	70-130	ug/L	
Benzene	<1.000	50.00	50.83	102	65-135	ug/L	
1,2-Dichloroethane	<1.000	50.00	48.63	97	70-130	ug/L	
Trichloroethene	<1.000	50.00	51.34	103	65-135	ug/L	
1,2-Dichloropropane	<1.000	50.00	51.21	102	35-165	ug/L	
Bromodichloromethane	<1.000	50.00	53.19	106	65-135	ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	51.46	103	25-175	ug/L	
Toluene	<1.000	50.00	50.80	102	70-130	ug/L	
trans-1,3-dichloropropene	<1.000	50.00	51.53	103	50-150	ug/L	
1,1,2-Trichloroethane	<1.000	50.00	50.62	101	70-130	ug/L	
Tetrachloroethylene	<1.000	50.00	52.30	105	70-130	ug/L	
Dibromochloromethane	<1.000	50.00	50.74	101	70-135	ug/L	
Chlorobenzene	<1.000	50.00	51.69	103	65-135	ug/L	
Ethylbenzene	<1.000	50.00	55.03	110	60-140	ug/L	
Bromoform	<1.000	50.00	50.54	101	70-130	ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	52.05	104	60-140	ug/L	
1,3-Dichlorobenzene	<1.000	50.00	53.92	108	70-130	ug/L	
1,4-Dichlorobenzene	<1.000	50.00	51.82	104	65-135	ug/L	
1,2-Dichlorobenzene	<1.000	50.00	53.69	107	65-135	ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units	
Dibromofluoromethane	107		104		87-120	%	
4-Bromofluorobenzene	102		100		85-147	%	
Toluene-D8	98		98		88-110	%	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20052809

Analytical Method: EPA 624 .1 Prep Method: E624PREP Seq Number: 174750 Matrix: Waste Water Date Prep: 05/29/20

MS Sample Id: 20052809-001 S MSD Sample Id: 20052809-001 SD Parent Sample Id: 20052809-001

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Dichlorodifluoromethane	<1.000	50.00	43.63	87	41.74	83	43-150	5	27	ug/L	
Chloromethane	<1.000	50.00	46.19	92	45.62	91	1-273	1	60	ug/L	
Vinyl Chloride	<1.000	50.00	45.31	91	44.84	90	1-251	1	66	ug/L	
Bromomethane	<1.000	50.00	49.16	98	46.23	92	1-242	6	61	ug/L	
Chloroethane	<1.000	50.00	46.45	93	44.47	89	14-230	4	78	ug/L	
Trichlorofluoromethane	<1.000	50.00	48.78	98	47.48	95	17-181	3	84	ug/L	
1,1-Dichloroethene	<1.000	50.00	51.00	102	49.08	98	1-234	4	32	ug/L	
Methylene Chloride	<1.000	50.00	48.37	97	47.50	95	1-221	2	28	ug/L	
trans-1,2-dichloroethene	<1.000	50.00	51.26	103	50.20	100	54-156	3	45	ug/L	
1,1-Dichloroethane	<1.000	50.00	51.77	104	50.92	102	59-155	2	40	ug/L	
Chloroform	<1.000	50.00	50.48	101	50.16	100	51-138	1	54	ug/L	
1,1,1-Trichloroethane	<1.000	50.00	55.41	111	54.43	109	52-162	2	36	ug/L	
Carbon Tetrachloride	<1.000	50.00	54.40	109	53.36	107	70-140	2	41	ug/L	
Benzene	<1.000	50.00	52.42	105	50.95	102	37-151	3	61	ug/L	
1,2-Dichloroethane	<1.000	50.00	49.55	99	49.61	99	49-155	0	49	ug/L	
Trichloroethene	<1.000	50.00	51.27	103	50.41	101	70-157	2	48	ug/L	
1,2-Dichloropropane	<1.000	50.00	51.61	103	51.01	102	1-210	1	55	ug/L	
Bromodichloromethane	<1.000	50.00	53.23	106	53.35	107	35-155	1	56	ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	49.72	99	49.12	98	1-227	1	58	ug/L	
Toluene	<1.000	50.00	53.31	107	51.17	102	47-150	5	41	ug/L	
trans-1,3-dichloropropene	<1.000	50.00	49.29	99	49.42	99	17-183	0	86	ug/L	
1,1,2-Trichloroethane	<1.000	50.00	50.63	101	51.02	102	52-150	1	45	ug/L	
Tetrachloroethylene	<1.000	50.00	52.17	104	50.89	102	64-148	2	39	ug/L	
Dibromochloromethane	<1.000	50.00	50.16	100	50.86	102	53-149	2	50	ug/L	
Chlorobenzene	<1.000	50.00	51.87	104	51.10	102	37-160	2	53	ug/L	
Ethylbenzene	<1.000	50.00	55.27	111	54.03	108	37-162	3	63	ug/L	
Bromoform	<1.000	50.00	49.31	99	50.16	100	45-169	1	42	ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	52.35	105	53.45	107	46-157	2	61	ug/L	
1,3-Dichlorobenzene	<1.000	50.00	53.05	106	52.74	105	59-156	1	43	ug/L	
1,4-Dichlorobenzene	<1.000	50.00	50.76	102	50.73	101	18-190	1	57	ug/L	
1,2-Dichlorobenzene	<1.000	50.00	53.61	107	53.78	108	18-190	1	57	ug/L	
Surrogate			MS Result	MS Flag			MSD I Flag	Limits	Units		
Dibromofluoromethane			102			102	8	37-120	%		
4-Bromofluorobenzene			100			99	8	35-147	%		
Toluene-D8			97			98	8	38-110	%		

F = RPD	exceeded the	laboratory	control	limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits L = Recovery of BS,BSD or both below the laboratory control limits

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

D	PSS CLIENT	WSP	OFFICI	E LOCATION:	Herndur	, VA	PSS Wor	rk Order	* 20	v s	786	09						PA	GE_		F_1	
	BILL TO (if o	lifferent):	PHONI	#: 703-	909-6	500	Matrix C SW=Surfa		DW=Dri	inking W	/ater	GW=Gro	und Wa	er WV	/=Wasto	e Water	0=0il	S =So	i SOL	=Solid /	A=Air	WI=Wipe
	CONTACT:	Enc Johnson	EMAIL	erk.john	son Caw	sp. can		AB	Preserv Use C	vatives Codes	HC1	HND3	ithe									Preservative Codes
-	PROJECT N	AME: KOP FLEX		PROJECT #	7		တ္က	G=GRAB	Analysi Method	is/	/		/								/:	I - HCL 2 - H ₂ SO ₄ 3 - HNO ₂
		ion: Hanover, m	D	PROJECT #	3140154	5010/04	AINER	/PE: SITE (Require 3	ed 77	3	4	4							/ /	/ '	5 - HNO ₃ 1 - NaOH 5 - E624KIT
	SAMPLER(S	Shannan Bu	rec	DW CERT #			# OF CONTAINERS	SAMPLE TYPE: C=COMPOSITE	/3	5/0	30	287	S	5/		/						6 - ICE 7 - Sodium
2	PSS ID	SAMPLE IDENTIFICATI		DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes	# OF	SAMI C=CC	Voc	100	3.5	Dawn State	3/	/								Thiosulfate 3 - Ascorbic Acid 9 - TerraCore Kit
	1	Effluent VSP-4	t	5/28/20	1200	WW	7	G	X	X	X	X	X									
																	10.00					
The state of the s																						
			5																			
		8																				
																						13.0
	Relinquished	By: (1)	Date 5/28/20	Time 1258	Received By:	1			☐ 5-D	Day		ne TA 3-Day		2-Da	у	Ice Pi	resent:	PR	EJ	-TB	21	o°C
- 11-	Relinguished		Date	Time	Received By:	- Ku				_		Emerge REPOR			r	# Coc	ody Sea	OF CO	5/17	emp: 7	281X	5.2.2
					,				MD OTI	D 🔲 D	E	PA 🗆	VA [] WV		Shipp	oing Ca	rrier:	411	F C	الساء	2.8.3
	Relinquished	By: (3)	Date	Time	Received By:	:			COMF		DE?	Spec	ial Instr	ructions	s: /	10.	da	is	SIA	AT		
-	Relinguished	Bv: (4)	Date	Time	Received By:				EDD FO		VVV YPF	Dis	ssol	ved	m	eta	215	JA	eld	7T 1-Fi	ter	ed
ľ				710	coo.voa by.							Me	tal	5 =	Ci	1, 7	b,	Ni	1	\neg		

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20052809

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 07/02/2020 Date Received 05/28/2020 12:58:00 PM **Delivered By** Client Not Applicable **Tracking No** Logged In By Thomas Wingate Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 8.3 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke **Documentation** COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 1 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 **Preservation Total Metals** (pH<2)Yes Dissolved Metals, filtered within 15 minutes of collection (pH<2) Yes Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks)

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	Themse Wight	Date: 05/28/2020	
	Thomas Wingate		

PM Review and Approval: July 7 longer

Page 11 of 11

Date: 05/28/2020

(pH<2)

Version 1.000

N/A

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20052810

June 11, 2020

Eric Johnson WSP USA - Herndon13530 Dulles Technology Dr, Ste 300
Herndon, VA 20171

Reference: PSS Project No: 20052810

Project Name: Kop Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20052810**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on July 2, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20052810

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 05/28/2020 at 12:58 pm

PSS Sample ID	Sample ID	Matrix Date/Time Collected
20052810-001	Effluent VSP-4	WASTE WATER 05/28/20 12:00
20052810-002	TB-052820	WATER 05/28/20 11:06

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- If the target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20052810

Sample ID: Effluent VSP-4 Date/Time Sampled: 05/28/2020 12:00 PSS Sample ID: 20052810-001

Matrix: WASTE WATER Date/Time Received: 05/28/2020 12:58

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL Fla	g Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	06/11/20	06/11/20 13:50	0 1011
Surrogate(s)	Recovery		Limits				
Toluene-D8	99	%	80-120	1	06/11/20	06/11/20 13:5	0 1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20052810

Sample ID: TB-052820 Date/Time Sampled: 05/28/2020 11:06 PSS Sample ID: 20052810-002

Matrix: WATER Date/Time Received: 05/28/2020 12:58

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 174750 on Case Narrative.

pH=2

pH=2							
·	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Chloromethane	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Vinyl Chloride	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Bromomethane	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Chloroethane	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Trichlorofluoromethane	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
1,1-Dichloroethene	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Methylene Chloride	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
1,1-Dichloroethane	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Chloroform	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Carbon Tetrachloride	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Benzene	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
1,2-Dichloroethane	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Trichloroethene	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
1,2-Dichloropropane	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Bromodichloromethane	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Toluene	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Tetrachloroethylene	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Dibromochloromethane	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Chlorobenzene	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Ethylbenzene	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Bromoform	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	•	05/29/20	05/29/20 14:31	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	107	%	87-120		1 05/29/20	05/29/20 14:31	1011
4-Bromofluorobenzene	100	%	85-147		1 05/29/20	05/29/20 14:31	1011
Toluene-D8	98	%	88-110		1 05/29/20	05/29/20 14:31	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20052810

Sample ID: TB-052820 Date/Time Sampled: 05/28/2020 11:06 PSS Sample ID: 20052810-002

Matrix: WATER Date/Time Received: 05/28/2020 12:58

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL FI	ag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	06/11/20	06/11/20 13:2	8 1011
Surrogate(s)	Recovery		Limits				
Toluene-D8	100	%	80-120	1	06/11/20	06/11/20 13:2	8 1011

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20052810

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Analytical:

Volatile Organics Compounds (TVO)

Batch: 174750

Method exceedance: A target analyte was detected in the method blank; Methylene Chloride was 0.39 ppb and Toluene was 0.26 ppb in method blank.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20052810

Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Ba	tch Prepared	Analyzed
TB-052820	Initial	20052810-002	W	81676	174750	05/29/2020 10:19	05/29/2020 14:31
81676-1-BKS	BKS	81676-1-BKS	W	81676	174750	05/29/2020 10:19	05/29/2020 11:52
81676-1-BLK	BLK	81676-1-BLK	W	81676	174750	05/29/2020 10:19	05/29/2020 13:45
Effluent VSP-4 S	MS	20052809-001 S	W	81676	174750	05/29/2020 10:19	05/29/2020 18:39
Effluent VSP-4 SD	MSD	20052809-001 S	W	81676	174750	05/29/2020 10:19	05/29/2020 19:02
Effluent VSP-4	Initial	20052810-001	W	81841	175110	06/11/2020 07:07	06/11/2020 13:50
TB-052820	Initial	20052810-002	W	81841	175110	06/11/2020 07:07	06/11/2020 13:28
81841-1-BKS	BKS	81841-1-BKS	W	81841	175110	06/11/2020 07:07	06/11/2020 11:59
81841-1-BLK	BLK	81841-1-BLK	W	81841	175110	06/11/2020 07:07	06/11/2020 13:06
81841-1-BSD	BSD	81841-1-BSD	W	81841	175110	06/11/2020 07:07	06/11/2020 12:21
	TB-052820 81676-1-BKS 81676-1-BLK Effluent VSP-4 S Effluent VSP-4 SD Effluent VSP-4 TB-052820 81841-1-BKS 81841-1-BLK	TB-052820 Initial 81676-1-BKS BKS 81676-1-BLK BLK Effluent VSP-4 S MS Effluent VSP-4 SD MSD Effluent VSP-4 Initial TB-052820 Initial 81841-1-BKS BKS 81841-1-BLK BLK	TB-052820 Initial 20052810-002 81676-1-BKS BKS 81676-1-BKS 81676-1-BLK BLK 81676-1-BLK Effluent VSP-4 S MS 20052809-001 S Effluent VSP-4 Initial 20052810-001 TB-052820 Initial 20052810-002 81841-1-BKS BKS 81841-1-BKS 81841-1-BLK BLK 81841-1-BLK	TB-052820 Initial 20052810-002 W 81676-1-BKS BKS 81676-1-BKS W 81676-1-BLK BLK 81676-1-BLK W Effluent VSP-4 S MS 20052809-001 S W Effluent VSP-4 Initial 20052810-001 W TB-052820 Initial 20052810-002 W 81841-1-BKS BKS 81841-1-BKS W 81841-1-BLK BLK 81841-1-BLK W	TB-052820 Initial 20052810-002 W 81676 81676-1-BKS BKS 81676-1-BKS W 81676 81676-1-BLK BLK 81676-1-BLK W 81676 Effluent VSP-4 S MS 20052809-001 S W 81676 Effluent VSP-4 SD MSD 20052809-001 S W 81676 Effluent VSP-4 Initial 20052810-001 W 81841 TB-052820 Initial 20052810-002 W 81841 81841-1-BKS BKS 81841-1-BKS W 81841 81841-1-BLK BLK 81841-1-BLK W 81841	TB-052820 Initial 20052810-002 W 81676 174750 81676-1-BKS BKS 81676-1-BKS W 81676 174750 81676-1-BLK BLK 81676-1-BLK W 81676 174750 Effluent VSP-4 S MS 20052809-001 S W 81676 174750 Effluent VSP-4 SD MSD 20052809-001 S W 81676 174750 Effluent VSP-4 Initial 20052810-001 W 81841 175110 TB-052820 Initial 20052810-002 W 81841 175110 81841-1-BKS BKS 81841-1-BKS W 81841 175110	TB-052820 Initial 20052810-002 W 81676 174750 05/29/2020 10:19 81676-1-BKS BKS 81676-1-BKS W 81676 174750 05/29/2020 10:19 81676-1-BLK BLK 81676-1-BLK W 81676 174750 05/29/2020 10:19 Effluent VSP-4 S MS 20052809-001 S W 81676 174750 05/29/2020 10:19 Effluent VSP-4 SD MSD 20052809-001 S W 81676 174750 05/29/2020 10:19 Effluent VSP-4 Initial 20052810-001 W 81841 175110 06/11/2020 07:07 TB-052820 Initial 20052810-002 W 81841 175110 06/11/2020 07:07 81841-1-BKS BKS 81841-1-BKS W 81841 175110 06/11/2020 07:07

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20052810

Analytical Method: EPA 624 .1

Seq Number: 174750 Matrix: Water Prep Method: E624PREP

Date Prep: 05/29/20

MB Sample Id: 81676-1-BLK LCS Sample Id: 81676-1-BKS

IVID Sample Id.	010/0-1-DLK	_	.co campie	iu. 0107	0-1-DIO			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethar	ne <1.000	50.00	43.22	86	54-148		ug/L	
Chloromethane	<1.000	50.00	43.51	87	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	44.17	88	5-195		ug/L	
Bromomethane	<1.000	50.00	47.24	94	15-185		ug/L	
Chloroethane	<1.000	50.00	43.75	88	40-160		ug/L	
Trichlorofluoromethane	e <1.000	50.00	47.38	95	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	49.70	99	50-150		ug/L	
Methylene Chloride	<1.000	50.00	47.96	96	60-140		ug/L	
trans-1,2-dichloroether	ne <1.000	50.00	50.53	101	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	50.69	101	70-130		ug/L	
Chloroform	<1.000	50.00	50.48	101	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	53.93	108	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	53.98	108	70-130		ug/L	
Benzene	<1.000	50.00	50.83	102	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	48.63	97	70-130		ug/L	
Trichloroethene	<1.000	50.00	51.34	103	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	51.21	102	35-165		ug/L	
Bromodichloromethan	e <1.000	50.00	53.19	106	65-135		ug/L	
cis-1,3-Dichloropropen	ne <1.000	50.00	51.46	103	25-175		ug/L	
Toluene	<1.000	50.00	50.80	102	70-130		ug/L	
trans-1,3-dichloroprope	ene <1.000	50.00	51.53	103	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	50.62	101	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	52.30	105	70-130		ug/L	
Dibromochloromethan	e <1.000	50.00	50.74	101	70-135		ug/L	
Chlorobenzene	<1.000	50.00	51.69	103	65-135		ug/L	
Ethylbenzene	<1.000	50.00	55.03	110	60-140		ug/L	
Bromoform	<1.000	50.00	50.54	101	70-130		ug/L	
1,1,2,2-Tetrachloroeth	ane <1.000	50.00	52.05	104	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	53.92	108	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	51.82	104	65-135	65-135		
1,2-Dichlorobenzene	<1.000	50.00	53.69	107	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	e 107		104		87-120	%		
4-Bromofluorobenzene	e 102		100		85-147	%		
Toluene-D8	98		98		88-110	%		

Analytical Method: SW-846 8260 B-ModifiedPrep Method:SW5030BSeq Number:175110Matrix:WaterDate Prep:06/11/20MB Sample Id:81841-1-BLKLCS Sample Id:81841-1-BKSLCSD Sample Id:81841-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxane)	<1.000	30.00	29.31	98	31.29	104	50-150	6	20	ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS t Flag			-CSD Flag	Limits	Units		
Toluene-D8	98		98			101		80-120	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20052810

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

D	PSS CLIENT	WSP	OFFICE	LOCATION:	Herndon	, VA	PSS Wor	rk Order #	2	WS	28	10						PAC	BE	OF	
	BILL TO (if d	ifferent):	PHONE	#: 703 -	709-63	OO	Matrix C SW=Surfa		DW=Drir	nking Wa	ater G	≅W=Gro∟	und Wate	er WW	=Waste	Water	0 =0il	S=Soil	SOL=	Solid A=	Air WI≕Wipe
	CONTACT:	Eric Johnson	EMAIL:		nnson@			AB	Preserva Use Co	atives odes	HEI	Hei									Preservative Codes
No.	PROJECT N	AME: KOP PLEX		PROJECT#	314015451	010/04	ပ္တ	G=GRAB	Use Codes Analysis/ Method Required 3							/ / / /				1 - HCL 2 - H ₂ SO ₄ 3 - HNO ₂	
		SITE LOCATION: Hanover MD P.O. #:			AINEF	YPE: SITE	3	Required 3			7 / / / /				4 - NaOH 5 - E624KII			4 - NaOH 5 - E624KIT			
	SAMPLER(S	SAMPLER(S): Shannan Bunce DW CERT #:				# OF CONTAINERS	PLE T	25/5/		/ / / / /			' / / / /				6 - ICE 7 - Sodium Thiosulfate				
0	PSS ID	SAMPLE IDENTI		DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes		SAM C=C	15/	13											8 - Ascorbic Acid 9 - TerraCore Kit
	1	Effluent V	15P-4	5/28/20	1200	WW	3	6	X												
	2	TB-0528	20				4	-	X	X										Top	blank
-																					
																	· .				
			r																		
								(2													
0	Relinquished	By: (1) Bules	Date 5/28/20	Time	Received By		<i></i>		☐ 5-D	ay		ne TAT 3-Day		2-Day	/		esent: dy Sea	70	les	TB	-2.600
9	Relinquished		Date	Time	Received By:					RESUL	LTS R	EPORT	ED TO	:		# Coo		1	معرو Te	mp: 8.	19-4.32
									MD OTH							Shipp	ing Ca	rrier: (2 lie	بل.	
The same of	Relinquished	l By: (3)	Date	Time	Received By:				COMP		1	Specia			:						
The same of	Relinquished	l By: (4)	Date	Time	Received By:				EDD FOR			Ut	Vin	904	d	(() -0	46	1	7A-7	

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20052810

Client Name WSP USA - Herndon Received By Thomas Wingate

Delivered By Client

Tracking No Not Applicable

Logged In By Thomas Wingate

Shipping Container(s)

No. of Coolers 1

		ice	FIESEIII
Custody Seal(s) Intact?	Yes	Temp (deg C)	9.3
Seal(s) Signed / Dated?	Yes	Temp Blank Present	Yes

DocumentationSampler NameShannon BurkeCOC agrees with sample labels?YesMD DW Cert. No.N/A

Chain of Custody Yes

Sample Container Custody Seal(s) Intact? Not Applicable

Appropriate for Specified Analysis?

Yes

Seal(s) Signed / Dated Not Applicable
Yes

Labeled and Labels Legible? Yes

Holding Time Total No. of Samples Received 2

All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7

Preservation

100011411011		
Total Metals	(pH<2)	N/A
Dissolved Metals, filtered within 15 minutes of collection	(pH<2)	N/A
Orthophosphorus, filtered within 15 minutes of collection		N/A
Cyanides	(pH>12)	N/A
Sulfide	(pH>9)	N/A
TOC, DOC (field filtered), COD, Phenols	(pH<2)	N/A
TOX, TKN, NH3, Total Phos	(pH<2)	N/A
VOC, BTEX (VOA Vials Rcvd Preserved)	(pH<2)	Yes
Do VOA vials have zero headspace?		Yes
624 VOC (Rcvd at least one unpreserved VOA vial)		No
524 VOC (Rcvd with trip blanks)	(pH<2)	N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	Time Monte	Date: 05/28/2020
	Thomas Wingate	

PM Review and Approval: July 7 loger

Amber Confer
Page 11 of 11

Date: 05/28/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062912

July 14, 2020

Eric Johnson WSP USA - Herndon13530 Dulles Technology Dr, Ste 300
Herndon, VA 20171

Reference: PSS Project No: 20062912

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 20062912.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on August 3, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062912

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 06/29/2020 at 12:55 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20062912-001	Effluent VSP-4	WASTE WATER	06/29/20 11:30	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062912

Sample ID: Effluent VSP-4 Date/Time Sampled: 06/29/2020 11:30 PSS Sample ID: 20062912-001

Matrix: WASTE WATER Date/Time Received: 06/29/2020 12:55

Dissolved Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

Qualifier(s): See Sample Receipt section on Case Narrative. See Batch 175863 on Case Narrative.

_	Result	Units	RL Flag	RL Flag Dil Prepared A		Analyzed	Analyst
Copper	ND	ug/L	1.0	1	07/06/20	07/09/20 00:40	1064
Lead	ND	ug/L	1.0	1	07/06/20	07/09/20 00:40	1064
Nickel	14.8	ug/L	1.00	1	07/06/20	07/09/20 00:40	1064
Zinc	24.3	ug/L	20.0	1	07/06/20	07/09/20 00:40	1064

Total Metals + Hardness Analytical Method: EPA 200.8 Preparation Method: 200.8

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Copper	5.5	ug/L	1.0	1	06/30/20	07/06/20 14:25	5 1064
Lead	ND	ug/L	1.0	1	06/30/20	07/01/20 00:42	2 1064
Nickel	14.5	ug/L	1.00	1	06/30/20	07/01/20 00:42	2 1064
Zinc	29.1	ug/L	20.0	1	06/30/20	07/01/20 00:42	2 1064
Hardness (Ca & Mg)	19.0	mg/L	0.660	1	06/30/20	07/01/20 00:42	2 1064

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Sample Receipt section on Case Narrative. See Batch 175653 on Case Narrative.

pH=2

<i></i> _	Result	Units	RL FI	ag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	06/30/20 0	06/30/20 19:16	1011
Chloromethane	ND	ug/L	1.0	1	06/30/20 0	6/30/20 19:16	1011
Vinyl Chloride	ND	ug/L	1.0	1	06/30/20 0	6/30/20 19:16	1011
Bromomethane	ND	ug/L	1.0	1	06/30/20 0	6/30/20 19:16	1011
Chloroethane	ND	ug/L	1.0	1	06/30/20 0	6/30/20 19:16	1011
Trichlorofluoromethane	ND	ug/L	1.0	1	06/30/20 0	6/30/20 19:16	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	06/30/20 0	6/30/20 19:16	1011
Methylene Chloride	ND	ug/L	1.0	1	06/30/20 0	06/30/20 19:16	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	06/30/20 0	06/30/20 19:16	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	06/30/20 0	06/30/20 19:16	1011
Chloroform	ND	ug/L	1.0	1	06/30/20 0	06/30/20 19:16	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	06/30/20 0	6/30/20 19:16	1011
Carbon Tetrachloride	ND	ug/L	1.0	1	06/30/20 0	06/30/20 19:16	1011
Benzene	ND	ug/L	1.0	1	06/30/20 0	06/30/20 19:16	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	06/30/20 0	06/30/20 19:16	1011
Trichloroethene	ND	ug/L	1.0	1	06/30/20 0	6/30/20 19:16	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	06/30/20 0	6/30/20 19:16	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062912

Sample ID: Effluent VSP-4 Date/Time Sampled: 06/29/2020 11:30 PSS Sample ID: 20062912-001

Matrix: WASTE WATER Date/Time Received: 06/29/2020 12:55

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Sample Receipt section on Case Narrative. See Batch 175653 on Case Narrative.

pH=2

p::		11.34		F1	5		
_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Bromodichloromethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
Toluene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
Tetrachloroethylene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
Dibromochloromethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
Chlorobenzene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
Ethylbenzene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
Bromoform	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:16	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	106	%	87-120	1	06/30/20	06/30/20 19:16	1011
4-Bromofluorobenzene	95	%	85-147	1	06/30/20	06/30/20 19:16	1011
Toluene-D8	101	%	88-110	1	06/30/20	06/30/20 19:16	1011

Total Suspended Solids Analytical Method: SM 2540D -2011

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Suspended Solids	ND	ma/l	1.0	1	07/01/20	07/01/20 10:0	00 1064

Biochemical Oxygen Demand Analytical Method: SM 5210B -2011

Start time: 01-Jul-20 09:10

_	Result	Units	RL Flag	Prepared	Analyzed	Analyst
Biochemical Oxygen Demand, 5 day	ND	ma/l	5.0	07/06/20	07/06/20 09:1	10 4005

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20062912

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

20062912: Analyses associated with analyst code 4005 were performed by Enviro-Chem Laboratories, Inc., 47 Loveton Circle, Suite K, Sparks, MD 21152

Analytical:

Dissolved Metals

Batch: 175863

Method exceedance: Laboratory control sample (LCS) exceedances identified, matrix spike/ matrix spike duplicate samples meet LCS criteria; see QC summary form.

Analytical:

Volatile Organics Compounds (TVO)

Batch: 175653

Method exceedance: A target analyte was detected in the method blank; Tetrachloroethene was 0.47 ppb in method blank.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SM 5210B -2011

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062912

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Pren Ratch	Analytical 1	Batch Prepared	Analyzed
Withou	Chefit Bumple 1B	y	1 55 Sumple 1D	IVILA	тер висп	7 Harytrear 1	Butch Trepured	
EPA 200.8	Effluent VSP-4	Initial	20062912-001	W	82094	175693	06/30/2020 14:26	07/01/2020 00:42
	82094-1-BKS	BKS	82094-1-BKS	W	82094	175693	06/30/2020 14:26	06/30/2020 23:36
	82094-1-BLK	BLK	82094-1-BLK	W	82094	175693	06/30/2020 14:26	06/30/2020 23:31
	001A S	MS	20062604-001 S	W	82094	175693	06/30/2020 14:26	06/30/2020 23:45
	001A SD	MSD	20062604-001 S	W	82094	175693	06/30/2020 14:26	07/01/2020 00:18
	82094-1-BKS	Reanalysis	82094-1-BKS	W	82094	175749	06/30/2020 14:26	07/01/2020 22:44
	82094-1-BLK	Reanalysis	82094-1-BLK	W	82094	175749	06/30/2020 14:26	07/01/2020 22:39
	001A S	Reanalysis	20062604-001 S	W	82094	175749	06/30/2020 14:26	07/01/2020 22:54
	001A SD	Reanalysis	20062604-001 S	W	82094	175749	06/30/2020 14:26	07/01/2020 22:59
	82094-1-BKS	Reanalysis	82094-1-BKS	W	82094	175768	06/30/2020 14:26	07/06/2020 14:15
	82094-1-BLK	Reanalysis	82094-1-BLK	W	82094	175768	06/30/2020 14:26	07/06/2020 14:05
	Effluent VSP-4	Reanalysis	20062912-001	W	82094	175996	06/30/2020 14:26	07/06/2020 14:25
EPA 200.8	Effluent VSP-4	Initial	20062912-001	W	82146	175863	07/06/2020 11:49	07/09/2020 00:40
	82146-1-BKS	BKS	82146-1-BKS	W	82146	175863	07/06/2020 11:49	07/09/2020 00:35
	82146-1-BLK	BLK	82146-1-BLK	W	82146	175863	07/06/2020 11:49	07/09/2020 00:25
	Effluent VSP-4 S	MS	20062912-001 S	W	82146	175863	07/06/2020 11:49	07/09/2020 01:06
	Effluent VSP-4 SD	MSD	20062912-001 S	W	82146	175863	07/06/2020 11:49	07/09/2020 01:11
EPA 624.1	Effluent VSP-4	Initial	20062912-001	W	82100	175653	06/30/2020 11:35	06/30/2020 19:16
	82100-1-BKS	BKS	82100-1-BKS	W	82100	175653	06/30/2020 11:35	06/30/2020 12:29
	82100-1-BLK	BLK	82100-1-BLK	W	82100	175653	06/30/2020 11:35	06/30/2020 14:22
	12914-Eff-6/20 S	MS	20062611-001 S	W	82100	175653	06/30/2020 11:35	06/30/2020 22:18
	12914-Eff-6/20 SD	MSD	20062611-001 S	W	82100	175653	06/30/2020 11:35	06/30/2020 22:40
SM 2540D -2011	Effluent VSP-4	Initial	20062912-001	W	175618	175618	07/01/2020 10:00	07/01/2020 10:00
	175618-1-BLK	BLK	175618-1-BLK	W	175618	175618	07/01/2020 10:00	07/01/2020 10:00
	13831-EFF-06/20 D	MD	20062610-001 D	W	175618	175618	07/01/2020 10:00	07/01/2020 10:00
SM 5210B -2011	Effluent VSP-4	Initial	20062912-001	W	175986	175986	07/06/2020 09:10	07/06/2020 09:10

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20062912

Analytical Method: SM 2540D -2011

Seq Number: 175618 Matrix: Water

MB Sample Id: 175618-1-BLK

Parameter MB LOD RL Units Flag

Suspended Solids ND 0.5000 1.000 mg/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 175693 Matrix: Water Date Prep: 06/30/20

MB Sample Id: 82094-1-BLK LCS Sample Id: 82094-1-BKS

MB **LCS** LCS Limits **Units Spike Parameter** Flag Result **Amount** Result %Rec Lead <1.000 40.00 39.35 98 85-115 ug/L Nickel <1.000 40.00 38.63 97 85-115 ug/L Zinc <20.00 200 220.5 110 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 175768 Matrix: Water Date Prep: 06/30/20

MB Sample Id: 82094-1-BLK LCS Sample Id: 82094-1-BKS

Parameter MB Spike LCS LCS Limits Units Flag
Result Amount Result %Rec

Copper <1.000 40.00 43.34 108 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 175863 Matrix: Water Date Prep: 07/06/20

MB Sample Id: 82146-1-BLK LCS Sample Id: 82146-1-BKS

LCS MB **Spike** LCS Limits **Units Parameter** Flag Result Amount Result %Rec <1.000 40.00 38.87 85-115 ug/L Copper 97 Lead <1.000 40.00 42.72 107 85-115 ug/L Nickel <1.000 40.00 41.00 103 85-115 ug/L Zinc <20.00 200 233.1 85-115 ug/L Н 117

Analytical Method: EPA 200.8

Seq Number: 175863

Matrix: Waste Water

Prep Method: E200.8_PREP

Date Prep: 07/06/20

Matrix. Value Value Date 119. 0700/20

Parent Sample Id: 20062912-001 MS Sample Id: 20062912-001 S MSD Sample Id: 20062912-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Copper	<1.000	40.00	42.19	105	42.33	106	70-130	1	25	ug/L	
Lead	<1.000	40.00	42.56	106	42.27	106	70-130	0	25	ug/L	
Nickel	14.81	40.00	56.02	103	56.31	104	70-130	1	25	ug/L	
Zinc	24.32	200	237.4	107	238.5	107	70-130	0	25	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20062912

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP Seq Number: 175768 Matrix: Water Date Prep: 06/30/20

REBLK Sample Id: 82094-1-BLK LCS Sample Id: 82094-1-BKS

Parameter	REBLK Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units Flag
Lead	<1.000	40.00	43.95	110	85-115	ug/L
Nickel	<1.000	40.00	41.40	104	85-115	ug/L
Zinc	<20.00	200	206.6	103	85-115	ug/L

Analytical Method: EPA 624 .1Prep Method:E624PREPSeq Number:175653Matrix:WaterDate Prep:06/30/20

MB Sample Id: 82100-1-BLK LCS Sample Id: 82100-1-BKS

MB Sample Id:	82100-1-BLK	_	Co Sample	; iu. 02 i	00-1-BK3			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluorometha	ne <1.000	50.00	59.03	118	54-148		ug/L	
Chloromethane	<1.000	50.00	45.38	91	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	45.36	91	5-195		ug/L	
Bromomethane	<1.000	50.00	43.10	86	15-185		ug/L	
Chloroethane	<1.000	50.00	37.99	76	40-160		ug/L	
Trichlorofluoromethane	e <1.000	50.00	42.27	85	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	42.44	85	50-150		ug/L	
Methylene Chloride	<1.000	50.00	40.95	82	60-140		ug/L	
trans-1,2-dichloroether	ne <1.000	50.00	42.31	85	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	38.10	76	70-130		ug/L	
Chloroform	<1.000	50.00	42.45	85	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	45.83	92	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	47.49	95	70-130		ug/L	
Benzene	<1.000	50.00	45.29	91	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	45.06	90	70-130		ug/L	
Trichloroethene	<1.000	50.00	45.11	90	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	44.88	90	35-165		ug/L	
Bromodichloromethan	e <1.000	50.00	49.50	99	65-135		ug/L	
cis-1,3-Dichloroproper	ne <1.000	50.00	47.60	95	25-175		ug/L	
Toluene	<1.000	50.00	45.65	91	70-130		ug/L	
trans-1,3-dichloroprop	ene <1.000	50.00	47.42	95	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	45.87	92	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	48.82	98	70-130		ug/L	
Dibromochloromethan	e <1.000	50.00	50.66	101	70-135		ug/L	
Chlorobenzene	<1.000	50.00	44.96	90	65-135		ug/L	
Ethylbenzene	<1.000	50.00	46.91	94	60-140		ug/L	
Bromoform	<1.000	50.00	46.38	93	70-130		ug/L	
1,1,2,2-Tetrachloroeth	ane <1.000	50.00	41.67	83	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	44.53	89	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	45.00	90	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	44.63	89	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	e 106		98		87-120	%		
4-Bromofluorobenzene	e 96		94		85-147	%		
Toluene-D8	102		100		88-110	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20062912

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

Relinquished	d By: (4)	D	ate	Time	Received By:				EDD FO	RMAT T	YPE	Sta	and	lard	10	-do	1	Ti	4 T		
Relinquished	d By: (3)	C	ate	Time	Received By		20			PLIANC		Met	qis		u, P	b, N	1,7	n			
Relinquished			Pate	Time	Received By				OT	HER_	E 🔲	EPORT	VA 🗆) WV	#	Coolers:	4	千	Temp 144	2.6-	3.52
	Bull		1/29/20	1255	Lu	In								2-Day Other		ustody S	eal:	يادي.	-Int	ted .	
Relinquished			ate	Time	Received By	11	7		Requ	ested 1	TAT (O	ne TAT	per C	OC)	11391	e Preser		PPE	5 7	D: 4. (, પ
								7													
			,														-	-			
				<u> </u>							. 20				-	4		-			The state of the s
																			1		
	A STATE OF THE STA															-	,	+			- 4
(Effluent	VSP-4	-	6/29/20	1130	ww	7	G	X	X	X	X	X		-		1	-			metals Hered
PSS ID	SAMPLE	E IDENTIFICATIO	N	DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes	_		30	10	1/4	138	10	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	//	/	/	/		. ,	8 - Ascorbic Acid 9 - TerraCore Kit
SAMPLER(s): Shannon	Burke		DW CERT #			# OF CONTAINERS	SAMPLE TYPE: C=COMPOSITE	/.	S (ER)	3/2	5/	25/	339		/	/		//		6 - ICE 7 - Sodium Thiosulfate
	TION: Hanover			P.O. #	:	10	AINER	PE:	Requir	red &	3/		50	10 mg	//	/ /	1	/	//	/	3 - HNO ₃ 4 - NaOH 5 - E624KIT
	NAME: KOP-P			PROJECT #	:340194	5,010/04	0	G=GRAB	Analys	200		/	Z	7	- 1	1	/	7	1	//	1 - HCL 2 - H,SO,
CONTACT:	Eric Johns	son		ericjohr			3W-00118		Prese		HCI	dw=dio		HNO2	HNO	itei U=) S=	-5011	30L=30III	M=AII	WI=Wipe Preservative Codes
BILL TO (if				E#: 703			Matrix C	codes:					und Wat	or WW	-Manto M	otor O-			SOL=Solid	6	
PSS CLIEN	T WSP		OFFIC	E LOCATION:	Herndo	n, VA	PSS Wo	rk Order	#: 20	0062	915	2	Bill I				,	PAGI	= 1	OF	

This chain of custody is a legal document. The client (PSS Client), by signing, or having client's agent sign, this "Chain of Custody Form", agrees to pay for the above requested services per the latest version of the Service Brochure of PSS-provided quotational quotational attorney's or others reasonable fees if collection becomes necessary.

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062912

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 08/03/2020 06/29/2020 12:55:00 PM Date Received **Delivered By** Client Not Applicable **Tracking No** Logged In By Thomas Wingate Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? N/A Temp (deg C) 3.5 N/A Temp Blank Present Yes Seal(s) Signed / Dated? Sampler Name Shannon Burke Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 **Preservation Total Metals** (pH<2)Yes Dissolved Metals, filtered within 15 minutes of collection (pH<2) Yes Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	The Winde	Date: 06/29/2020	
	Thomas Wingate		

PM Review and Approval: July 7 loge

Amber Confer Page 11 of 11 Date: 06/29/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062913

July 14, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20062913

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20062913**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on August 3, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062913

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 06/29/2020 at 12:55 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20062913-001	Effluent VSP-4	WASTE WATER	06/29/20 11:30	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303

Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062913

Sample ID: Effluent VSP-4

Matrix: WASTE WATER

Date/Time Sampled: 06/29/2020 11:30 PSS Sample ID: 20062913-001

Date/Time Received: 06/29/2020 12:55

Analytical Method: EPA 1664 B

Result Units RL Flag Dil Prepared Analyzed Analyst

Oil & Grease, Total Recovered ND mg/L 2.3 1 07/01/20 07/01/20 11:15 1022

Nitrogen, Ammonia Analytical Method: SM 4500-NH3-F -2011 Preparation Method: SM4500-NH3B

 Result
 Units
 RL
 Flag
 Dil
 Prepared
 Analyzed
 Analyst

 Nitrogen, Ammonia (as N)
 ND
 mg/L
 0.20
 1
 07/01/20
 07/01/20 12:24
 1053

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20062913

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062913

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Bate	ch Prepared	Analyzed
EPA 1664 B	Effluent VSP-4	Initial	20062913-001	W	175654	175654	07/01/2020 11:15	07/01/2020 11:15
	175654-1-BKS	BKS	175654-1-BKS	W	175654	175654	07/01/2020 11:15	07/01/2020 11:15
	175654-1-BLK	BLK	175654-1-BLK	W	175654	175654	07/01/2020 11:15	07/01/2020 11:15
	175654-1-BSD	BSD	175654-1-BSD	W	175654	175654	07/01/2020 11:15	07/01/2020 11:15
SM 4500-NH3-F -	Effluent VSP-4	Initial	20062913-001	W	82102	175670	07/01/2020 09:39	07/01/2020 12:24
2011	82102-1-BKS	BKS	82102-1-BKS	W	82102	175670	07/01/2020 09:39	07/01/2020 12:16
	82102-1-BLK	BLK	82102-1-BLK	W	82102	175670	07/01/2020 09:39	07/01/2020 12:12
	82102-1-BSD	BSD	82102-1-BSD	W	82102	175670	07/01/2020 09:39	07/01/2020 12:20
	Effluent VSP-4 S	MS	20062913-001 S	W	82102	175670	07/01/2020 09:39	07/01/2020 12:28
	Effluent VSP-4 SD	MSD	20062913-001 S	W	82102	175670	07/01/2020 09:39	07/01/2020 12:32

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

SM4500-NH3B

SM4500-NH3B

Project Name Kop-Flex PSS Project No.: 20062913

Analytical Method: EPA 1664 B

Seq Number: 175654 Matrix: Water

MB Sample Id: 175654-1-BLK LCS Sample Id: 175654-1-BKS LCSD Sample Id: 175654-1-BSD

LCS LCS **RPD** MB Spike **LCSD LCSD** Limits %RPD Units **Parameter** Flag Result %Rec Limit Result **Amount** %Rec Result

Oil & Grease, Total Recovered <2.000 40.00 38.50 96 38.60 97 78-114 1 11 mg/L

Analytical Method: SM 4500-NH3-F -2011

 Seq Number:
 175670
 Matrix:
 Water
 Date Prep:
 07/01/20

 MB Sample Id:
 82102-1-BLK
 LCS Sample Id:
 82102-1-BKS
 LCSD Sample Id:
 82102-1-BSD

MB **LCS** LCS %RPD **RPD** Units **Spike** LCSD **LCSD** Limits Flag **Parameter** Limit Result Amount Result %Rec Result %Rec Nitrogen, Ammonia (as N) < 0.2000 2.500 2.405 96 2.380 95 85-115 1 20 mg/L

Analytical Method: SM 4500-NH3-F -2011

Seq Number: 175670 Matrix: Waste Water Date Prep: 07/01/20

Parent Sample Id: 20062913-001 MS Sample Id: 20062913-001 S MSD Sample Id: 20062913-001 SD

%RPD RPD MS MS Units **Parent Spike** MSD **MSD** Limits **Parameter** Flag Amount Result %Rec Limit Result Result %Rec Nitrogen, Ammonia (as N) < 0.2000 2.500 2.575 103 2.515 101 80-120 2 20 mg/L

Prep Method:

Prep Method:

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

BILL TO (if different): PHONE #: 703-709 - 6500 Matrix Codes: SW=Surface Water DW=Ground Water WW=Waste Water 0=0il S=Soil SOL=Solid A=Air WI=N CONTACT: Enc Johnson EMAIL: enc. johnson@wsp.com PROJECT NAME: KOP - Flex PROJECT #: 3 HOLSUS.GIO JOY SITE LOCATION: Handver, MD P.O. #: SAMPLER(S): Shavron Gwrsp. com PROJECT #: 3 HOLSUS.GIO JOY PO. #: SAMPLER(S): Shavron Gwrsp. com DW CERT #: BE GO W=Ground Water WW=Waste Water 0=0il S=Soil SOL=Solid A=Air WI=N CONTACT: WW=Waste Wa	PSS CLIENT	" WSP	OFFIC	E LOCATION:	Hernda	on, VA	PSS Wo	ork Order	#: 20	206	29.	13					PAC	GE_	OF	1	
PROJECT NAME: KOP - FLEX PROJECT #: 3 HOLSUS.CIO JOY SITE LOCATION: HANDVEY, MD P.O. #: SAMPLER(S): SNAWYON BUYED DW CERT #: PSS ID SAMPLE IDENTIFICATION DATE SAMPLED SAMPLED Use Codes ### Preservatives Use Codes	BILL TO (if d	different):					Matrix (Codes:					nd Water	WW=Wa	iste Water	0 =0il				E TO	Wipe
SITE LOCATION: HONOVEY, MD PO. #: SAMPLER(S): SNOVYON BUYE DW CERT #: PSS ID SAMPLE IDENTIFICATION DATE SAMPLED SAMPLED Use Codes # 50 Ten	CONTACT:	Eric Johnson	EMAIL	eric, john	recon@us	p.com			Preser	vatives	H.SQ.	H.SQ								Pres	servative Codes
SITE LOCATION: HONOVEY, MD PO. #: SAMPLER(S): SNOWYON BUYE DW CERT #: PSS ID SAMPLE IDENTIFICATION DATE SAMPLED SAMPLED USE COdes ### MATRIX USE CODES	PROJECT N	IAME: KOP - Flex		PROJECT #	#: 3 HOISUS.	010/04	l _s	=GR/	Analys Metho	d /	SIL	1	7	1	//	1	7	1	1	71 - HC 2 - H,S	EL SO,
SAMPLER(S): Shawron Burke Dw Cert #: PSS ID SAMPLE IDENTIFICATION DATE SAMPLED SAMPLED USE Codes # 80			D O	P.O. #	t:		INER	E G	Requir	ed of	35	(a)	//	/ /		/	/		//	4 - Na	OH
PSS ID SAMPLE IDENTIFICATION DATE SAMPLED WATRIX Use Codes SAMPLED SAMPLED SAMPLED WW Z GI STEP SAMPLED SAMPLE				DW CERT #	! :		SONT	LE TY MPOS	1	200	53	1 /	/		//	//	//	/	/	6 - ICE	
Efficient VSP-4 6/29/20 11:30 WW Z G X X	THE RESIDENCE OF THE PARTY OF						# OF G	SAMP C=CO	∕ ŝ	Amin	3	/	//	//			/			8 - Asc	iosulfate corbic Acid raCore Kit
	l	Effluent VSp-1	1	6/29/20	1136	ww	2		X	X										3 10	uodo int
			,																		
Relinquished By: (1) Date Time Requested TAT (One TAT per COC) Solution Solution Date Date Time Requested TAT (One TAT per COC) Solution Solution Custody Seal: Cooke Take Cock Custody Seal: Cooke Take Cock Date Time Requested TAT (One TAT per COC) Solution Solution Custody Seal: Cooke Take Cock Date Time Requested TAT (One TAT per COC) Solution Solution Custody Seal: Cooke Take Cock Custody Seal: Cocke Take Cock Custody Seal: Cocke Take					Received By	W	,	(Reque	ested 1 Day kt Day	TAT (O	one TAT 3-Day Emerger	per CO	C) 2-Day Other	Custo	dy Sea	C.	06.	Inte	4	
Relinquished By: (2) Date Time Received By: STATE RESULTS REPORTED TO: MD DE PA VA WV OTHER # Coolers: 1 Temp: 5.6-6.3	Relinquished	By: (2)	Date	Time	Received By:					D	LTS R	PA 🔲 \	ED TO:	w	# Cod	olers:		Te	emp: 5. (5= F.3	2
Relinquished By: (3) Date Time Received By: COMPLIANCE? Special Instructions: Standard 10-day TAT	Relinquished	By: (3)	Date	Time	Received By:												100				
Relinquished By: (4) Date Time Received By: EDD FORMAT TYPE	Relinquished	By: (4)	Date	Time	Received By:		7		EDD FO	RMAT T	YPE										

This chain of custody is a legal document. The client (PSS Client), by signing, or having client's agent sign, this "Chain of Custody Form", agrees to pay for the above requested services per the latest version of the Service Brochure of PSS-provided quotation page any and all attorney's or others as one becomes necessary.

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062913

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 08/03/2020 Date Received 06/29/2020 12:55:00 PM **Delivered By** Client **Tracking No** Not Applicable Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 8.3 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 1 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 2 **Preservation Total Metals** (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos (pH<2)Yes VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)N/A Do VOA vials have zero headspace? N/A 624 VOC (Rcvd at least one unpreserved VOA vial) N/A 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:	Thomas Wingate	Date: 06/29/2020	
PM Review and Approval:	Ale I loger	Data: 06/20/2020	

Amber Confer Page 8 of 8

Date: 06/29/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062914

July 14, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20062914

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 20062914.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on August 3, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062914

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 06/29/2020 at 12:55 pm

PSS Sample ID	Sample ID	Matrix Date/Time Collected
20062914-001	Effluent VSP-4	WASTE WATER 06/29/20 11:30
20062914-002	TB-062920	WATER 06/29/20 12:06
20062914-002	TB-062920	WATER 06/29/20 12:06

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- If the target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062914

Sample ID: Effluent VSP-4 Date/Time Sampled: 06/29/2020 11:30 PSS Sample ID: 20062914-001

Matrix: WASTE WATER Date/Time Received: 06/29/2020 12:55

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	4.7	ug/L	1.0	1	07/13/20	07/13/20 19:41	1 1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	97	%	80-120	1	07/13/20	07/13/20 19:4:	1 1045

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062914

Sample ID: TB-062920 Date/Time Sampled: 06/29/2020 12:06 PSS Sample ID: 20062914-002

Matrix: WATER Date/Time Received: 06/29/2020 12:55

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 175653 on Case Narrative.

pH=2

ρ π= 2							
<u> </u>	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Chloromethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Vinyl Chloride	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Bromomethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Chloroethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Trichlorofluoromethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Methylene Chloride	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Chloroform	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Carbon Tetrachloride	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Benzene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Trichloroethene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Bromodichloromethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Toluene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Tetrachloroethylene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Dibromochloromethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Chlorobenzene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Ethylbenzene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Bromoform	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	06/30/20	06/30/20 19:39	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	105	%	87-120	1	06/30/20	06/30/20 19:39	1011
4-Bromofluorobenzene	94	%	85-147	1	06/30/20	06/30/20 19:39	1011
Toluene-D8	101	%	88-110	1	06/30/20	06/30/20 19:39	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062914

Sample ID: TB-062920 Date/Time Sampled: 06/29/2020 12:06 PSS Sample ID: 20062914-002

Matrix: WATER Date/Time Received: 06/29/2020 12:55

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	07/13/20	07/13/20 20:03	1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	98	%	80-120	1	07/13/20	07/13/20 20:03	1045

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20062914

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Analytical:

Volatile Organics Compounds (TVO)

Batch: 175653

Method exceedance: A target analyte was detected in the method blank; Tetrachloroethene was 0.47 ppb in method blank.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062914

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Batch	Prepared	Analyzed
EPA 624.1	TB-062920	Initial	20062914-002	W	82100	175653	06/30/2020 11:35	06/30/2020 19:39
	82100-1-BKS	BKS	82100-1-BKS	W	82100	175653	06/30/2020 11:35	06/30/2020 12:29
	82100-1-BLK	BLK	82100-1-BLK	W	82100	175653	06/30/2020 11:35	06/30/2020 14:22
	12914-Eff-6/20 S	MS	20062611-001 S	W	82100	175653	06/30/2020 11:35	06/30/2020 22:18
	12914-Eff-6/20 SD	MSD	20062611-001 S	W	82100	175653	06/30/2020 11:35	06/30/2020 22:40
SW-846 8260 B-	Effluent VSP-4	Initial	20062914-001	W	82269	176007	07/13/2020 12:47	07/13/2020 19:41
Modified	TB-062920	Initial	20062914-002	W	82269	176007	07/13/2020 12:47	07/13/2020 20:03
	82269-1-BKS	BKS	82269-1-BKS	W	82269	176007	07/13/2020 12:47	07/13/2020 17:49
	82269-1-BLK	BLK	82269-1-BLK	W	82269	176007	07/13/2020 12:47	07/13/2020 19:18
	82269-1-BSD	BSD	82269-1-BSD	W	82269	176007	07/13/2020 12:47	07/13/2020 18:11

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20062914

Analytical Method: EPA 624 .1

Seq Number: 175653

Matrix: Water

Prep Method: E624PREP

Date Prep: 06/30/20

MB Sample Id: 82100-1-BLK LCS Sample Id: 82100-1-BKS

IVID Sample Id. 62 TOC	J- I-DLK	_	.co campic	iu. 02100-1-1	DI CO			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethane	<1.000	50.00	59.03	118	54-148		ug/L	
Chloromethane	<1.000	50.00	45.38	91	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	45.36	91	5-195		ug/L	
Bromomethane	<1.000	50.00	43.10	86	15-185		ug/L	
Chloroethane	<1.000	50.00	37.99	76	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	42.27	85	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	42.44	85	50-150		ug/L	
Methylene Chloride	<1.000	50.00	40.95	82	60-140		ug/L	
trans-1,2-dichloroethene	<1.000	50.00	42.31	85	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	38.10	76	70-130		ug/L	
Chloroform	<1.000	50.00	42.45	85	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	45.83	92	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	47.49	95	70-130		ug/L	
Benzene	<1.000	50.00	45.29	91	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	45.06	90	70-130		ug/L	
Trichloroethene	<1.000	50.00	45.11	90	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	44.88	90	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	49.50	99	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	47.60	95	25-175		ug/L	
Toluene	<1.000	50.00	45.65	91	70-130		ug/L	
trans-1,3-dichloropropene	<1.000	50.00	47.42	95	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	45.87	92	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	48.82	98	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	50.66	101	70-135		ug/L	
Chlorobenzene	<1.000	50.00	44.96	90	65-135		ug/L	
Ethylbenzene	<1.000	50.00	46.91	94	60-140		ug/L	
Bromoform	<1.000	50.00	46.38	93	70-130		ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	41.67	83	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	44.53	89	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	45.00	90	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	44.63	89	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	106		98		87-120	%		
4-Bromofluorobenzene	96		94		85-147	%		
Toluene-D8	102		100		88-110	%		

Analytical Method:SW-846 8260 B-ModifiedPrep Method:SW5030BSeq Number:176007Matrix:WaterDate Prep:07/13/20MB Sample Id:82269-1-BLKLCS Sample Id:82269-1-BKSLCSD Sample Id:82269-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxane)	<1.000	30.00	32.83	109	33.48	112	50-150	3	20	ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS t Flag		CSD esult	LCSD Flag	Limits	Units		
Toluene-D8	98		97			99		80-120	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20062914

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

$\mathfrak{D}_{*_{CLIEN}}$	IT: WSP	*OFFI	CE LOC. H	erndon	VA	PSS W	ork Orde	er#: 🕳	200	629	114						PAGE	1	OF _	1
*PROJ	ECT MGR: Eric Joh	nson *Phoi	NE NO.:(70	3,709-(1500	Matrix (SW=Su)W =Drin	king Wt	r GW=	Ground '	Wtr W	W =Was	te Wtr	0 =0il	S =Soil	L=Liqı	uid SO I	_=Solid A =A	Air WI =Wipe
FMAIL:	exic idonsman	150 COM NO	D: (No. C	SAMPLE		atives H	CIH	CI									
***************************************	ESTABLE VOC. TO	NA TAXIN	314) 0 <i>1545.0</i> JECT NO.:	10/04	O N	TYPE	Method	/	/_									//	/
					Т	C=	Require	32/	73	7	/	/	/	/		/		/ /		
SITE LOCATION: Hanover, MD P.O. NO.:				A I	COMP	3)	53	9		/	/	/	/	/	/ /	/ /	/ /			
SAMPL	er(s):Shannon k	Burke	DW CERT	NO.:		N E	G = GRAB	10	30	2/		/	/	/	/	/	/	/		
LAB NO	*SAMPLE IDENTI	IFICATION	*DATE	*TIME (SAMPLED)	MATRIX (See Codes)	R S		170	75	/	/ /	/	/	/		/	/	/	/ REM	IARKS
1	Effluent VS	P-4	6/29/20		nn	3	G	X												
2	TB-06292		_	_	TB	i.p	-	X	X										Trip	blank
															1					
										1					5.18				7,6	
													15							
								110												
																				liver 10
									-		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					-				
Relinqui	shed By: (1)	Date	Time	Received	By://		-	*	Reque	ested '	TAT (O	ne TA	T per	COC) #	of Co	olers:		rs.4.6	۰۷
Sla	Bulce	0/29/20	1255	66	Was				Day ext Da]3-Da]Eme		v 🖫	2-Day Other	C	ustody	/ Seal	Coo	ست. سا	tact
Relinqui	shed By: (2)	Date	Time	Received	Ву:	The state		Data	Delive	erable	s Requ CLP	uired:		HER	lc	e Pres	sent:	Phs	S Temp:	5.6-8.3-
				Section 1									_		SI	nippin	g Car	rier:	Cina	
Relinquis	shed By: (3)	Date	Time	Received I	Зу:				cial Ins					MIT						
				The latest				5	-ar	da	ird	10)-d	ay		TAT				
Relinquis	shed By: (4)	Date	Time	Received I	Зу:	4		DW C	OMPL	IANC	E? EC	DD FC	RMA	TYP	E M	ST.	ATE F	RESUL VA	TS REPO	ORTED TO: OTHER

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20062914

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 08/03/2020 Date Received 06/29/2020 12:55:00 PM **Delivered By** Client Not Applicable **Tracking No** Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 8.3 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 2 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 **Preservation Total Metals** (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	Time Woode	Date: 06/29/2020	
	Thomas Wingate		

PM Review and Approval: When I large

Amber Confer Page 11 of 11 Date: 06/29/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20073003

August 13, 2020

Eric Johnson WSP USA - Herndon13530 Dulles Technology Dr, Ste 300
Herndon, VA 20171

Reference: PSS Project No: 20073003

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 20073003.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on September 3, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20073003

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 07/30/2020 at 12:26 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20073003-001	Effluent VSP-4	WASTE WATER	07/30/20 09:10	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20073003

Sample ID: Effluent VSP-4 Date/Time Sampled: 07/30/2020 09:10 PSS Sample ID: 20073003-001

Matrix: WASTE WATER Date/Time Received: 07/30/2020 12:26

Dissolved Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

Qualifier(s): See Sample Receipt section on Case Narrative.

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Copper	1.6	ug/L	1.0	1	08/06/20	08/10/20 14:47	1051
Lead	ND	ug/L	1.0	1	08/06/20	08/06/20 18:48	1064
Nickel	15.0	ug/L	1.00	1	08/06/20	08/06/20 18:48	1064
Zinc	28.6	ug/L	20.0	1	08/06/20	08/06/20 18:48	1064

Total Metals + Hardness Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL I	Flag Dil	Prepared	Analyzed	Analyst
Copper	2.7	ug/L	1.0	1	08/03/20	08/05/20 13:13	3 1064
Lead	ND	ug/L	1.0	1	08/03/20	08/05/20 13:13	3 1064
Nickel	17.0	ug/L	1.00	1	08/03/20	08/05/20 13:13	3 1064
Zinc	33.6	ug/L	20.0	1	08/03/20	08/05/20 13:13	3 1064
Hardness (Ca & Mg)	25	mg/L	0.66	1	08/03/20	08/05/20 13:13	3 1064

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Sample Receipt section on Case Narrative. See Batch 176691 on Case Narrative.

pH=2

•	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
Chloromethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
Vinyl Chloride	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
Bromomethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
Chloroethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
Trichlorofluoromethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
1,1-Dichloroethene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
Methylene Chloride	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
1,1-Dichloroethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
Chloroform	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
Carbon Tetrachloride	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
Benzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
1,2-Dichloroethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
Trichloroethene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011
1,2-Dichloropropane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	5 1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20073003

Sample ID: Effluent VSP-4 Date/Time Sampled: 07/30/2020 09:10 PSS Sample ID: 20073003-001

Matrix: WASTE WATER Date/Time Received: 07/30/2020 12:26

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Sample Receipt section on Case Narrative. See Batch 176691 on Case Narrative.

pH=2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
	ND	ug/L	1.0	1	08/03/20	08/03/20 14:05	1011
(s) Re	covery		Limits				
ethane	101	%	87-120	1	08/03/20	08/03/20 14:05	1011
enzene	101	%	85-147	1	08/03/20	08/03/20 14:05	1011
ene-D8	99	%	88-110	1	08/03/20	08/03/20 14:05	1011
	's) Re ethane enzene	ND N	ND ug/L	ND ug/L 1.0 ND 0.0 0.	ND ug/L 1.0 1 ND ug/L 1.0 1	ND ug/L 1.0 1 08/03/20	ND ug/L 1.0 1 08/03/20 08/03/20 14:05

Total Suspended Solids Analytical Method: SM 2540D -2011

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Suspended Solids	ND	ma/l	20	1	08/03/20	08/03/20 12:3	31 1061

Biochemical Oxygen Demand Analytical Method: SM 5210B -2011

Start time: 31-Jul-20 14:10

_	Result	Units	RL Flag	Prepared	Analyzed	Analyst
Biochemical Oxygen Demand, 5 day	ND	ma/l	5.0	07/31/20	08/05/20 12:3	30 4005

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20073003

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

20073003: Analyses associated with analyst code 4005 were performed by Enviro-Chem Laboratories, Inc., 47 Loveton Circle, Suite K, Sparks, MD 21152

Analytical:

Volatile Organics Compounds (TVO)

Batch: 176691

Method exceedance: A target analyte was detected in the method blank; Chloromethane was 0.25 ppb and Tetrachloroethene was 0.53 ppb in method blank.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SM 5210B -2011

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20073003

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical	Batch Prepared	Analyzed
EPA 200.8	Effluent VSP-4	Initial	20073003-001	W	82550	176729	08/03/2020 11:27	08/05/2020 13:13
	82550-1-BKS	BKS	82550-1-BKS	W	82550	176729	08/03/2020 11:27	08/05/2020 12:52
	82550-1-BLK	BLK	82550-1-BLK	W	82550	176729	08/03/2020 11:27	08/05/2020 12:47
	072820-Griff- S	MS	20072907-001 S	W	82550	176729	08/03/2020 11:27	08/05/2020 13:03
	072820-Griff- SD	MSD	20072907-001 S	W	82550	176729	08/03/2020 11:27	08/05/2020 13:08
EPA 200.8	Effluent VSP-4	Initial	20073003-001	W	82603	176784	08/06/2020 14:47	08/06/2020 18:48
	82603-1-BKS	BKS	82603-1-BKS	W	82603	176784	08/06/2020 14:47	08/06/2020 18:43
	82603-1-BLK	BLK	82603-1-BLK	W	82603	176784	08/06/2020 14:47	08/06/2020 18:38
	Effluent VSP-4 S	MS	20073003-001 S	W	82603	176784	08/06/2020 14:47	08/06/2020 18:53
	Effluent VSP-4 SD	MSD	20073003-001 S	W	82603	176784	08/06/2020 14:47	08/06/2020 18:58
	82603-1-BKS	Reanalysis	82603-1-BKS	W	82603	176821	08/06/2020 14:47	08/07/2020 20:10
	82603-1-BLK	Reanalysis	82603-1-BLK	W	82603	176821	08/06/2020 14:47	08/07/2020 20:05
	82603-1-BKS	Reanalysis	82603-1-BKS	W	82603	176826	08/06/2020 14:47	08/10/2020 14:43
	82603-1-BLK	Reanalysis	82603-1-BLK	W	82603	176826	08/06/2020 14:47	08/10/2020 14:38
	Effluent VSP-4	Reanalysis	20073003-001	W	82603	176826	08/06/2020 14:47	08/10/2020 14:47
EPA 624.1	Effluent VSP-4	Initial	20073003-001	W	82562	176691	08/03/2020 07:46	08/03/2020 14:05
	82562-1-BKS	BKS	82562-1-BKS	W	82562	176691	08/03/2020 07:46	08/03/2020 08:48
	82562-1-BLK	BLK	82562-1-BLK	W	82562	176691	08/03/2020 07:46	08/03/2020 10:41
	Effluent VSP-4 S	MS	20073003-001 S	W	82562	176691	08/03/2020 07:46	08/03/2020 15:58
	Effluent VSP-4 SD	MSD	20073003-001 S	W	82562	176691	08/03/2020 07:46	08/03/2020 16:20
SM 2540D -2011	Effluent VSP-4	Initial	20073003-001	W	176663	176663	08/03/2020 12:31	08/03/2020 12:31
	176663-1-BLK	BLK	176663-1-BLK	W	176663	176663	08/03/2020 12:31	08/03/2020 12:31
	Effluent VSP-4 D	MD	20073003-001 D	W	176663	176663	08/03/2020 12:31	08/03/2020 12:31
	001 QC D	MD	20080301-002 D	W	176663	176663	08/03/2020 12:31	08/03/2020 12:31
SM 5210B -2011	Effluent VSP-4	Initial	20073003-001	W	176845	176845	07/31/2020 14:10	08/05/2020 12:30

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Units

mg/L

Flag

Flag

Project Name Kop-Flex PSS Project No.: 20073003

Analytical Method: SM 2540D -2011

Seq Number: 176663 Matrix: Water

Result

MB Sample Id: 176663-1-BLK

Parameter MB LOD RL

Suspended Solids ND 0.5000 1.000 mg/L

Analytical Method: SM 2540D -2011

Seq Number: 176663 Matrix: Waste Water

Parent Sample Id: 20073003-001 MD Sample Id: 20073003-001 D

Parameter Parent MD %RPD RPD Units Flag
Result Result Limit

Suspended Solids <2.000 <2.000

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 176729 Matrix: Water Date Prep: 08/03/20

MB Sample Id: 82550-1-BLK LCS Sample Id: 82550-1-BKS

LCS LCS MB **Spike** Limits Units **Parameter** Result **Amount** Result %Rec <1.000 40.00 41.87 85-115 105 ug/L Copper 40.00 43.70 109 Lead <1.000 85-115 ug/L Nickel <1.000 40.00 39.84 100 85-115 ug/L Zinc <20.00 200 195.8 98 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 176784 Matrix: Water Date Prep: 08/06/20

MB Sample Id: 82603-1-BLK LCS Sample Id: 82603-1-BKS

МВ LCS LCS Limits **Units Spike Parameter** Flag Result Amount Result %Rec Lead <1.000 40.00 38.20 96 85-115 ug/L Nickel <1.000 40.00 39.99 100 85-115 ug/L Zinc <20.00 200 220.6 85-115 ug/L 110

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 176826 Matrix: Water Date Prep: MB Sample Id: 82603-1-BLK LCS Sample Id: 82603-1-BKS

MB Spike LCS LCS Limits **Units** Parameter Flag Result Result Amount %Rec Copper <1.000 40.00 39.90 100 85-115 ug/L

08/06/20

NC

10

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20073003

Analytical Method: EPA 200.8Prep Method:E200.8_PREPSeq Number:176784Matrix:Waste WaterDate Prep:08/06/20

Parent Sample Id: 20073003-001 MS Sample Id: 20073003-001 S MSD Sample Id: 20073003-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Copper	<1.000	40.00	40.65	102	40.44	101	70-130	1	25	ug/L	
Lead	<1.000	40.00	38.93	97	38.37	96	70-130	1	25	ug/L	
Nickel	14.96	40.00	53.55	96	53.00	95	70-130	1	25	ug/L	
Zinc	28.57	200	244.6	108	242	107	70-130	1	25	ug/L	

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP Seq Number: 176821 Matrix: Water Date Prep: 08/06/20

REBLK Sample Id: 82603-1-BLK LCS Sample Id: 82603-1-BKS

Parameter	REBLK Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units Flag
Lead	<1.000	40.00	38.75	97	85-115	ug/L
Nickel	<1.000	40.00	37.89	95	85-115	ug/L
Zinc	<20.00	200	194.1	97	85-115	ua/L

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20073003

Analytical Method: EPA 624 .1
Seq Number: 176691 Matrix: Water Prep Method: E624PREP
Date Prep: 08/03/20

MB Sample Id:	82562-1-BLK	L	.CS Sample	e ld: 8256	2-1-BKS	,		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethan	e <1.000	50.00	51.35	103	54-148		ug/L	
Chloromethane	<1.000	50.00	43.83	88	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	49.28	99	5-195		ug/L	
Bromomethane	<1.000	50.00	45.71	91	15-185		ug/L	
Chloroethane	<1.000	50.00	43.98	88	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	53.87	108	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	52.32	105	50-150		ug/L	
Methylene Chloride	<1.000	50.00	48.92	98	60-140		ug/L	
trans-1,2-dichloroethen	e <1.000	50.00	49.52	99	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	51.94	104	70-130		ug/L	
Chloroform	<1.000	50.00	49.57	99	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	53.22	106	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	53.23	106	70-130		ug/L	
Benzene	<1.000	50.00	50.11	100	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	50.78	102	70-130		ug/L	
Trichloroethene	<1.000	50.00	50.74	101	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	51.78	104	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	53.59	107	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	52.94	106	25-175		ug/L	
Toluene	<1.000	50.00	48.69	97	70-130		ug/L	
trans-1,3-dichloroprope	ne <1.000	50.00	53.43	107	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	50.13	100	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	50.00	100	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	50.10	100	70-135		ug/L	
Chlorobenzene	<1.000	50.00	47.78	96	65-135		ug/L	
Ethylbenzene	<1.000	50.00	49.78	100	60-140		ug/L	
Bromoform	<1.000	50.00	49.96	100	70-130		ug/L	
1,1,2,2-Tetrachloroetha	ne <1.000	50.00	45.49	91	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	46.15	92	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	44.84	90	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	46.71	93	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS t Flag	Limi	ts Units		
Dibromofluoromethane	100		98		87-1:	20 %		
4-Bromofluorobenzene	101		96		85-1-	47 %		
Toluene-D8	99		101		88-1			

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20073003

Analytical Method: EPA 624 .1 Prep Method: E624PREP Seq Number: 176691 Matrix: Waste Water Date Prep: 08/03/20

MS Sample Id: 20073003-001 S MSD Sample Id: 20073003-001 SD Parent Sample Id: 20073003-001

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Dichlorodifluoromethane	<1.000	50.00	57.08	114	54.96	110	43-150	4	27	ug/L	
Chloromethane	<1.000	50.00	50.90	102	48.55	97	1-273	5	60	ug/L	
Vinyl Chloride	<1.000	50.00	56.33	113	54.42	109	1-251	4	66	ug/L	
Bromomethane	<1.000	50.00	54.73	109	53.47	107	1-242	2	61	ug/L	
Chloroethane	<1.000	50.00	48.77	98	48.06	96	14-230	2	78	ug/L	
Trichlorofluoromethane	<1.000	50.00	59.17	118	58.33	117	17-181	1	84	ug/L	
1,1-Dichloroethene	<1.000	50.00	59.26	119	57.28	115	1-234	3	32	ug/L	
Methylene Chloride	<1.000	50.00	56.59	113	54.69	109	1-221	4	28	ug/L	
trans-1,2-dichloroethene	<1.000	50.00	55.67	111	54.11	108	54-156	3	45	ug/L	
1,1-Dichloroethane	<1.000	50.00	57.77	116	55.00	110	59-155	5	40	ug/L	
Chloroform	<1.000	50.00	56.05	112	55.24	110	51-138	2	54	ug/L	
1,1,1-Trichloroethane	<1.000	50.00	58.88	118	58.25	117	52-162	1	36	ug/L	
Carbon Tetrachloride	<1.000	50.00	58.46	117	58.52	117	70-140	0	41	ug/L	
Benzene	<1.000	50.00	56.43	113	56.16	112	37-151	1	61	ug/L	
1,2-Dichloroethane	<1.000	50.00	56.51	113	56.27	113	49-155	0	49	ug/L	
Trichloroethene	<1.000	50.00	55.70	111	55.24	110	70-157	1	48	ug/L	
1,2-Dichloropropane	<1.000	50.00	57.66	115	57.78	116	1-210	1	55	ug/L	
Bromodichloromethane	<1.000	50.00	58.87	118	58.71	117	35-155	1	56	ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	55.67	111	56.49	113	1-227	2	58	ug/L	
Toluene	<1.000	50.00	56.80	114	54.75	110	47-150	4	41	ug/L	
trans-1,3-dichloropropene	<1.000	50.00	55.37	111	57.11	114	17-183	3	86	ug/L	
1,1,2-Trichloroethane	<1.000	50.00	55.50	111	56.18	112	52-150	1	45	ug/L	
Tetrachloroethylene	<1.000	50.00	55.17	110	53.20	106	64-148	4	39	ug/L	
Dibromochloromethane	<1.000	50.00	54.09	108	55.72	111	53-149	3	50	ug/L	
Chlorobenzene	<1.000	50.00	57.00	114	55.21	110	37-160	4	53	ug/L	
Ethylbenzene	<1.000	50.00	59.54	119	57.35	115	37-162	3	63	ug/L	
Bromoform	<1.000	50.00	53.58	107	55.41	111	45-169	4	42	ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	56.31	113	56.23	112	46-157	1	61	ug/L	
1,3-Dichlorobenzene	<1.000	50.00	57.72	115	54.77	110	59-156	4	43	ug/L	
1,4-Dichlorobenzene	<1.000	50.00	56.08	112	53.40	107	18-190	5	57	ug/L	
1,2-Dichlorobenzene	<1.000	50.00	58.11	116	55.45	111	18-190	4	57	ug/L	
Surrogate			MS Result	MS Flag			MSD I Flag	Limits	Units		
Dibromofluoromethane			100			101	8	37-120	%		
4-Bromofluorobenzene			100			98	8	35-147	%		
Toluene-D8			101			100	8	38-110	%		

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits L = Recovery of BS,BSD or both below the laboratory control limits

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

1)*CLIENT	: WSP	*OFFI	CE LOC. H	erndan	IVA	PSS W	ork Orde	er#: =	200	730	ኒ ን						PAGE	1	OF		
*PROJE	CT MGR: Enc Ja	150/ *PHO	NE NO.:(70)	3,709-(a500)W =Drin	king Wt	tr GW=	Ground	Wtr W	/W =Wa	ste Wtr	0 =0il	S =Soil	L=Liqt	uid SO	L=Solid A	-Air WI =Wipe	
EMAIL:	eric, johnsan a	WSP. CFAX NO	Ď.: ()		No. C	SAMPLE	Preserva Used	atives	KI		F	NO	ING							
*PROJE	eric, johnson@ ct NAME: KOP-F	lex	3)	401545.01	0/04	O N	TYPE	Method	1 -	$\sqrt{}$		30	15	7	/	/	/	/	/		
			P.O.			T A	C = COMP	Required 3	10	/	/ /	Inchails	Sie	7	/	/	/		//		
SAMPLE	cation: Holdeve Shannen R(s): Lauren Jo	Burke	DW CERT I			N E	G = GRAB	* /	5/8	9/0	To local	800	The state of the s					/			
LAB NO.	*SAMPLE IDEN		*DATE (SAMPLED)	*TIME (SAMPLED)	MATRIX (See Codes)	R S		12	2/00	K	18	15	7	/					/	MARKS	
1	Effluent 1	159-4	7/30/20	VI	WW	7	6	X	X	X	X	X							# biss	dved metal. -fillered	
	- 3/ 6																				-
	35 1944																		156		-
	4																				
																					9
		w /																			
5																					
Relinquish	ned By: (1) Bmle	Date 7/20/20	Time 1226	Received I	Wuss			5-	Reque Day	ested [TAT (C 3-Da	One T/ ay	AT pe	r COC) 2-Day Other) #	Works.	olers:	1	TI	3:3.50	
	ned By: (2)	Date	Time	Received I	- Contraction -			Data	Delive	erable	s Rea	uired:			Ic					2.523.4	
								COA	QC S		CLP			THER					mt	4.5 × 31-1	
Relinquish	ned By: (3)	Date	Time	Received I	Ву:	-					ons:			= (u_1	Pb.	, Ni	1, 21	7		
														4							
Relinquish	ned By: (4)	Date	Time	Received 6	Ву:			DW C		IANC				TYP	E	ST	ATE F			ORTED TO: OTHER	N. I

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20073003

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 09/03/2020 Date Received 07/30/2020 12:26:00 PM **Delivered By** Client Not Applicable **Tracking No** Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? N/A Temp (deg C) 3.4 N/A Temp Blank Present Yes Seal(s) Signed / Dated? Sampler Name Shannon Burke, Lauren Johnson Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 1 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 **Preservation Total Metals** (pH<2)Yes Dissolved Metals, filtered within 15 minutes of collection (pH<2)Yes Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

	Acrolein, acrylo	nitrile, and 2	 chloroethyl vii 	nvl ether not	required for EF	³ A 624 sample
--	------------------	----------------	-------------------------------------	---------------	-----------------	---------------------------

Samples Inspected/Checklist Completed By:	Time light	Date: 07/30/2020	
	Thomas Wingate		
545	A 1 4 1 - 1 - 1 .		

PM Review and Approval:

524 VOC (Rcvd with trip blanks)

Amber Confer Page 12 of 12

Version 1.000

Date: 07/30/2020

N/A

(pH<2)

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20073004

August 13, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20073004

Project Name: Kop Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20073004**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on September 3, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

TNI

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20073004

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 07/30/2020 at 12:26 pm

PSS Sample ID	Sample ID	Matrix Date/Time Collected
20073004-001	Effluent VSP-4	WASTE WATER 07/30/20 09:10
20073004-002	Influent VSP-1	GROUND WATER 07/30/20 09:45
20073004-003	TB-073020	WATER 07/30/20 00:00

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20073004

Sample ID: Effluent VSP-4 Date/Time Sampled: 07/30/2020 09:10 PSS Sample ID: 20073004-001

Matrix: WASTE WATER Date/Time Received: 07/30/2020 12:26

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL Fla	g Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	08/12/20	08/12/20 13:36	1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	98	%	80-120	1	08/12/20	08/12/20 13:36	6 1045

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20073004

Sample ID: Influent VSP-1 Date/Time Sampled: 07/30/2020 09:45 PSS Sample ID: 20073004-002

Matrix: GROUND WATER Date/Time Received: 07/30/2020 12:26

TCL Volatile Organic Compounds Analytical Method: SW-846 8260 B Preparation Method: 5030B

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	ND	ug/L	5.0	1	08/03/20	08/03/20 14:50	1011
Benzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
Bromochloromethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
Bromodichloromethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
Bromoform	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
Bromomethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
2-Butanone (MEK)	ND	ug/L	5.0	1	08/03/20	08/03/20 14:50	1011
Carbon Disulfide	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
Carbon tetrachloride	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
Chlorobenzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
Chloroethane	3.7	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
Chloroform	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
Chloromethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
Cyclohexane	ND	ug/L	10	1	08/03/20	08/03/20 14:50	1011
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1	08/03/20	08/03/20 14:50	1011
Dibromochloromethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
1,2-Dibromoethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
Dichlorodifluoromethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
1,1-Dichloroethane	49	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
1,2-Dichloroethane	1.6	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
cis-1,2-Dichloroethene	1.4	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
1,1-Dichloroethene	250	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
trans-1,3-Dichloropropene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
trans-1,2-Dichloroethene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
Ethylbenzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
2-Hexanone (MBK)	ND	ug/L	5.0	1	08/03/20	08/03/20 14:50	1011
Isopropylbenzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011
Methyl Acetate	ND	ug/L	10	1	08/03/20	08/03/20 14:50	1011
Methylcyclohexane	ND	ug/L	10	1	08/03/20	08/03/20 14:50	1011
Methylene chloride	ND	ug/L	1.0	1	08/03/20	08/03/20 14:50	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20073004

Sample ID: Influent VSP-1 Date/Time Sampled: 07/30/2020 09:45 PSS Sample ID: 20073004-002

Matrix: GROUND WATER Date/Time Received: 07/30/2020 12:26

Toluene-D8

97

%

TCL Volatile Organic Compounds Analytical Method: SW-846 8260 B Preparation Method: 5030B

3	7 ii .a.y ii oa		011 010 0200							
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst		
4-Methyl-2-Pentanone (MIBK)	ND	ug/L	5.0		1	08/03/20	08/03/20 14:50	1011		
Methyl-t-Butyl Ether	ND	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
Naphthalene	ND	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
Styrene	ND	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
Tetrachloroethene	ND	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
Toluene	ND	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
1,2,3-Trichlorobenzene	orobenzene ND ug/L 1.0 1		08/03/20	08/03/20 14:50	1011					
1,2,4-Trichlorobenzene	ND	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
1,1,1-Trichloroethane	24	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
Trichloroethene	1.2	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
1,1,2-Trichloroethane	ND	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
Trichlorofluoromethane	ND	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
Vinyl chloride	ND	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
m&p-Xylene	ND	ug/L	2.0		1	08/03/20	08/03/20 14:50	1011		
o-Xylene	ND	ug/L	1.0		1	08/03/20	08/03/20 14:50	1011		
Surrogate(s)	Recovery		Limits							
4-Bromofluorobenzene	102	%	87-109		1	08/03/20	08/03/20 14:50	0 1011		
Dibromofluoromethane	102	%	93-111		1	08/03/20	08/03/20 14:50	0 1011		
Toluene-D8	99	%	91-109		1	08/03/20	08/03/20 14:50	0 1011		
1,4-Dioxane by GC/MS - SIM	Analytica	l Method:	SW-846 8260	B-Modifi	ed	Preparation Met	nod: 5030B			
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst		
1,4-Dioxane (P-Dioxane)	110	ug/L	10		10	08/12/20	08/12/20 14:21	1045		
Surrogate(s)	Recovery		Limits							

80-120

10

08/12/20

08/12/20 14:21 1045

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20073004

Sample ID: TB-073020 Date/Time Sampled: 07/30/2020 00:00 PSS Sample ID: 20073004-003

Matrix: WATER Date/Time Received: 07/30/2020 12:26

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 176691 on Case Narrative.

pH=2

ρ π= 2							
<u> </u>	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Chloromethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Vinyl Chloride	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Bromomethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Chloroethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Trichlorofluoromethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Methylene Chloride	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Chloroform	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Carbon Tetrachloride	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Benzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Trichloroethene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Bromodichloromethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Toluene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Tetrachloroethylene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Dibromochloromethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Chlorobenzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Ethylbenzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Bromoform	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	08/03/20	08/03/20 14:27	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	101	%	87-120	1	08/03/20	08/03/20 14:27	1011
4-Bromofluorobenzene	102	%	85-147	1	08/03/20	08/03/20 14:27	1011
Toluene-D8	98	%	88-110	1	08/03/20	08/03/20 14:27	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20073004

Sample ID: TB-073020 Date/Time Sampled: 07/30/2020 00:00 PSS Sample ID: 20073004-003

Matrix: WATER Date/Time Received: 07/30/2020 12:26

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL Flag	g Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	08/12/20	08/12/20 13:58	3 1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	97	%	80-120	1	08/12/20	08/12/20 13:58	3 1045

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20073004

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Analytical:

Volatile Organics Compounds (TVO)

Batch: 176691

Method exceedance: A target analyte was detected in the method blank; Chloromethane was 0.25 ppb and Tetrachloroethene was 0.53 ppb in method blank.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20073004

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Bat	ch Prepared	Analyzed
EPA 624.1	TB-073020	Initial	20073004-003	W	82562	176691	08/03/2020 07:46	08/03/2020 14:27
	82562-1-BKS	BKS	82562-1-BKS	W	82562	176691	08/03/2020 07:46	08/03/2020 08:48
	82562-1-BLK	BLK	82562-1-BLK	W	82562	176691	08/03/2020 07:46	08/03/2020 10:41
	Effluent VSP-4 S	MS	20073003-001 S	W	82562	176691	08/03/2020 07:46	08/03/2020 15:58
	Effluent VSP-4 SD	MSD	20073003-001 S	W	82562	176691	08/03/2020 07:46	08/03/2020 16:20
SW-846 8260 B	Influent VSP-1	Initial	20073004-002	W	82561	176690	08/03/2020 07:46	08/03/2020 14:50
	82561-1-BKS	BKS	82561-1-BKS	W	82561	176690	08/03/2020 07:46	08/03/2020 08:48
	82561-1-BLK	BLK	82561-1-BLK	W	82561	176690	08/03/2020 07:46	08/03/2020 10:41
	GP5 S	MS	20073006-007 S	W	82561	176690	08/03/2020 07:46	08/03/2020 15:13
	GP5 SD	MSD	20073006-007 S	W	82561	176690	08/03/2020 07:46	08/03/2020 15:35
SW-846 8260 B-	Effluent VSP-4	Initial	20073004-001	W	82682	176934	08/13/2020 10:20	08/12/2020 13:36
Modified	Influent VSP-1	Initial	20073004-002	W	82682	176934	08/13/2020 10:20	08/12/2020 14:21
	TB-073020	Initial	20073004-003	W	82682	176934	08/13/2020 10:20	08/12/2020 13:58
	82682-1-BKS	BKS	82682-1-BKS	W	82682	176934	08/13/2020 10:20	08/12/2020 11:27
	82682-1-BLK	BLK	82682-1-BLK	W	82682	176934	08/13/2020 10:20	08/12/2020 13:14
	82682-1-BSD	BSD	82682-1-BSD	W	82682	176934	08/13/2020 10:20	08/12/2020 12:07

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20073004

Analytical Method: EPA 624 .1 Prep Method: E624PREP Seq Number: 176691 Matrix: Water Date Prep: 08/03/20

MB Sample Id:	IB Sample Id: 82562-1-BLK			ld: 8256	S2-1-BKS		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Dichlorodifluoromethan	e <1.000	50.00	51.35	103	54-148	ug/L	
Chloromethane	<1.000	50.00	43.83	88	1-205	ug/L	
Vinyl Chloride	<1.000	50.00	49.28	99	5-195	ug/L	
Bromomethane	<1.000	50.00	45.71	91	15-185	ug/L	
Chloroethane	<1.000	50.00	43.98	88	40-160	ug/L	
Trichlorofluoromethane	<1.000	50.00	53.87	108	50-150	ug/L	
1,1-Dichloroethene	<1.000	50.00	52.32	105	50-150	ug/L	
Methylene Chloride	<1.000	50.00	48.92	98	60-140	ug/L	
trans-1,2-dichloroethen	e <1.000	50.00	49.52	99	70-130	ug/L	
1,1-Dichloroethane	<1.000	50.00	51.94	104	70-130	ug/L	
Chloroform	<1.000	50.00	49.57	99	70-135	ug/L	
1,1,1-Trichloroethane	<1.000	50.00	53.22	106	70-130	ug/L	
Carbon Tetrachloride	<1.000	50.00	53.23	106	70-130	ug/L	
Benzene	<1.000	50.00	50.11	100	65-135	ug/L	
1,2-Dichloroethane	<1.000	50.00	50.78	102	70-130	ug/L	
Trichloroethene	<1.000	50.00	50.74	101	65-135	ug/L	
1,2-Dichloropropane	<1.000	50.00	51.78	104	35-165	ug/L	
Bromodichloromethane	<1.000	50.00	53.59	107	65-135	ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	52.94	106	25-175	ug/L	
Toluene	<1.000	50.00	48.69	97	70-130	ug/L	
trans-1,3-dichloroprope	ne <1.000	50.00	53.43	107	50-150	ug/L	
1,1,2-Trichloroethane	<1.000	50.00	50.13	100	70-130	ug/L	
Tetrachloroethylene	<1.000	50.00	50.00	100	70-130	ug/L	
Dibromochloromethane	<1.000	50.00	50.10	100	70-135	ug/L	
Chlorobenzene	<1.000	50.00	47.78	96	65-135	ug/L	
Ethylbenzene	<1.000	50.00	49.78	100	60-140	ug/L	
Bromoform	<1.000	50.00	49.96	100	70-130	ug/L	
1,1,2,2-Tetrachloroetha		50.00	45.49	91	60-140	ug/L	
1,3-Dichlorobenzene	<1.000	50.00	46.15	92	70-130	ug/L	
1,4-Dichlorobenzene	<1.000	50.00	44.84	90	65-135	ug/L	
1,2-Dichlorobenzene	<1.000	50.00	46.71	93	65-135	ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units	
Dibromofluoromethane	100		98		87-120	%	
4-Bromofluorobenzene	101		96		85-147	%	
Toluene-D8	99		101		88-110	%	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20073004

Analytical Method: SW-846 8260 B
Seq Number: 176690 Matrix: Water Date Prep: 08/03/20

MB Sample Id: 82561-1-BLK LCS Sample Id: 82561-1-BKS

MB Sample Id. 62561-1	-DLN	L	CO Gampi	e iu. 023	01-1-DNO		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Acetone	<5.000	50.00	44.64	89	55-120	ug/L	
Benzene	<1.000	50.00	50.11	100	87-123	ug/L	
Bromochloromethane	<1.000	50.00	50.82	102	74-136	ug/L	
Bromodichloromethane	<1.000	50.00	53.59	107	83-125	ug/L	
Bromoform	<1.000	50.00	49.96	100	72-129	ug/L	
Bromomethane	<1.000	50.00	45.71	91	45-167	ug/L	
2-Butanone (MEK)	<5.000	50.00	41.41	83	45-136	ug/L	
Carbon Disulfide	<1.000	50.00	53.80	108	87-123	ug/L	
Carbon tetrachloride	<1.000	50.00	53.23	106	79-133	ug/L	
Chlorobenzene	<1.000	50.00	47.78	96	87-127	ug/L	
Chloroethane	<1.000	50.00	43.98	88	81-122	ug/L	
Chloroform	<1.000	50.00	49.57	99	76-129	ug/L	
Chloromethane	<1.000	50.00	43.83	88	59-121	ug/L	
Cyclohexane	<10.00	50.00	53.15	106	83-122	ug/L	
1,2-Dibromo-3-chloropropane	<5.000	50.00	44.43	89	63-140	ug/L	
Dibromochloromethane	<1.000	50.00	50.10	100	73-139	ug/L	
1,2-Dibromoethane	<1.000	50.00	50.53	101	80-127	ug/L	
1,2-Dichlorobenzene	<1.000	50.00	46.71	93	82-129	ug/L	
1,3-Dichlorobenzene	<1.000	50.00	46.15	92	88-127	ug/L	
Dichlorodifluoromethane	<1.000	50.00	51.35	103	70-131	ug/L	
1,4-Dichlorobenzene	<1.000	50.00	44.84	90	84-129	ug/L	
1,1-Dichloroethane	<1.000	50.00	51.94	104	85-120	ug/L	
1,2-Dichloroethane	<1.000	50.00	50.78	102	86-125	ug/L	
cis-1,2-Dichloroethene	<1.000	50.00	49.12	98	86-126	ug/L	
1,1-Dichloroethene	<1.000	50.00	52.32	105	85-123	ug/L	
1,2-Dichloropropane	<1.000	50.00	51.78	103	83-120	ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	52.94	106	81-125	ug/L	
trans-1,3-Dichloropropene	<1.000	50.00	53.43	107	79-121	ug/L	
trans-1,2-Dichloroethene	<1.000	50.00	49.52	99	87-120	ug/L	
Ethylbenzene	<1.000	50.00	49.78	100	82-128	ug/L	
2-Hexanone (MBK)	<5.000	50.00	40.34	81	56-116	ug/L	
Isopropylbenzene	<1.000	50.00	48.23	96	81-128	ug/L	
Methyl Acetate	<10.00	50.00	47.38	95	68-129	ug/L	
Methylcyclohexane	<10.00	50.00	53.93	108	84-127	ug/L	
Methylene chloride	<1.000	50.00	48.92	98	85-119	ug/L	
4-Methyl-2-Pentanone (MIBK)	<5.000	50.00	40.15	80	57-116	ug/L	
Methyl-t-Butyl Ether	<1.000	50.00	50.54	101	61-130	ug/L	
Naphthalene	<1.000	50.00	48.27	97	74-114	ug/L	
Styrene	<1.000	50.00	43.34	87	76-130	ug/L ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	45.49	91	79-130 79-131	ug/L ug/L	
Tetrachloroethene	<1.000	50.00	50.00	100	85-131	_	
Toluene	<1.000	50.00	48.69	97	82-127	ug/L ug/L	
1,2,3-Trichlorobenzene	<1.000			103	79-123	_	
1,2,4-Trichlorobenzene	<1.000	50.00 50.00	51.36 51.12	103	79-123 78-123	ug/L	
1,1,1-Trichloroethane	<1.000	50.00	53.22	102	87-125	ug/L ug/L	
Trichloroethene	<1.000	50.00	50.74 50.13	101	87-124 84 127	ug/L	
1,1,2-Trichloroethane Trichlorofluoromethane	<1.000	50.00	50.13	100	84-127 85-130	ug/L	
	<1.000	50.00	53.87	108	85-130 81 133	ug/L	
1,1,2-Trichlorotrifluoroethane	<1.000	50.00	53.36	107	81-132	ug/L	
Vinyl chloride	<1.000	50.00	49.28	99	66-133	ug/L	
m&p-Xylene	<2.000	100	98.88	99	78-126	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex PSS Project No.: 20073004

Analytical Method: SW-846 8260 B
Seq Number: 176690 Matrix: Water Date Prep: 08/03/20

MB Sample Id: 82561-1-BLK LCS Sample Id: 82561-1-BKS

MB Sample Id.	02301-1-DLN	L	.co oampie	iu. 02301-1-Dix	3	
Parameter Re		Spike Amount	LCS Result	LCS %Rec	Limits	Units Flag
o-Xylene	<1.000	50.00	49.50	99	75-130	ug/L
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits Units	
4-Bromofluorobenze	ne 101		96		87-109 %	
Dibromofluorometha	ine 100		98		93-111 %	
Toluene-D8	99		101		91-109 %	

Analytical Method: SW-846 8260 B-ModifiedPrep Method:SW5030BSeq Number:176934Matrix: WaterDate Prep: 08/13/20

MB Sample Id: 82682-1-BLK LCS Sample Id: 82682-1-BKS LCSD Sample Id: 82682-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxane)	<1.000	30.00	26.00	87	28.29	94	50-150	8	20	ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag			_CSD Flag	Limits	Units		
Toluene-D8	97		100			99		80-120	%		

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

1)*CLIENT	: MSP	*OFF	ICE LOC.	erndon.	VA	PSS W	ork Orde	er#: ဥ	00	130	04						PAGE	1	OF _	1	
	CT MGR: Enic John					Matrix C	odes:					Wtr W	W =Was	te Wtr	0 =0il :	S =Soil	L=Liqu	id SOL	=Solid A =/	Air WI =Wipe	
	eric, johnson@1) 2		No. C	SAMPLE	Preservati Used	ives H	CI H	HIH	a									
***************************************	CT NAME: KOP - FIR	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.	140;545,0 JECT NO.:	010/04	O N	TYPE	Method	/=	12	7	$\sqrt{}$					/		//	/	
						T A	C = COMP	Required 3	axy	5260k	3	/ /	/ ,	/ ,	/ ,	/ ,	/		/ /		
SITE LOC	Shannon Buck	M 1)	P.O.	NO.:		I N	G =	* /3	2	~	-	/	/	/	/	/					
SITE LOCATION: HONOVER MD P.O. NO.: Shannon Burke SAMPLER(S): Lauren Johnson DW CERT NO.:				E R	GRAB	A	18	8/5	3/												
LAB NO.	*SAMPLE IDENTIFI		*DATE (SAMPLED)	*TIME (SAMPLED)	MATRIX (See Codes)	S		127	13	/3		\Box			\angle		igspace	_	REM	MARKS	- 10
1	Effluent VS		7/30/20	0910	WW	3	6	X													
2	Influent US	P-1	7/30/20	0945	6W	6	G		X												
3	TB-073020		7/30/20		W	4	-	X	_	X											
								\vdash	_												
								\vdash	\dashv												
									-												
								\vdash	\dashv	_					_						_
									\dashv			_									- 1
									\dashv												
5 Relinquish	ned Bv: (1)	Date	Time	Received	BK/·	/ I=0 k-/	-	4) * _B	eque	sted	TAT (C	ne TA	T per	COC	# (of Cod	olers:		2	دی	
120	- Bre.	7/30/20	1000000		//		~	5-0	Day		3-Da	ay		2-Day				0	try: 2	. 8 - C	
Relinquish	ned By: (2)	Date	Time	Received	By:			Data	Delive	erable	s Req	uired:		HER	Ice	e Pres	sent: ,	DOG	Temp:	2.8-2.9	3/
100								COA	QC S		CLP C			пск	Sh	nipping	g Carr	ier: (2 Het		
Relinquish	ned By: (3)	Date	Time	Received	By:			Speci			ons:	Sta	ndo	ird					TAT	-	
														7				J			
Relinquish	ned By: (4)	Date	Time	Received	Ву:	DW COMPLIANCE? EDD FORMAT				ГТҮРІ											
							YES M				1D DE PA VA WV OTHER										

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20073004

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 09/03/2020 Date Received 07/30/2020 12:26:00 PM **Delivered By** Client Not Applicable **Tracking No** Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 2.9 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke/Lauren Johnson Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 3 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 13 **Preservation Total Metals** (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	Time Woode	Date: 07/30/2020	
	Thomas Wingate		

PM Review and Approval: When I longer

Amber Confer Page 14 of 14 Date: 07/30/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20082609

September 10, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20082609

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010-04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20082609**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on September 30, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20082609

Project ID: 31401545.010-04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 08/26/2020 at 12:55 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20082609-001	Effluent VSP-4	WASTE WATER	08/26/20 11:50	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20082609

Sample ID: Effluent VSP-4 Date/Time Sampled: 08/26/2020 11:50 PSS Sample ID: 20082609-001

Matrix: WASTE WATER Date/Time Received: 08/26/2020 12:55

Dissolved Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL Fla	g Dil	Prepared	Analyzed	Analyst
Copper	3.0	ug/L	1.0	1	08/31/20	08/31/20 22:57	1064
Lead	ND	ug/L	1.0	1	08/31/20	09/02/20 13:27	1064
Nickel	14.3	ug/L	1.00	1	08/31/20	08/31/20 22:57	1064
Zinc	25.9	ug/L	20.0	1	08/31/20	08/31/20 22:57	1064

Total Metals + Hardness Analytical Method: EPA 200.8 Preparation Method: 200.8

	Result	Units	RL Fla	ag Dil	Prepared	Analyzed	Analyst
Copper	5.0	ug/L	1.0	1	08/28/20	09/01/20 00:04	1 1064
Lead	ND	ug/L	1.0	1	08/28/20	09/01/20 18:55	5 1064
Nickel	13.8	ug/L	1.00	1	08/28/20	09/01/20 00:04	1 1064
Zinc	27.6	ug/L	20.0	1	08/28/20	09/01/20 00:04	1 1064
Hardness (Ca & Mg)	15	mg/L	0.66	1	08/28/20	09/01/20 00:04	1 1064

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 177374 on Case Narrative.

pH=2

<i></i> _	Result	Units	RL FI	ag Dil	Prepared	Analyzed	Analyst
	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Chloromethane	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Vinyl Chloride	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Bromomethane	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Chloroethane	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Trichlorofluoromethane	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Methylene Chloride	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Chloroform	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Carbon Tetrachloride	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Benzene	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Trichloroethene	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20082609

Sample ID: Effluent VSP-4 Date/Time Sampled: 08/26/2020 11:50 PSS Sample ID: 20082609-001

Matrix: WASTE WATER Date/Time Received: 08/26/2020 12:55

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 177374 on Case Narrative.

pH=2

·	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Bromodichloromethane	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Toluene	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Tetrachloroethylene	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Dibromochloromethane	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Chlorobenzene	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Ethylbenzene	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Bromoform	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	08/28/20	08/28/20 12:46	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	103	%	87-120	1	08/28/20	08/28/20 12:46	1011
4-Bromofluorobenzene	98	%	85-147	1	08/28/20	08/28/20 12:46	1011
Toluene-D8	101	%	88-110	1	08/28/20	08/28/20 12:46	1011

Total Suspended Solids

Analytical Method: SM 2540D -2011

	Result	Units	RL Flag	Dil	Prepared Analyzed Analyst
Suspended Solids	ND	mg/L	1.0	1	08/27/20 08/27/20 10:47 1061

Biochemical Oxygen Demand

Analytical Method: SM 5210B -2011

Start time: 26-Aug-20 16:00

ResultUnitsRLFlagPreparedAnalyzedAnalystBiochemical Oxygen Demand, 5 dayNDmg/L5.008/31/2008/31/2017:004005

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20082609

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

20082609: Analyses associated with analyst code 4005 were performed by Enviro-Chem Laboratories, Inc., 47 Loveton Circle, Suite K, Sparks, MD 21152

Analytical:

Volatile Organics Compounds (TVO)

Batch: 177374

Method exceedance: A target analyte was detected in the method blank; Chloromethane was 0.19 ppb in method blank.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SM 5210B -2011

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20082609

	a a						. 5	
Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Bat	ch Prepared	Analyzed
EPA 200.8	Effluent VSP-4	Initial	20082609-001	W	82888	177438	08/28/2020 13:05	09/01/2020 00:04
	82888-1-BKS	BKS	82888-1-BKS	W	82888	177438	08/28/2020 13:05	08/31/2020 23:59
	82888-1-BLK	BLK	82888-1-BLK	W	82888	177438	08/28/2020 13:05	08/31/2020 23:54
	Effluent VSP-4 S	MS	20082609-001 S	W	82888	177438	08/28/2020 13:05	09/01/2020 00:09
	FT-30 S	MS	20082717-001 S	W	82888	177438	08/28/2020 13:05	09/01/2020 02:34
	Effluent VSP-4 SD	MSD	20082609-001 S	W	82888	177438	08/28/2020 13:05	09/01/2020 00:15
	82888-1-BKS	Reanalysis	82888-1-BKS	W	82888	177464	08/28/2020 13:05	09/01/2020 15:20
	82888-1-BLK	Reanalysis	82888-1-BLK	W	82888	177464	08/28/2020 13:05	09/01/2020 15:15
	Effluent VSP-4	Reanalysis	20082609-001	W	82888	177479	08/28/2020 13:05	09/01/2020 18:55
EPA 200.8	Effluent VSP-4	Initial	20082609-001	W	82916	177435	08/31/2020 17:38	08/31/2020 22:57
	82916-1-BKS	BKS	82916-1-BKS	W	82916	177435	08/31/2020 17:38	08/31/2020 22:00
	82916-1-BLK	BLK	82916-1-BLK	W	82916	177435	08/31/2020 17:38	08/31/2020 21:55
	Influent200825 S	MS	20082502-001 S	W	82916	177435	08/31/2020 17:38	08/31/2020 22:42
	Influent200825 SD	MSD	20082502-001 S	W	82916	177435	08/31/2020 17:38	08/31/2020 22:47
	82916-1-BKS	Reanalysis	82916-1-BKS	W	82916	177465	08/31/2020 17:38	09/01/2020 15:20
	82916-1-BLK	Reanalysis	82916-1-BLK	W	82916	177465	08/31/2020 17:38	09/01/2020 15:16
	Effluent VSP-4	Reanalysis	20082609-001	W	82916	177505	08/31/2020 17:38	09/02/2020 13:27
EPA 624.1	Effluent VSP-4	Initial	20082609-001	W	82895	177374	08/28/2020 07:55	08/28/2020 12:46
	82895-1-BKS	BKS	82895-1-BKS	W	82895	177374	08/28/2020 07:55	08/28/2020 09:00
	82895-1-BLK	BLK	82895-1-BLK	W	82895	177374	08/28/2020 07:55	08/28/2020 10:53
	20200825g S	MS	20082612-001 S	W	82895	177374	08/28/2020 07:55	08/28/2020 14:16
	20200825g SD	MSD	20082612-001 S	W	82895	177374	08/28/2020 07:55	08/28/2020 14:39
SM 2540D -2011	Effluent VSP-4	Initial	20082609-001	W	177293	177293	08/27/2020 10:47	08/27/2020 10:47
	177293-1-BLK	BLK	177293-1-BLK	W	177293	177293	08/27/2020 10:47	08/27/2020 10:47
	001 D	MD	20082602-001 D	W	177293	177293	08/27/2020 10:47	08/27/2020 10:47
SM 5210B -2011	Effluent VSP-4	Initial	20082609-001	W	177679	177679	08/31/2020 17:00	08/31/2020 17:00

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20082609

Analytical Method: SM 2540D -2011

Seg Number: 177293 Matrix: Water

MB Sample Id: 177293-1-BLK

Parameter MB LOD RL Units Flag

Suspended Solids ND 0.5000 1.000 mg/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 177438 Matrix: Water Date Prep: 08/28/20

MB Sample Id: 82888-1-BLK LCS Sample Id: 82888-1-BKS

MB **LCS** LCS Limits **Units Spike Parameter** Flag Result **Amount** Result %Rec Copper <1.000 40.00 36.97 92 85-115 ug/L Lead <1.000 40.00 44.57 111 85-115 ug/L Nickel <1.000 40.00 35.67 89 85-115 ug/L Zinc <20.00 200 175.4 88 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 177435 Matrix: Water Date Prep: 08/31/20

MB Sample Id: 82916-1-BLK LCS Sample Id: 82916-1-BKS

MB LCS LCS **Spike** Limits **Units Parameter** Flag Result Amount Result %Rec Copper <1.000 40.00 39.11 98 85-115 ug/L Nickel 40.00 38.70 85-115 <1.000 97 ug/L Zinc 200 195.8 <20.00 98 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 177465 Matrix: Water Date Prep: 08/31/20

MB Sample Id: 82916-1-BLK LCS Sample Id: 82916-1-BKS

Parameter MB Spike LCS LCS Limits Units Flag
Result Amount Result %Rec

Lead <1.000 40.00 44.73 112 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP
Seq Number: 177438 Matrix: Waste Water Date Prep: 08/28/20

Parent Sample Id: 20082609-001 MS Sample Id: 20082609-001 S MSD Sample Id: 20082609-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	Limit	Units	Flag
Copper	4.979	40.00	42.25	93	42.43	94	70-130	1	25	ug/L	
Lead	<1.000	40.00	44.58	111	44.98	112	70-130	1	25	ug/L	
Nickel	13.84	40.00	49.99	90	50.05	91	70-130	1	25	ug/L	
Zinc	27.57	200	207	90	208.2	90	70-130	0	25	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20082609

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP Seq Number: 177464 Matrix: Water Date Prep: 08/28/20

REBLK Sample Id: 82888-1-BLK LCS Sample Id: 82888-1-BKS

Parameter	REBLK Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Copper	<1.000	40.00	38.40	96	85-115	ug/L	
Lead	<1.000	40.00	38.95	97	85-115	ug/L	
Nickel	<1.000	40.00	36.75	92	85-115	ug/L	
Zinc	<20.00	200	179.3	90	85-115	ug/L	

Analytical Method: EPA 200.8Prep Method:E200.8_PREPSeq Number:177465Matrix: WaterDate Prep:08/31/20

REBLK Sample Id: 82916-1-BLK LCS Sample Id: 82916-1-BKS

Parameter	REBLK Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units Flag
Copper	<1.000	40.00	40.47	101	85-115	ug/L
Nickel	<1.000	40.00	38.80	97	85-115	ug/L
Zinc	<20.00	200	201.1	101	85-115	ug/L

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20082609

Analytical Method: EPA 624 .1 Prep Method: E624PREP 177374 Seq Number: Matrix: Water Date Prep: 08/28/20

LCS Sample Id: 82895-1-BKS MB Sample Id: 82895-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethane	<1.000	50.00	41.88	84	54-148		ug/L	
Chloromethane	<1.000	50.00	44.31	89	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	45.53	91	5-195		ug/L	
Bromomethane	<1.000	50.00	43.22	86	15-185		ug/L	
Chloroethane	<1.000	50.00	43.36	87	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	49.48	99	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	50.24	100	50-150		ug/L	
Methylene Chloride	<1.000	50.00	49.94	100	60-140		ug/L	
trans-1,2-dichloroethene	<1.000	50.00	50.58	101	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	50.04	100	70-130		ug/L	
Chloroform	<1.000	50.00	47.84	96	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	53.37	107	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	53.03	106	70-130		ug/L	
Benzene	<1.000	50.00	51.99	104	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	53.09	106	70-130		ug/L	
Trichloroethene	<1.000	50.00	52.42	105	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	53.22	106	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	56.03	112	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	53.92	108	25-175		ug/L	
Toluene	<1.000	50.00	50.91	102	70-130		ug/L	
trans-1,3-dichloropropene	<1.000	50.00	55.86	112	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	53.04	106	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	50.64	101	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	55.48	111	70-135		ug/L	
Chlorobenzene	<1.000	50.00	52.06	104	65-135		ug/L	
Ethylbenzene	<1.000	50.00	53.95	108	60-140		ug/L	
Bromoform	<1.000	50.00	55.22	110	70-130		ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	52.31	105	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	52.87	106	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	51.77	104	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	53.92	108	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	103		99		87-120	%		
4-Bromofluorobenzene	99		98		85-147	%		
Toluene-D8	100		99		88-110	%		

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits L = Recovery of BS,BSD or both below the laboratory control limits

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

DSS CL	IENT: WSP USA	OFFIC	E LOCATION:	Hernda	n, VA	PSS Wo	rk Order	#: 2	008	260	9						PAC	SE_	OF	1
BILL TO	(if different):	PHON	E#: 703-	-709-0	500	Matrix C SW=Surfa		DW =Dr	inking V	Vater	GW =Gro	ound Wat	er WV	V=Waste	Water	0 =0il				-Air WI =Wipe
CONTA	et: Enc Johnson	1 EMAIL	eric.jol	inson@i	NSp.con			Preser			$\overline{}$	HNOS								Preservative Codes
PROJEC	PROJECT NAME: KOP - FIEX PROJECT #: 31401545,010-04						G=GRAB	Analys Metho	d /	7	B	\$	7	7	7	7	$\overline{}$	7	1	1 - HCL 2 - H,SO
SITE LC	SITE LOCATION: Hanover, MD P.O. #:						E G	Requir	/ I V	13	3	3/				/	/	/	//	3 - HNO ₃ 4 - NaOH 5 - E624KIT
SAMPL	SAMPLER(S): Shannan Burke DW CERT #:					ONTA	LE TY MPOS	/	5/	200	300	5/	0/	//		//	//			6 - ICE 7 - Sodium
PSSI			DATE SAMPLED	TIME	MATRIX Use Codes	# OF CONTAINERS	SAMPLE TYPE: C=COMPOSITE	S	3/8	35	1/2	5/0	5/		/	/	/			Thiosulfate 8 - Ascorbic Acid
1	Effluent VS	P-4	8/26/20		WW	7	6	X	X	X	A X	X								9 - TerraCore Kit
						•														
						18														
													189							
											734							An		1855
	107 108												2/3/							777
		,																		
																				100
Relinquis	hed By: (1)	Date	Time	Received By	1)			Reque	ested '	TAT (O	ne TAT	per C	OC)			esent:	101	ES		4.34
Relinquished By: (1) Shale 8/26/20 1255 Received By: (2) Date Time Received By:		0				3-Day 2-Day Emergency Other Custo			dy Sea	dy Seal: Cooler-Isract										
Relinquished By: (2) Date Time		Time	Received By:		STATE RESULTS MD DE (OTHER			ILTS R												
Relinquis	Relinquished By: (3) Date		Time	Received By:							Special Instructions: Dissol ve				ed metals field-filtered					
									metals = Cu, Pb, Ni, Zn					11174 60						
Relinquis	Relinquished By: (4) Date Time Rece		Received By:	eived By:			Standard 10-													

This chain of custody is a legal document. The client (PSS Client), by signing, or having client's agent sign, this "Chain of Custody Form", agrees to pay for the above requested services per the latest version of the Service Brochure of PSS-provided quotation and all attorney's or others reasonable fees if collection becomes necessary.

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20082609

Client Name WSP USA - Herndon Received By Thomas Wingate

Delivered By Client

Tracking No Not Applicable

Logged In By Thomas Wingate

Shipping Container(s)

No. of Coolers 1

Custody Seal(s) Intact? Yes Temp (deg C) 4.4
Seal(s) Signed / Dated? Yes Temp Blank Present Yes

DocumentationSampler NameShannon Burke

COC agrees with sample labels?

Yes

MD DW Cert. No. N/A

Chain of Custody

Sample Container Custody Seal(s) Intact? Not Applicable

Appropriate for Specified Analysis?

Yes

Seal(s) Signed / Dated Not Applicable
Yes

Yes

Labeled and Labels Legible? Yes

Holding Time Total No. of Samples Received 1

All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7

Preservation

Total Metals (pH<2)Yes Dissolved Metals, filtered within 15 minutes of collection (pH<2)Yes Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	Time Winde	Date: 08/26/2020	
•	Thomas Wingate		

PM Review and Approval: July 7 loge

Amber Confer
Page 11 of 11

Date: 08/26/2020

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20082610

September 10, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20082610

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010-04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20082610**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on September 30, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20082610

Project ID: 31401545.010-04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 08/26/2020 at 12:55 pm

PSS Sample ID	Sample ID	Matrix Date/Time Collected
20082610-001	Effluent VSP-4	WASTE WATER 08/26/20 11:50
20082610-002	TB-082620	WATER 08/26/20 12:55

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20082610

Sample ID: Effluent VSP-4 Date/Time Sampled: 08/26/2020 11:50 PSS Sample ID: 20082610-001

Matrix: WASTE WATER Date/Time Received: 08/26/2020 12:55

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	09/09/20	09/09/20 17:11	1 1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	105	%	80-120	1	09/09/20	09/09/20 17:1	1 1045

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20082610

Sample ID: TB-082620 Date/Time Sampled: 08/26/2020 12:55 PSS Sample ID: 20082610-002

Matrix: WATER Date/Time Received: 08/26/2020 12:55

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 177374 on Case Narrative.

pH=2

pH=2							
	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Chloromethane	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Vinyl Chloride	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Bromomethane	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Chloroethane	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Trichlorofluoromethane	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Methylene Chloride	3.5	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Chloroform	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Carbon Tetrachloride	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Benzene	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Trichloroethene	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Bromodichloromethane	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Toluene	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Tetrachloroethylene	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Dibromochloromethane	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Chlorobenzene	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Ethylbenzene	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Bromoform	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	08/28/20	08/28/20 13:08	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	102	%	87-120	1	08/28/20	08/28/20 13:08	1011
4-Bromofluorobenzene	97	%	85-147	1	08/28/20	08/28/20 13:08	1011
Toluene-D8	100	%	88-110	1	08/28/20	08/28/20 13:08	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20082610

Sample ID: TB-082620

Date/Time Sampled: 08/26/2020 12:55 PSS Sample ID: 20082610-002

Matrix: WATER Date/Time Received: 08/26/2020 12:55

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	09/09/20	09/09/20 17:34	1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	104	%	80-120	1	09/09/20	09/09/20 17:34	1045

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20082610

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Analytical:

Volatile Organics Compounds (TVO)

Batch: 177374

Method exceedance: A target analyte was detected in the method blank; Chloromethane was 0.19 ppb in method blank.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20082610

Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Ba	tch Prepared	Analyzed
TB-082620	Initial	20082610-002	W	82895	177374	08/28/2020 07:55	08/28/2020 13:08
82895-1-BKS	BKS	82895-1-BKS	W	82895	177374	08/28/2020 07:55	08/28/2020 09:00
82895-1-BLK	BLK	82895-1-BLK	W	82895	177374	08/28/2020 07:55	08/28/2020 10:53
20200825g S	MS	20082612-001 S	W	82895	177374	08/28/2020 07:55	08/28/2020 14:16
20200825g SD	MSD	20082612-001 S	W	82895	177374	08/28/2020 07:55	08/28/2020 14:39
Effluent VSP-4	Initial	20082610-001	W	83034	177688	09/09/2020 13:49	09/09/2020 17:11
TB-082620	Initial	20082610-002	W	83034	177688	09/09/2020 13:49	09/09/2020 17:34
83034-1-BKS	BKS	83034-1-BKS	W	83034	177688	09/09/2020 13:49	09/09/2020 15:20
83034-1-BLK	BLK	83034-1-BLK	W	83034	177688	09/09/2020 13:49	09/09/2020 16:49
83034-1-BSD	BSD	83034-1-BSD	W	83034	177688	09/09/2020 13:49	09/09/2020 15:42
	ΓB-082620 82895-1-BKS 82895-1-BLK 20200825g S 20200825g SD Effluent VSP-4 ΓB-082620 83034-1-BKS 83034-1-BLK	TB-082620 Initial 82895-1-BKS BKS 82895-1-BLK BLK 20200825g S MS 20200825g SD MSD Effluent VSP-4 Initial TB-082620 Initial 83034-1-BKS BKS 83034-1-BKS BKS	TB-082620 Initial 20082610-002 82895-1-BKS BKS 82895-1-BKS 82895-1-BLK BLK 82895-1-BLK 20200825g S MS 20082612-001 S 20200825g SD MSD 20082612-001 S Effluent VSP-4 Initial 20082610-001 TB-082620 Initial 20082610-002 83034-1-BKS BKS 83034-1-BKS 83034-1-BLK BLK 83034-1-BLK	TB-082620 Initial 20082610-002 W 82895-1-BKS BKS 82895-1-BKS W 82895-1-BLK BLK 82895-1-BLK W 20200825g S MS 20082612-001 S W 20200825g SD MSD 20082612-001 S W Effluent VSP-4 Initial 20082610-001 W TB-082620 Initial 20082610-002 W 83034-1-BKS BKS 83034-1-BKS W 83034-1-BLK BLK 83034-1-BLK W	TB-082620 Initial 20082610-002 W 82895 82895-1-BKS BKS 82895-1-BKS W 82895 82895-1-BLK BLK 82895-1-BLK W 82895 20200825g S MS 20082612-001 S W 82895 20200825g SD MSD 20082612-001 S W 82895 Effluent VSP-4 Initial 20082610-001 W 83034 TB-082620 Initial 20082610-002 W 83034 83034-1-BKS BKS 83034-1-BKS W 83034 83034-1-BKS BLK 83034-1-BLK W 83034	TB-082620 Initial 20082610-002 W 82895 177374 82895-1-BKS BKS 82895-1-BKS W 82895 177374 82895-1-BLK BLK 82895-1-BLK W 82895 177374 20200825g S MS 20082612-001 S W 82895 177374 20200825g SD MSD 20082612-001 S W 82895 177374 Effluent VSP-4 Initial 20082610-001 W 83034 177688 TB-082620 Initial 20082610-002 W 83034 177688 83034-1-BKS BKS 83034-1-BKS W 83034 177688 83034-1-BKS BKS 83034-1-BLK W 83034 177688	TB-082620 Initial 20082610-002 W 82895 177374 08/28/2020 07:55 82895-1-BKS BKS 82895-1-BKS W 82895 177374 08/28/2020 07:55 82895-1-BLK BLK 82895-1-BLK W 82895 177374 08/28/2020 07:55 820200825g S MS 20082612-001 S W 82895 177374 08/28/2020 07:55 820200825g SD MSD 20082612-001 S W 82895 177374 08/28/2020 07:55 82ffluent VSP-4 Initial 20082610-001 W 83034 177688 09/09/2020 13:49 83034-1-BKS BKS 83034-1-BKS W 83034 177688 09/09/2020 13:49 83034-1-BKS BKS 83034-1-BKS W 83034 177688 09/09/2020 13:49 83034-1-BKS BKS 83034-1-BLK W 83034 177688 09/09/2020 13:49

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20082610

Analytical Method: EPA 624 .1

Seq Number: 177374 Matrix: Water Date Prep: 08/28/20

MB Sample Id: 82895-1-BLK LCS Sample Id: 82895-1-BKS

MB Sample Id: 82	895-1-BLK	L	.CS Sample	10: 82895	-1-BK2			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethane	<1.000	50.00	41.88	84	54-148		ug/L	
Chloromethane	<1.000	50.00	44.31	89	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	45.53	91	5-195		ug/L	
Bromomethane	<1.000	50.00	43.22	86	15-185		ug/L	
Chloroethane	<1.000	50.00	43.36	87	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	49.48	99	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	50.24	100	50-150		ug/L	
Methylene Chloride	<1.000	50.00	49.94	100	60-140		ug/L	
trans-1,2-dichloroethene	<1.000	50.00	50.58	101	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	50.04	100	70-130		ug/L	
Chloroform	<1.000	50.00	47.84	96	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	53.37	107	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	53.03	106	70-130		ug/L	
Benzene	<1.000	50.00	51.99	104	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	53.09	106	70-130		ug/L	
Trichloroethene	<1.000	50.00	52.42	105	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	53.22	106	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	56.03	112	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	53.92	108	25-175		ug/L	
Toluene	<1.000	50.00	50.91	102	70-130		ug/L	
trans-1,3-dichloropropene	<1.000	50.00	55.86	112	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	53.04	106	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	50.64	101	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	55.48	111	70-135		ug/L	
Chlorobenzene	<1.000	50.00	52.06	104	65-135		ug/L	
Ethylbenzene	<1.000	50.00	53.95	108	60-140		ug/L	
Bromoform	<1.000	50.00	55.22	110	70-130		ug/L	
1,1,2,2-Tetrachloroethane		50.00	52.31	105	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	52.87	106	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	51.77	104	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	53.92	108	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	103		99		87-120	%		
4-Bromofluorobenzene	99		98		85-147	%		
Toluene-D8	100		99		88-110	%		

Analytical Method: SW-846 8260 B-ModifiedPrep Method: SW5030BSeq Number:177688Matrix:WaterDate Prep:09/09/20MB Sample Id:83034-1-BLKLCS Sample Id:83034-1-BKSLCSD Sample Id:83034-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxane)	<1.000	30.00	39.03	130	34.26	114	50-150	13	20	ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS t Flag		.CSD esult	LCSD Flag	Limits	Units		
Toluene-D8	103		106			102		80-120	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20082610

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Batimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

D	PSS CLIEN	TE WSP USI	A	OFFICE	E LOCATION:	Hemdon	VA	PSS W	ork Order	#: 2	508	261	0				DΛ	GE.	10	· [
	3ILL TO (if			PHONE	=#: 703-	709-6	500	Matrix (Codes:	11000				ntos MB	41 Mosts Ms	har 0 0:					hada hadina
	CONTACT:	Eric Johns	00		eric, joh					Prese	rvatives Codes	HCI	GW=Ground W	alei wi	w=waste wa	ter u =oi	3=50	II SUL	=50110	A=AIr	WI=Wipe Preservative
F	PROJECT	NAME: KOP-FI	ex			31401545		1	G=GRAB	Anoha	sin/ /		/ / / 	/	-	/	+	-		71	Codes - HCL - H,SO,
1	SITE LOCA	rion: Hanover	- MD		P.O. #	:		NERS		Requi	red 2	3	RY /		//	//	pr/			/ 3	- HNO ₃ - NaOH
5	SAMPLER(s): Shannan	Burke		DW CERT #			ONTA	FTYP		300	10	///	//	//	//	/ /	/ /	/ /	6	- E624KIT - ICE - Sodium
0	PSS ID		DENTIFICATION		DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes	# OF CONTAINERS	SAMPLE TYPE: C=COMPOSITE	K.	red on	5/	//		//	//				8	Thiosulfate - Ascorbic Acid
Ī	1	Effluent	VSP-L	+	8/26/20		WW	3	G	X										9	- TerraCore Kit
Ī	2	TB-082				_	TB	4	·	X	X										
I														7.6							
İ																					
İ																					-
I		3 1																	By		
ı																					
ı						- 1															
F		1		,																o dan a	
İ																					
R	elinquishe	d By: (1)	Date	9	Time	Received By:	11					TAT (O	ne TAT per			Present:	20	ES	TB:0	4.30	
		Ben (1)			1255		2 Km	5)	_	xt Day		3-Day Emergency		er Cu	stody Se	al: Co	oler-T	Intue	+	Totale.
R	elinquishe	d By: (2)	Date	•	Time	Received By:					D	LTS R	PA VA	0:] WV	100	coolers:				. 1 -	5.4°L
R	elinquished	J By: (3)	Date	•	Time	Received By:			-	COM	HER _	E?	Special Ins	truction	s:	pping Ca	irrier:	, MV	V		
L											v 🗆 w		Stan)-do	24	TH	T		
R	elinquished	I By: (4)	Date		Time	Received By:			70	EDD FO	RMAT T	YPE		u	¬		J				10
L		200 CO (100 CO (100 CO)																			

This chain of custody is a legal document. The client (PSS Client), by signing, or having client's agent sign, this "Chain of Custody Form", agrees to pay for the above requested services per the latest version of the Service Brochure of PSS-provided quotation and all attorney's or others least on the service becomes necessary.

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20082610

Client Name WSP USA - Herndon Received By Thomas Wingate

Disposal Date 09/30/2020 Date Received 08/26/2020 12:55:00 PM

Delivered By Client

Tracking No Not Applicable

Logged In By Thomas Wingate

Shipping Container(s)

No. of Coolers 1

Custody Seal(s) Intact? Yes Temp (deg C) 5.4
Seal(s) Signed / Dated? Yes Temp Blank Present Yes

DocumentationSampler NameShannon BurkeCOC agrees with sample labels?YesMD DW Cert. No.N/A

Chain of Custody Yes

Sample Container Custody Seal(s) Intact? Not Applicable

Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable

Intact? Yes Labeled and Labels Legible? Yes

Holding Time Total No. of Samples Received

All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7

Preservation

Total Metals (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	The Winds	Date: 08/26/2020	
•	Thomas Wingate		_

PM Review and Approval: The Flore

Amber Confer
Page 11 of 11

Date: 08/26/2020

Version 1.000

2

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20092811

October 12, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20092811

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010-04

Version 1.000

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20092811**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on November 2, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

ELLE ACC

Page 1 of 11

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20092811

Project ID: 31401545.010-04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 09/28/2020 at 12:38 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20092811-001	Effluent VSP-4	WASTE WATER	09/28/20 09:25	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20092811

Sample ID: Effluent VSP-4 Date/Time Sampled: 09/28/2020 09:25 PSS Sample ID: 20092811-001

Matrix: WASTE WATER Date/Time Received: 09/28/2020 12:38

Dissolved Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
Copper	3.8	ug/L	1.0	1	09/30/20	09/30/20 14:52	1051
Lead	ND	ug/L	1.0	1	09/30/20	09/30/20 14:52	1051
Nickel	15.6	ug/L	1.00	1	09/30/20	09/30/20 14:52	1051
Zinc	23.2	ug/L	20.0	1	09/30/20	09/30/20 14:52	1051

Total Metals + Hardness Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Copper	6.2	ug/L	1.0	1	09/30/20	09/30/20 19:19	1051
Lead	ND	ug/L	1.0	1	09/30/20	09/30/20 19:19	1051
Nickel	16.3	ug/L	1.00	1	09/30/20	09/30/20 19:19	1051
Zinc	28.1	ug/L	20.0	1	09/30/20	09/30/20 19:19	1051
Hardness (Ca & Mg)	20	mg/L	0.66	1	09/30/20	09/30/20 19:19	1051

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

n	н	_	2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
Chloromethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
Vinyl Chloride	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
Bromomethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
Chloroethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
Trichlorofluoromethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
Methylene Chloride	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
Chloroform	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
Carbon Tetrachloride	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
Benzene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
Trichloroethene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:30	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20092811

Sample ID: Effluent VSP-4 Date/Time Sampled: 09/28/2020 09:25 PSS Sample ID: 20092811-001 Date/Time Received: 09/28/2020 12:38 **Matrix: WASTE WATER** Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624 pH=2 Result Units RL Flag Dil **Prepared** Analyzed **Analyst** Bromodichloromethane ND 1.0 1 09/29/20 09/29/20 14:30 1011 ug/L 09/29/20 09/29/20 14:30 1011 cis-1,3-Dichloropropene ND ug/L 1.0 1 Toluene ND ug/L 1.0 1 09/29/20 09/29/20 14:30 1011 ND 1.0 09/29/20 09/29/20 14:30 1011 trans-1,3-dichloropropene ug/L 1 1,1,2-Trichloroethane 1.0 09/29/20 09/29/20 14:30 1011 ND ug/L 1 Tetrachloroethylene ND ug/L 1.0 1 09/29/20 09/29/20 14:30 1011 Dibromochloromethane ND ug/L 1.0 1 09/29/20 09/29/20 14:30 1011 Chlorobenzene ND ug/L 1.0 09/29/20 09/29/20 14:30 1011 1 Ethylbenzene ND ug/L 1.0 09/29/20 09/29/20 14:30 1011 1 ug/L ND 1.0 09/29/20 09/29/20 14:30 1011 **Bromoform** 1 1,1,2,2-Tetrachloroethane ND ug/L 1.0 1 09/29/20 09/29/20 14:30 1011 ND ug/L 1.0 1 09/29/20 09/29/20 14:30 1011 1,3-Dichlorobenzene 1.4-Dichlorobenzene ND ug/L 1.0 1 09/29/20 09/29/20 14:30 1011 1.2-Dichlorobenzene ND ua/L 1.0 1 09/29/20 09/29/20 14:30 1011 Limits Surrogate(s) Recovery Dibromofluoromethane 98 % 87-120 1 09/29/20 09/29/20 14:30 1011 4-Bromofluorobenzene 96 % 85-147 1 09/29/20 09/29/20 14:30 1011 Toluene-D8 99 88-110 1 09/29/20 09/29/20 14:30 1011 % **Total Suspended Solids** Analytical Method: SM 2540D -2011 Units Dil **Prepared Analyzed** Result RLFlag Analyst 09/29/20 09/29/20 09:33 1061 Suspended Solids ND mg/L 1.0 1 **Biochemical Oxygen Demand** Analytical Method: SM 5210B -2011 Start time: 28-Sep-20 16:45 **Units** RL Flag **Prepared** Result Analyzed Analyst Biochemical Oxygen Demand, 5 day ND mg/L 5.0 10/03/20 10/03/20 16:45 4005

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20092811

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

20092811: Analyses associated with analyst code 4005 were performed by Enviro-Chem Laboratories, Inc., 47 Loveton Circle, Suite K, Sparks, MD 21152

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SM 5210B -2011

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20092811

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical	Batch Prepared	Analyzed
EPA 200.8	Effluent VSP-4	Initial	20092811-001	W	83304	178374	09/30/2020 17:12	09/30/2020 19:19
	83304-1-BKS	BKS	83304-1-BKS	W	83304	178374	09/30/2020 17:12	09/30/2020 19:14
	83304-1-BLK	BLK	83304-1-BLK	W	83304	178374	09/30/2020 17:12	09/30/2020 19:09
	Effluent VSP-4 S	MS	20092811-001 S	W	83304	178374	09/30/2020 17:12	09/30/2020 19:24
	Effluent VSP-4 SD	MSD	20092811-001 S	W	83304	178374	09/30/2020 17:12	09/30/2020 19:28
EPA 200.8	Effluent VSP-4	Initial	20092811-001	W	83298	178349	09/30/2020 13:37	09/30/2020 14:52
	83298-1-BKS	BKS	83298-1-BKS	W	83298	178349	09/30/2020 13:37	09/30/2020 14:48
	83298-1-BLK	BLK	83298-1-BLK	W	83298	178349	09/30/2020 13:37	09/30/2020 14:43
	Effluent VSP-4 S	MS	20092811-001 S	W	83298	178349	09/30/2020 13:37	09/30/2020 14:57
	Effluent VSP-4 SD	MSD	20092811-001 S	W	83298	178349	09/30/2020 13:37	09/30/2020 15:02
EPA 624.1	Effluent VSP-4	Initial	20092811-001	W	83294	178312	09/29/2020 09:44	09/29/2020 14:30
	83294-1-BKS	BKS	83294-1-BKS	W	83294	178312	09/29/2020 09:44	09/29/2020 10:40
	83294-1-BLK	BLK	83294-1-BLK	W	83294	178312	09/29/2020 09:44	09/29/2020 12:10
	TB-092820 S	MS	20092812-002 S	W	83294	178312	09/29/2020 09:44	09/29/2020 15:38
	TB-092820 SD	MSD	20092812-002 S	W	83294	178312	09/29/2020 09:44	09/29/2020 16:00
SM 2540D -2011	Effluent VSP-4	Initial	20092811-001	W	178276	178276	09/29/2020 09:33	09/29/2020 09:33
	178276-1-BLK	BLK	178276-1-BLK	W	178276	178276	09/29/2020 09:33	09/29/2020 09:33
	001 D	MD	20092813-001 D	W	178276	178276	09/29/2020 09:33	09/29/2020 09:33
SM 5210B -2011	Effluent VSP-4	Initial	20092811-001	W	178643	178643	10/03/2020 16:45	10/03/2020 16:45

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20092811

Analytical Method: SM 2540D -2011

Seq Number: 178276 Matrix: Water

MB Sample Id: 178276-1-BLK

Parameter MB LOD RL Units Flag

Suspended Solids ND 0.5000 1.000 mg/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 178349 Matrix: Water Date Prep: 09/30/20

MB Sample Id: 83298-1-BLK LCS Sample Id: 83298-1-BKS

MB **Spike** LCS LCS Limits Units **Parameter** Flag Result Result Amount %Rec Copper <1.000 40.00 40.94 102 85-115 ug/L Lead <1.000 40.00 39.26 98 85-115 ug/L Nickel <1.000 40.00 42.63 107 85-115 ug/L Zinc <20.00 200 214.1 107 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 178374 Matrix: Water Date Prep: 09/30/20

MB Sample Id: 83304-1-BLK LCS Sample Id: 83304-1-BKS

MB LCS LCS Units Limits **Spike Parameter** Flag Result Amount Result %Rec Copper <1.000 40.00 40.36 101 85-115 ug/L <1.000 40.00 42.62 107 85-115 Lead ug/L Nickel <1.000 40.00 40.67 102 85-115 ug/L 85-115 ug/L Zinc <20.00 200 193.8 97

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP
Seq Number: 178349 Matrix: Waste Water Date Prep: 09/30/20

Parent Sample Id: 20092811-001 MS Sample Id: 20092811-001 S MSD Sample Id: 20092811-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Copper	3.827	40.00	45.63	105	44.77	102	70-130	3	25	ug/L	
Lead	<1.000	40.00	39.33	98	38.51	96	70-130	2	25	ug/L	
Nickel	15.61	40.00	57.55	105	57.80	105	70-130	0	25	ug/L	
Zinc	23.18	200	233.5	105	232.5	105	70-130	0	25	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20092811

Analytical Method: EPA 200.8Prep Method:E200.8_PREPSeq Number:178374Matrix:Waste WaterDate Prep:09/30/20

Parent Sample Id: 20092811-001 MS Sample Id: 20092811-001 S MSD Sample Id: 20092811-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Copper	6.153	40.00	46.26	100	46.22	100	70-130	0	25	ug/L	
Lead	<1.000	40.00	41.94	105	43.18	108	70-130	3	25	ug/L	
Nickel	16.26	40.00	53.82	94	53.18	92	70-130	2	25	ug/L	
Zinc	28.12	200	224.7	98	228.5	100	70-130	2	25	ug/L	

Analytical Method: EPA 624 .1
Seq Number: 178312 Matrix: Water Prep Method: E624PREP
Date Prep: 09/29/20

MB Sample Id: 83294-1-BLK LCS Sample Id: 83294-1-BKS

IVIB Sample Id: 83294	-1-BLK		CS Sample	iu. 03294	-1-DN3		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Un	its Flag
Dichlorodifluoromethane	<1.000	50.00	29.03	58	54-148	ug	_J /L
Chloromethane	<1.000	50.00	37.39	75	1-205	ug	j/L
Vinyl Chloride	<1.000	50.00	39.73	79	5-195	ug	_J /L
Bromomethane	<1.000	50.00	41.51	83	15-185	ug	_J /L
Chloroethane	<1.000	50.00	43.83	88	40-160	ug	g/L
Trichlorofluoromethane	<1.000	50.00	43.62	87	50-150	ug	g/L
1,1-Dichloroethene	<1.000	50.00	44.32	89	50-150	ug	J/L
Methylene Chloride	<1.000	50.00	43.15	86	60-140	ug	J/L
trans-1,2-dichloroethene	<1.000	50.00	45.99	92	70-130	ug	g/L
1,1-Dichloroethane	<1.000	50.00	45.18	90	70-130	ug	J/L
Chloroform	<1.000	50.00	43.17	86	70-135	ug	J/L
1,1,1-Trichloroethane	<1.000	50.00	44.10	88	70-130	ug	J/L
Carbon Tetrachloride	<1.000	50.00	45.68	91	70-130	ug	_J /L
Benzene	<1.000	50.00	44.43	89	65-135	ug	_J /L
1,2-Dichloroethane	<1.000	50.00	43.33	87	70-130	ug	_J /L
Trichloroethene	<1.000	50.00	45.27	91	65-135	ug	
1,2-Dichloropropane	<1.000	50.00	43.71	87	35-165	ug	
Bromodichloromethane	<1.000	50.00	46.66	93	65-135	ug	
cis-1,3-Dichloropropene	<1.000	50.00	44.30	89	25-175	-	_J /L
Toluene	<1.000	50.00	45.72	91	70-130	-	_J /L
trans-1,3-dichloropropene	<1.000	50.00	45.06	90	50-150	ug	
1,1,2-Trichloroethane	<1.000	50.00	46.59	93	70-130	ug	_J /L
Tetrachloroethylene	<1.000	50.00	48.81	98	70-130	ug	
Dibromochloromethane	<1.000	50.00	47.58	95	70-135	ug	
Chlorobenzene	<1.000	50.00	47.92	96	65-135	ug	
Ethylbenzene	<1.000	50.00	48.34	97	60-140	-	_J /L
Bromoform	<1.000	50.00	49.04	98	70-130	ug	
1,1,2,2-Tetrachloroethane	<1.000	50.00	48.20	96	60-140	ug	
1,3-Dichlorobenzene	<1.000	50.00	51.94	104	70-130	ug	
1,4-Dichlorobenzene	<1.000	50.00	50.98	102	65-135	ug	
1,2-Dichlorobenzene	<1.000	50.00	51.92	104	65-135	ug	g/L
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units	
Dibromofluoromethane	99		98		87-120	%	
4-Bromofluorobenzene	95		96		85-147	%	
Toluene-D8	99		98		88-110	%	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20092811

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

PSS CLIEN	IT: WSP	OFFICI	E LOCATION:	terndo	∩, ∨A	PSS Wo	rk Order	#: 20	049	118							PAC	GE _	OF	1
BILL TO (if	different):	PHONE	#:703-	709 - b	500	Matrix C					GW =Gro	und Wat	er W V	V =Waste	Water	0 =0il	S =Soi	SOL=	Solid A=/	Nr WI =Wipe
CONTACT:	Eric Johnson	EMAIL	eric.jot	mon @	wsp.com		AB		vatives Codes	1			3	3						Preservative Codes
PROJECT	NAME: KOP-FIEX		PROJECT #	3140154	45.010	φ	G=GRAB	Analys Metho	d /	-/	/	1	1	5/2	/	7	7	/		1 - HCL 2 - H ₂ SO ₄ 3 - HNO ₄
SITE LOCA	ATION: Hanover, Ma	d	P.O. #			# OF CONTAINERS	PE:	Requir 3	ed N			Tall	1º	/			/	/	//	4 - NaOH 5 - E624KJT
	(s): Lauren Johnso		DW CERT #			CONT	YLE JY	/	. /	2/	//	200	300/	//	/	/				6 - ICE 7 - Sodium
PSS ID	SAMPLE IDENTIFICA	J. T. S. W. J. S. S. S. S. S. S. S. S. S. S. S. S. S.	DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes	# OF	SAMPLE TYPE: C=COMPOSITE	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	80%	7/2	2/2	A discharate	3/			/				Thiosulfate 8 - Ascorbic Acid 9 - TerraCore Kit
	Effluent VSP-	4	9/28/20		ww	7	G	X	X	X	X	X								S TOTAL STATE OF THE STATE OF T
			allowing.																	
							1													
												-								
		,																		
	,																			
																		3 1		
Relinquishe	ed By: (1)	Date	Time	Received By	1/			4 Requ □ 5-0		TAT (C	One TAT 3-Day		OC) 2-Da		Ice Pr	esent:	PP	E S	75:	3.5°
	n Jdnon	9/28/20		10	. 0	0	.63	☐ Ne	xt Day		Emerge	ency §	Othe	er	2012			100000000000000000000000000000000000000	Intec-	
Relinquishe	ed By: (2)	Date	Time	Received By				ME OT		E 📑	PA	VA [):] WV		_		rrier: C	_		-3.42
Relinquishe	ed By: (3)	Date	Time	Received By				СОМ	PLIANO		sta	al Instr	ird	s:	lav	TA	Т			
Relinquishe	ed By: (4)	Date	Time	Received By		Ď.		EDD FO	ORMAT T	YPE	me dis	tals Solv	-Z	met met	u, r	ri, F	26 2 .1d	hai Filt	ered	

Client Name

Sample Receipt Checklist

Received By

Thomas Wingate

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20092811

WSP USA - Herndon

Disposal Date 11/02/2020 Date Received 09/28/2020 12:38:00 PM **Delivered By** Client Not Applicable **Tracking No** Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 3.4 Seal(s) Signed / Dated? Temp Blank Present Yes Yes Sampler Name Lauren Johnson Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 Preservation

Total Metals	(pH<2)	Yes
Dissolved Metals, filtered within 15 minutes of collection	(pH<2)	Yes
Orthophosphorus, filtered within 15 minutes of collection		N/A
Cyanides	(pH>12)	N/A
Sulfide	(pH>9)	N/A
TOC, DOC (field filtered), COD, Phenols	(pH<2)	N/A
TOX, TKN, NH3, Total Phos	(pH<2)	N/A
VOC, BTEX (VOA Vials Rcvd Preserved)	(pH<2)	Yes
Do VOA vials have zero headspace?		Yes
624 VOC (Rcvd at least one unpreserved VOA vial)		No
524 VOC (Rcvd with trip blanks)	(pH<2)	N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	Thomas Wingate	Date: 09/28/2020	
	A L. 4-1-1.		

PM Review and Approval:

Amber Confer Page 11 of 11 Date: 09/29/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20092812

October 12, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20092812

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010-04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20092812**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on November 2, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20092812

Project ID: 31401545.010-04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 09/28/2020 at 12:38 pm

PSS Sample ID	Sample ID	Matrix Date/Time Collected
20092812-001	Effluent VSP-4	WASTE WATER 09/28/20 09:25
20092812-002	TB-092820	WATER 09/28/20 10:49
20092812-002	TB-092820	WATER 09/28/20 10:49

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20092812

Sample ID: Effluent VSP-4 Date/Time Sampled: 09/28/2020 09:25 PSS Sample ID: 20092812-001

Matrix: WASTE WATER Date/Time Received: 09/28/2020 12:38

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	6.3	ug/L	1.0	1	10/12/20	10/12/20 13:32	2 1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	93	%	80-120	1	10/12/20	10/12/20 13:3	2 1045

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20092812

Sample ID: TB-092820 Date/Time Sampled: 09/28/2020 10:49 **PSS Sample ID: 20092812-002**

Matrix: WATER Date/Time Received: 09/28/2020 12:38

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

pН	= 2

pH=2 	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Chloromethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Vinyl Chloride	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Bromomethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Chloroethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Trichlorofluoromethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Methylene Chloride	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Chloroform	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Carbon Tetrachloride	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Benzene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Trichloroethene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Bromodichloromethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Toluene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Tetrachloroethylene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Dibromochloromethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Chlorobenzene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Ethylbenzene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Bromoform	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	09/29/20	09/29/20 14:07	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	98	%	87-120	1	09/29/20	09/29/20 14:07	1011
4-Bromofluorobenzene	95	%	85-147	1	09/29/20	09/29/20 14:07	1011
Toluene-D8	99	%	88-110	1	09/29/20	09/29/20 14:07	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20092812

Sample ID: TB-092820 Date/Time Sampled: 09/28/2020 10:49 PSS Sample ID: 20092812-002

Matrix: WATER Date/Time Received: 09/28/2020 12:38

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	10/12/20	10/12/20 13:54	1 1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	94	%	80-120	1	10/12/20	10/12/20 13:54	4 1045

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20092812

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20092812

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical	Batch Prepared	Analyzed
EPA 624.1	TB-092820	Initial	20092812-002	W	83294	178312	09/29/2020 09:44	09/29/2020 14:07
	83294-1-BKS	BKS	83294-1-BKS	W	83294	178312	09/29/2020 09:44	09/29/2020 10:40
	83294-1-BLK	BLK	83294-1-BLK	W	83294	178312	09/29/2020 09:44	09/29/2020 12:10
	TB-092820 S	MS	20092812-002 S	W	83294	178312	09/29/2020 09:44	09/29/2020 15:38
	TB-092820 SD	MSD	20092812-002 S	W	83294	178312	09/29/2020 09:44	09/29/2020 16:00
SW-846 8260 B-	Effluent VSP-4	Initial	20092812-001	W	83429	178641	10/12/2020 08:04	10/12/2020 13:32
Modified	TB-092820	Initial	20092812-002	W	83429	178641	10/12/2020 08:04	10/12/2020 13:54
	83429-1-BKS	BKS	83429-1-BKS	W	83429	178641	10/12/2020 08:04	10/12/2020 11:39
	83429-1-BLK	BLK	83429-1-BLK	W	83429	178641	10/12/2020 08:04	10/12/2020 13:09
	83429-1-BSD	BSD	83429-1-BSD	W	83429	178641	10/12/2020 08:04	10/12/2020 12:02

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20092812

Analytical Method: EPA 624 .1
Seq Number: 178312 Matrix: Water Prep Method: E624PREP
Date Prep: 09/29/20

oog mannoon.						.01	Date	op. 00/20	20	
MB Sample Id:	83294-1-	BLK	L	CS Sample	e ld: 832	94-1-BKS				
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	Limits			Units	Flag
Dichlorodifluorometh	ane	<1.000	50.00	29.03	58	54-148			ug/L	
Chloromethane		<1.000	50.00	37.39	75	1-205			ug/L	
Vinyl Chloride		<1.000	50.00	39.73	79	5-195			ug/L	
Bromomethane		<1.000	50.00	41.51	83	15-185			ug/L	
Chloroethane		<1.000	50.00	43.83	88	40-160			ug/L	
Trichlorofluorometha	ine	<1.000	50.00	43.62	87	50-150			ug/L	
1,1-Dichloroethene		<1.000	50.00	44.32	89	50-150			ug/L	
Methylene Chloride		<1.000	50.00	43.15	86	60-140			ug/L	
trans-1,2-dichloroeth	iene	<1.000	50.00	45.99	92	70-130			ug/L	
1,1-Dichloroethane		<1.000	50.00	45.18	90	70-130			ug/L	
Chloroform		<1.000	50.00	43.17	86	70-135			ug/L	
1,1,1-Trichloroethane	е	<1.000	50.00	44.10	88	70-130			ug/L	
Carbon Tetrachloride	e	<1.000	50.00	45.68	91	70-130			ug/L	
Benzene		<1.000	50.00	44.43	89	65-135			ug/L	
1,2-Dichloroethane		<1.000	50.00	43.33	87	70-130			ug/L	
Trichloroethene		<1.000	50.00	45.27	91	65-135			ug/L	
1,2-Dichloropropane		<1.000	50.00	43.71	87	35-165			ug/L	
Bromodichlorometha	ne	<1.000	50.00	46.66	93	65-135			ug/L	
cis-1,3-Dichloroprope	ene	<1.000	50.00	44.30	89	25-175			ug/L	
Toluene		<1.000	50.00	45.72	91	70-130			ug/L	
trans-1,3-dichloropro	pene	<1.000	50.00	45.06	90	50-150			ug/L	
1,1,2-Trichloroethane	е	<1.000	50.00	46.59	93	70-130			ug/L	
Tetrachloroethylene		<1.000	50.00	48.81	98	70-130			ug/L	
Dibromochlorometha	ane	<1.000	50.00	47.58	95	70-135			ug/L	
Chlorobenzene		<1.000	50.00	47.92	96	65-135			ug/L	
Ethylbenzene		<1.000	50.00	48.34	97	60-140			ug/L	
Bromoform		<1.000	50.00	49.04	98	70-130			ug/L	
1,1,2,2-Tetrachloroet	thane	<1.000	50.00	48.20	96	60-140			ug/L	
1,3-Dichlorobenzene)	<1.000	50.00	51.94	104	70-130			ug/L	
1,4-Dichlorobenzene)	<1.000	50.00	50.98	102	65-135			ug/L	
1,2-Dichlorobenzene)	<1.000	50.00	51.92	104	65-135			ug/L	
Surrogate		MB %Rec	MB Flag	LCS Result	LCS Flag		Limits	Units		
Dibromofluorometha	ne	99		98			87-120	%		
4-Bromofluorobenze	ne	95		96			85-147	%		
Toluene-D8		99		98			88-110	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20092812

Analytical Method: EPA 624 .1

Seq Number: 178312 Matrix: Water Prep Method: E624PREP

Date Prep: 09/29/20

Parent Sample Id: 20092812-002 MS Sample Id: 20092812-002 S MSD Sample Id: 20092812-002 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Dichlorodifluoromethane	<1.000	50.00	31.64	63	30.23	60	43-150	5	27	ug/L	
Chloromethane	<1.000	50.00	41.23	82	37.02	74	1-273	10	60	ug/L	
Vinyl Chloride	<1.000	50.00	42.84	86	40.78	82	1-251	5	66	ug/L	
Bromomethane	<1.000	50.00	41.28	83	39.14	78	1-242	6	61	ug/L	
Chloroethane	<1.000	50.00	48.31	97	43.62	87	14-230	11	78	ug/L	
Trichlorofluoromethane	<1.000	50.00	44.05	88	43.93	88	17-181	0	84	ug/L	
1,1-Dichloroethene	<1.000	50.00	49.05	98	46.75	94	1-234	4	32	ug/L	
Methylene Chloride	<1.000	50.00	44.12	88	44.57	89	1-221	1	28	ug/L	
trans-1,2-dichloroethene	<1.000	50.00	48.13	96	47.01	94	54-156	2	45	ug/L	
1,1-Dichloroethane	<1.000	50.00	49.19	98	47.34	95	59-155	3	40	ug/L	
Chloroform	<1.000	50.00	46.44	93	44.77	90	51-138	3	54	ug/L	
1,1,1-Trichloroethane	<1.000	50.00	48.01	96	46.20	92	52-162	4	36	ug/L	
Carbon Tetrachloride	<1.000	50.00	49.34	99	47.31	95	70-140	4	41	ug/L	
Benzene	<1.000	50.00	47.91	96	46.31	93	37-151	3	61	ug/L	
1,2-Dichloroethane	<1.000	50.00	44.17	88	43.15	86	49-155	2	49	ug/L	
Trichloroethene	<1.000	50.00	48.67	97	46.96	94	70-157	3	48	ug/L	
1,2-Dichloropropane	<1.000	50.00	46.48	93	45.03	90	1-210	3	55	ug/L	
Bromodichloromethane	<1.000	50.00	48.02	96	46.93	94	35-155	2	56	ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	45.55	91	44.89	90	1-227	1	58	ug/L	
Toluene	<1.000	50.00	49.10	98	47.53	95	47-150	3	41	ug/L	
trans-1,3-dichloropropene	<1.000	50.00	45.29	91	44.77	90	17-183	1	86	ug/L	
1,1,2-Trichloroethane	<1.000	50.00	48.92	98	48.29	97	52-150	1	45	ug/L	
Tetrachloroethylene	<1.000	50.00	52.28	105	50.23	100	64-148	5	39	ug/L	
Dibromochloromethane	<1.000	50.00	48.31	97	47.60	95	53-149	2	50	ug/L	
Chlorobenzene	<1.000	50.00	51.13	102	49.31	99	37-160	3	53	ug/L	
Ethylbenzene	<1.000	50.00	52.18	104	49.62	99	37-162	5	63	ug/L	
Bromoform	<1.000	50.00	50.32	101	49.81	100	45-169	1	42	ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	49.07	98	48.85	98	46-157	0	61	ug/L	
1,3-Dichlorobenzene	<1.000	50.00	53.73	107	52.13	104	59-156	3	43	ug/L	
1,4-Dichlorobenzene	<1.000	50.00	52.23	104	51.26	103	18-190	1	57	ug/L	
1,2-Dichlorobenzene	<1.000	50.00	53.57	107	52.50	105	18-190	2	57	ug/L	
Surrogate			MS Result	MS t Flag			MSD L Flag	Limits	Units		
Dibromofluoromethane			99			99	8	37-120	%		
4-Bromofluorobenzene			94			95	8	35-147	%		
Toluene-D8			98			99	8	88-110	%		

Analytical Method	I: SW-846 8260 B-Modified			Prep Method:	SW5030B
Seq Number:	178641	Matrix:	Water	Date Prep:	10/12/20
MB Sample Id:	83429-1-BLK	LCS Sample Id:	83429-1-BKS	LCSD Sample Id:	83429-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxane)	<1.000	20.00	32.19	161	29.92	150	50-150	7	20	ug/L	Н
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag			LCSD Flag	Limits	Units		
Toluene-D8	96		96			96		80-120	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20092812

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

PSS	CLIENT	r WSP	OFFIC	E LOCATION:	Herndon	1, VA	PSS Wo	ork Order	#: 6	2009	1281	2						PA	GE _	1_0	OF_	
BILL	TO (if c	lifferent):	PHON	E#:703 -	109-09	500	Matrix C SW=Surfa	Codes: ace Water	DW=0	orinking \	Vater	GW =Gro	ound Wat	er W V	V =Wast	e Water	0 =0il	\$ =\$0	il SOL	=Solid	A =Air	WI =Wipe
CON	TACT: 1	Eric Johnson	n EMAIL	enc.jo	hnson @	owsp.com	•	AB		ervatives Codes	1											Preservative Codes
PRO	JECT N	IAME: KOP - FI	ex	PROJECT #	3140154	5.010	ပ္ထ	G=GRAB	Analy Meth	nd /		-/	$\overline{}$						/		7	I - HCL 2 - H ₂ SO ₄ 3 - HNO,
SITE	LOCAT	ion: Itanover,	MD	P.O. #	:		AINEF	rPE:	(3)	lired 2	3/2	/						/			/	1 - NaOH 5 - E624KIT
		:Lauren Joh		DW CERT #	:		# OF CONTAINERS	OMPO	1	353	3/		//		/	/	//	/	/	//		6 - ICE 7 - Sodium
PS	SID	SAMPLE IDE	ENTIFICATION	DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes	# 04	SAMPLE TYPE: C=COMPOSITE	10	ired of Standard	3/	/										Thiosulfate 3 - Ascorbic Acid 9 - TerraCore Kit
	1	Effluent \	vsp-4	9/28/20	9:25	ww	3	G	X													- 44.4
	2	TB-0920		-	-	•	4	-	X	X												
			-									-										
																				131		
																	. 1					
			,																	23		
		8															-				1	-
Relin	uished	d By: (1)	Date	Time	Received By	11	1		Req	uested -Dav	TAT (C	ne TA 3-Dav	T per C	OC)	av	12 12 1 1 1 1 1	resent:		RES	7	15: 2.	506
		1 By: (2)	_ 9/20/20 Date	12:38 Time	Received By		w			-Day ext Day					er	Custo	ody Sea	al: C	عماده	- Ind	esc +	7.5°C
Leiin	quistiec	1 by. (2)	Date	Time	neceived by				□ M	ID [] [DE 🔲	PA [VA [) wv			oing Ca				5.M -	١.٥ ٢
Relin	quished	1 By: (3)	Date	Time	Received By				COM	MPLIAN		Spec	ial Instr and	ard	s:			196			Y	100
Relin	quished	i By: (4)	Date	Time	Received By		1		EDD I	FORMAT	ГҮРЕ											

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20092812

Client Name WSP USA - Herndon Received By Thomas Wingate

Disposal Date 11/02/2020 **Date Received** 09/28/2020 12:38:00 PM

Delivered By Client

Tracking No Not Applicable

Logged In By Thomas Wingate

Shipping Container(s)

No. of Coolers 1

		ice	FIESEIII
Custody Seal(s) Intact?	Yes	Temp (deg C)	3.5
Seal(s) Signed / Dated?	Yes	Temp Blank Present	Yes

DocumentationSampler NameLauren JohnsonCOC agrees with sample labels?YesMD DW Cert. No.N/A

Chain of Custody Yes

Sample Container Custody Seal(s) Intact? Not Applicable

Appropriate for Specified Analysis?

Yes

Seal(s) Signed / Dated

Yes

Labeled and Labels Legible? Yes

Holding Time Total No. of Samples Received 2

All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7

Preservation

1esei valioii		
Total Metals	(pH<2)	N/A
Dissolved Metals, filtered within 15 minutes of collection	(pH<2)	N/A
Orthophosphorus, filtered within 15 minutes of collection		N/A
Cyanides	(pH>12)	N/A
Sulfide	(pH>9)	N/A
TOC, DOC (field filtered), COD, Phenols	(pH<2)	N/A
TOX, TKN, NH3, Total Phos	(pH<2)	N/A
VOC, BTEX (VOA Vials Rcvd Preserved)	(pH<2)	Yes
Do VOA vials have zero headspace?		Yes
624 VOC (Rcvd at least one unpreserved VOA vial)		No
524 VOC (Rcvd with trip blanks)	(pH<2)	N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	Time light	Date: 09/28/2020
	Thomas Wingate	_

PM Review and Approval: The Flore

Amber Confer
Page 12 of 12

Date: 09/29/2020

Version 1.000

Not Applicable

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20100701

October 21, 2020

Eric Johnson WSP USA - Herndon13530 Dulles Technology Dr, Ste 300
Herndon, VA 20171

Reference: PSS Project No: 20100701

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010-04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20100701**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on November 11, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20100701

Project ID: 31401545.010-04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 10/07/2020 at 09:50 am

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20100701-001	Effluent VSP-4	WASTE WATER	10/07/20 09:15	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303

Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20100701

Sample ID: Effluent VSP-4 Date/Time Sampled: 10/07/2020 09:15 PSS Sample ID: 20100701-001

Matrix: WASTE WATER Date/Time Received: 10/07/2020 09:50

Chemical Oxygen Demand Analytical Method: SM 5220D -2011

_	Result	Units	RL	Flag Dil		Prepared	Analyzed	Analyst
Chemical Oxygen Demand	ND	mg/L	20		1	10/16/20	10/16/20 13:56	1053

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20100701

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20100701

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Batch	Prepared	Analyzed
SM 5220D -2011	Effluent VSP-4	Initial	20100701-001	W	178814	178814	10/16/2020 13:56	10/16/2020 13:56
	178814-1-BKS	BKS	178814-1-BKS	W	178814	178814	10/16/2020 13:56	10/16/2020 13:56
	178814-1-BLK	BLK	178814-1-BLK	W	178814	178814	10/16/2020 13:56	10/16/2020 13:56
	Effluent VSP-4 S	MS	20100701-001 S	W	178814	178814	10/16/2020 13:56	10/16/2020 13:56
	Effluent VSP-4 SD	MSD	20100701-001 S	W	178814	178814	10/16/2020 13:56	10/16/2020 13:56

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20100701

Analytical Method: SM 5220D -2011

Seq Number: 178814 Matrix: Water

MB Sample Id: 178814-1-BLK LCS Sample Id: 178814-1-BKS

Parameter MB Spike LCS LCS Limits Units Flag
Result Amount Result %Rec

Chemical Oxygen Demand <20.00 483 505.7 105 80-120 mg/L

Analytical Method: SM 5220D -2011

Seq Number: 178814 Matrix: Waste Water

Parent Sample Id: 20100701-001 MS Sample Id: 20100701-001 S MSD Sample Id: 20100701-001 SD

RPD **Parent Spike** MS MS Limits %RPD Units MSD MSD **Parameter** Flag Result Result Limit Amount %Rec Result %Rec Chemical Oxygen Demand <20.00 48.30 48.90 101 46.80 97 83-149 4 20 mg/L

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

PSS CLIEN	IT: WSP	OFFIC	E LOCATION:	Herndo	n, vA	PSS Wo	rk Order	#: 2	010	ירטי	01						PAC	E E)F	1
BILL TO (if	different):	PHON	E#: 103 -	709-4	500	Matrix C SW=Surfa						und Wate	er WW	/=Waste W	ater (0 =0il					
CONTACT:	Eric Johnson	EMAIL	eric.jo	phnson	@ wsp.			Prese	vatives Codes	2					T						Preservative Codes
PROJECT I	NAME: KOP - FIEX		PROJECT #	3140154	15.010	_ω	G=GRAB	Analys Metho	. /	9/	//	7	$\overline{}$	1	1	7	7	7	1		- HCL 2 - H,SO,
SITE LOCA	TION: Hanover, Ma	d	P.O. #	1:	0,	VINER		Requir	red S					//	/ ,	/ -	/		/	/	3 - HÑO ₃ 1 - NaOH 5 - E624KIT
	s): Lauren John.		DW CERT #	:		# OF CONTAINERS	LE TY	/	0/	/	//	//				/		/		6	6 - ICE 7 - Sodium
PSS ID	SAMPLE IDENTIFICA		DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes	# OF (SAMPLE TYPE: C=COMPOSITE	13	3/	/		/		//	/ ,		/				Thiosulfate 3 - Ascorbic Acid 4 - TerraCore Kit
	Effluent VSP	-4		09:15	ww	1	G	×													7 - IBITADOTO KIL
			L I P																		
for some																					
Bray 15																					
and others	N. A. W. L. C.																		7		
		, ,																			
													-		-						
Dell'a minte	10.40	I.	_				(4													
Xawa	d By: (1)	Date 10/7/20	Time 09:50	Received By	6)			□ 5-E	Day		One TAT 3-Day Emerge		2-Day	/	e Pres	sent:	PRE	2	TB:	1.8-	C
Relinquished	d By: (2)	Date	Time	Received By:	O QAZ			STATE	RESU	ILTS R	REPORT	ED TO:		#	Coole	ers:	1		emp:		
								ООТ	HER _	-	PA 🔲				hippin	ig Car	rier: (2116	4		
Relinquished	d By: (3)	Date	Time	Received By:					PLIANC		Specia	al Instru Ando	ard	10 6	das	1 T	AT				
Relinquished	d By: (4)	Date	Time	Received By:		1		EDD FO	RMAT T	YPE						,					
-	Short King San Carlot																-		THE RESERVE	-	

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20100701

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 11/11/2020 **Date Received** 10/07/2020 09:50:00 AM **Delivered By** Client **Tracking No** Not Applicable Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 2.8 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Lauren Johnson **Documentation** COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 1 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 1 Preservation **Total Metals** (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides N/A (pH>12)Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols Yes (pH<2)TOX, TKN, NH3, Total Phos (pH<2)N/A VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)N/A Do VOA vials have zero headspace? N/A 624 VOC (Rcvd at least one unpreserved VOA vial) N/A 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:	Thomas Wingate	Date:	10/07/2020
PM Review and Approval:	Auter J loger	Data:	10/07/2020

Amber Confer

Page 8 of 8 Version 1.000

Date: 10/07/2020

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102612

November 10, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20102612

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010-04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20102612**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on November 30, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102612

Project ID: 31401545.010-04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 10/26/2020 at 01:10 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20102612-001	Effluent VSP-4	WASTE WATER	10/26/20 10:20	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102612

Sample ID: Effluent VSP-4 Date/Time Sampled: 10/26/2020 10:20 PSS Sample ID: 20102612-001

Matrix: WASTE WATER Date/Time Received: 10/26/2020 13:10

Dissolved Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Copper	3.3	ug/L	1.0	1	10/30/20	10/30/20 21:33	1064
Lead	ND	ug/L	1.0	1	10/30/20	10/30/20 21:33	1064
Nickel	15.0	ug/L	1.00	1	10/30/20	11/09/20 18:44	1051
Zinc	21.5	ug/L	20.0	1	10/30/20	10/30/20 21:33	1064

Total Metals Analytical Method: EPA 200.8 Preparation Method: 200.8


Qualifier(s): See Batch 179277 on Case Narrative.

_	Result	Units	RL Flag	RL Flag Dil Prepared		Analyzed	Analyst
Copper	6.7	ug/L	1.0	1	10/30/20	10/30/20 19:41	1064
Lead	ND	ug/L	1.0	1	10/30/20	10/30/20 19:41	1064
Nickel	20.0	ug/L	1.0	1	10/30/20	11/09/20 18:49	1051
Zinc	32.6	ug/L	20.0	1	10/30/20	10/30/20 19:41	1064

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

pH=2

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
Chloromethane	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
Vinyl Chloride	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
Bromomethane	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
Chloroethane	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
Trichlorofluoromethane	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
1,1-Dichloroethene	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
Methylene Chloride	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
1,1-Dichloroethane	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
Chloroform	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
Carbon Tetrachloride	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
Benzene	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
1,2-Dichloroethane	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
Trichloroethene	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
1,2-Dichloropropane	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011
Bromodichloromethane	ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	5 1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102612

Sample ID: Effluent VSP-4 Date/Time Sampled: 10/26/2020 10:20 PSS Sample ID: 20102612-001

Matrix: WASTE WATER Date/Time Received: 10/26/2020 13:10

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

pH=2

Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	1011
ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	1011
ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	1011
ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	1011
ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	1011
ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	1011
ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	1011
ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	1011
ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	1011
ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	1011
ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	1011
ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	1011
ND	ug/L	1.0	1	11/04/20	11/04/20 16:25	1011
Recovery		Limits				
102	%	87-120	1	11/04/20	11/04/20 16:25	5 1011
109	%	85-147	1	11/04/20	11/04/20 16:25	5 1011
100	%	88-110	1	11/04/20	11/04/20 16:25	5 1011
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ug/L ND ug/L	ND ug/L 1.0 Recovery Limits 102 % 87-120 109 % 85-147	ND ug/L 1.0 1 ND ug/L 1.0 1	ND ug/L 1.0 1 11/04/20 ND ug/L 1.0 1 11/04/20	ND ug/L 1.0 1 11/04/20 11/04/20 16:25 Recovery Limits 102 % 87-120 1 11/04/20 11/04/20 16:25

Hardness, Total by Calculation Analytical Method: SM 2340B Preparation Method: 200.8

Qualifier(s): See Batch 179277 on Case Narrative.

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Hardness (Ca & Mg)	18	mg/L	0.66	1	10/30/20	10/30/20 19:4	1 1064

Total Suspended Solids Analytical Method: SM 2540D -2011

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Suspended Solids	ND	ma/L	1.0	1	10/27/20	10/27/20 15:	17 1061

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102612

Sample ID: Effluent VSP-4 Date/Time Sampled: 10/26/2020 10:20 PSS Sample ID: 20102612-001

Matrix: WASTE WATER Date/Time Received: 10/26/2020 13:10

Biochemical Oxygen Demand Analytical Method: SM 5210B -2011

Start time: 28-Oct-20 10:00

ResultUnitsRLFlagPreparedAnalyzedAnalystBiochemical Oxygen Demand, 5 dayNDmg/L5.011/02/2011/02/2016:004005

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20102612

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

20102612: Analyses associated with analyst code 4005 were performed by Enviro-Chem Laboratories, Inc., 47 Loveton Circle, Suite K, Sparks, MD 21152

Analytical:

Total Metals

Batch: 179277

Method exceedance: Laboratory control sample (LCS) exceedances identified, matrix spike/matrix spike duplicate samples meet LCS criteria; see QC summary form.

Method exceedance: Continuing Calibration Verification (CCV) falls outside of acceptance limits (85% - 115%) for nickel at 76% recovery.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SM 5210B -2011

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102612

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical E	Batch Prepared	Analyzed
11100					r			
EPA 200.8	Effluent VSP-4	Initial	20102612-001	W	83703	179277	10/30/2020 13:53	10/30/2020 19:41
EFA 200.0	83703-1-BKS	BKS	83703-1-BKS	W	83703	179277	10/30/2020 13:53	10/30/2020 19:36
	83703-1-BKS 83703-1-BLK	BLK	83703-1-BKS 83703-1-BLK	W	83703	179277	10/30/2020 13:53	10/30/2020 19:31
	Effluent VSP-4 S	MS	20102612-001 S	W	83703	179277	10/30/2020 13:53	10/30/2020 19:45
	Effluent VSP-4 SD	MSD	20102612-001 S	W	83703	179277	10/30/2020 13:53	10/30/2020 19:50
	Effluent VSP-4	Reanalysis	20102612-001	W	83703	179502	10/30/2020 13:53	11/09/2020 18:49
EPA 200.8	Effluent VSP-4	Initial	20102612-001	W	83706	179297	10/30/2020 13:55	10/30/2020 21:33
	83706-1-BKS	BKS	83706-1-BKS	W	83706	179297	10/30/2020 13:55	10/30/2020 21:29
	83706-1-BLK	BLK	83706-1-BLK	W	83706	179297	10/30/2020 13:55	10/30/2020 21:24
	Effluent VSP-4 S	MS	20102612-001 S	W	83706	179297	10/30/2020 13:55	10/30/2020 21:38
	Effluent VSP-4 SD	MSD	20102612-001 S	W	83706	179297	10/30/2020 13:55	10/30/2020 21:43
	83706-1-BKS	Reanalysis	83706-1-BKS	W	83706	179384	10/30/2020 13:55	11/04/2020 17:13
	83706-1-BLK	Reanalysis	83706-1-BLK	W	83706	179384	10/30/2020 13:55	11/04/2020 17:08
	Effluent VSP-4	Reanalysis	20102612-001	W	83706	179501	10/30/2020 13:55	11/09/2020 18:44
EPA 624.1	Effluent VSP-4	Initial	20102612-001	W	83770	179378	11/04/2020 12:51	11/04/2020 16:25
	83770-1-BKS	BKS	83770-1-BKS	W	83770	179378	11/04/2020 12:51	11/04/2020 13:13
	83770-1-BLK	BLK	83770-1-BLK	W	83770	179378	11/04/2020 12:51	11/04/2020 14:55
	13680-EFF-11/20 S	MS	20110413-001 S	W	83770	179378	11/04/2020 12:51	11/04/2020 17:10
	13680-EFF-11/20 SD	MSD	20110413-001 S	W	83770	179378	11/04/2020 12:51	11/04/2020 17:33
SM 2340B	Effluent VSP-4	Initial	20102612-001	W	83703	179277	11/09/2020 11:43	10/30/2020 19:41
SM 2540D -2011	Effluent VSP-4	Initial	20102612-001	W	179120	179120	10/27/2020 15:17	10/27/2020 15:17
	179120-1-BLK	BLK	179120-1-BLK	W	179120	179120	10/27/2020 15:17	10/27/2020 15:17
	601 D	MD	20102618-002 D	W	179120	179120	10/27/2020 15:17	10/27/2020 15:17
SM 5210B -2011	Effluent VSP-4	Initial	20102612-001	W	179463	179463	11/02/2020 16:00	11/02/2020 16:00

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20102612

Analytical Method: SM 2540D -2011

Seg Number: 179120 Matrix: Water

MB Sample Id: 179120-1-BLK

Parameter MB LOD RL Units Flag

Suspended Solids ND 0.5000 1.000 mg/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 179277 Matrix: Water Date Prep: 10/30/20

MB Sample Id: 83703-1-BLK LCS Sample Id: 83703-1-BKS

MB **LCS** LCS Limits Units **Spike Parameter** Flag Result **Amount** Result %Rec Copper <1.000 40.00 37.54 94 85-115 ug/L Lead <1.000 40.00 37.33 93 85-115 ug/L Zinc <20.00 200 190.6 95 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 179297 Matrix: Water Date Prep: 10/30/20

MB Sample Id: 83706-1-BLK LCS Sample Id: 83706-1-BKS

MB LCS LCS Limits **Spike Units** Flag **Parameter** Result Amount Result %Rec 89 Copper <1.000 40.00 35.48 85-115 ug/L Lead <1.000 40.00 36.92 92 85-115 ug/L 85-115 Zinc <20.00 200 181.7 91 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 179384 Matrix: Water Date Prep: 10/30/20

MB Sample Id: 83706-1-BLK LCS Sample Id: 83706-1-BKS

Parameter MB Spike LCS LCS Limits Units Flag
Result Amount Result %Rec

Nickel <1.000 40.00 37.19 93 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 179277 Matrix: Waste Water Date Prep: 10/30/20

Parent Sample Id: 20102612-001 MS Sample Id: 20102612-001 S MSD Sample Id: 20102612-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Copper	6.697	40.00	41.49	87	44.82	95	70-130	9	25	ug/L	
Lead	<1.000	40.00	35.82	90	38.47	96	70-130	6	25	ug/L	
Nickel	4.283	40.00	38.87	86	44.32	100	70-130	15	25	ug/L	
Zinc	32.63	200	209	88	229.3	98	70-130	11	25	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20102612

Analytical Method: EPA 200.8Prep Method:E200.8_PREPSeq Number:179297Matrix: Waste WaterDate Prep:10/30/20

Parent Sample Id: 20102612-001 MS Sample Id: 20102612-001 S MSD Sample Id: 20102612-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Copper	3.252	40.00	40.19	92	42.83	99	70-130	7	25	ug/L	
Lead	<1.000	40.00	45.02	113	43.05	108	70-130	5	25	ug/L	
Nickel	<1.000	40.00	37.55	94	40.83	102	70-130	8	25	ug/L	
Zinc	21.52	200	218.9	99	229.2	104	70-130	5	25	ug/L	

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP Seq Number: 179384 Matrix: Water Date Prep: 10/30/20

REBLK Sample Id: 83706-1-BLK LCS Sample Id: 83706-1-BKS

Parameter	REBLK Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Copper	<1.000	40.00	39.69	99	85-115	ug/L	
Lead	<1.000	40.00	38.50	96	85-115	ug/L	
Zinc	<20.00	200	187.3	94	85-115	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20102612

Analytical Method: EPA 624 .1 Prep Method: E624PREP Seq Number: 179378 Matrix: Water Date Prep: 11/04/20

LCS Sample Id: 83770-1-BKS MB Sample Id: 83770-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethane	<1.000	50.00	45.41	91	54-148		ug/L	
Chloromethane	<1.000	50.00	50.06	100	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	67.88	136	5-195		ug/L	
Bromomethane	<1.000	50.00	49.32	99	15-185		ug/L	
Chloroethane	<1.000	50.00	48.54	97	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	49.63	99	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	48.80	98	50-150		ug/L	
Methylene Chloride	<1.000	50.00	48.57	97	60-140		ug/L	
trans-1,2-dichloroethene	<1.000	50.00	48.97	98	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	51.99	104	70-130		ug/L	
Chloroform	<1.000	50.00	48.85	98	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	49.86	100	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	45.77	92	70-130		ug/L	
Benzene	<1.000	50.00	49.00	98	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	49.70	99	70-130		ug/L	
Trichloroethene	<1.000	50.00	48.09	96	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	50.71	101	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	48.35	97	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	48.71	97	25-175		ug/L	
Toluene	<1.000	50.00	48.69	97	70-130		ug/L	
trans-1,3-dichloropropene	<1.000	50.00	48.71	97	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	50.12	100	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	46.46	93	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	48.29	97	70-135		ug/L	
Chlorobenzene	<1.000	50.00	48.36	97	65-135		ug/L	
Ethylbenzene	<1.000	50.00	50.96	102	60-140		ug/L	
Bromoform	<1.000	50.00	48.33	97	70-130		ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	50.95	102	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	48.48	97	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	47.76	96	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	48.44	97	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	102		99		87-120	%		
4-Bromofluorobenzene	108		99		85-147	%		
Toluene-D8	100		100		88-110	%		

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits L = Recovery of BS,BSD or both below the laboratory control limits

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20102612

Analytical Method: EPA 200.8

179277 Matrix: Water Seq Number:

Analyzed Date: 10/30/20 18:50 CCV Sample Id: CCV 5

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Copper	40	39.68	99	85-115	ug/L	
Lead	40	39.97	100	85-115	ug/L	
Zinc	200	200.3	100	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: Matrix: Water 179277

CCV 6 Analyzed Date: 10/30/20 19:59 CCV Sample Id:

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Copper	40	41.40	104	85-115	ug/L	
Lead	40	42.03	105	85-115	ug/L	
Zinc	200	210.4	105	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 179277 Matrix: Water

Analyzed Date: 10/30/20 21:05 CCV Sample Id: CCV 7

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Copper	40	40.52	101	85-115	ug/L	
Lead	40	38.65	97	85-115	ug/L	
Zinc	200	208.8	104	85-115	ug/L	

Analytical Method: EPA 200.8

Matrix: Water Seq Number: 179297

CCV Sample Id: CCV 7 Analyzed Date: 10/30/20 21:05

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Copper	40	40.52	101	85-115	ug/L	
Lead	40	38.65	97	85-115	ug/L	
Zinc	200	208.8	104	85-115	ug/L	

Analytical Method: EPA 200.8

179297

Seq Number:

Matrix: Water

CCV Sample Id: CCV8 Analyzed Date: 10/30/20 22:11

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Copper	40	39.73	99	85-115	ug/L	
Lead	40	39.72	99	85-115	ug/L	
Zinc	200	207.8	104	85-115	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20102612

Analytical Method: EPA 200.8

Seq Number: 179384 Matrix: Water

CCV Sample Id: CCV 1 Analyzed Date: 11/04/20 17:46

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Copper	40	39.24	98	85-115	ug/L	
Lead	40	38.04	95	85-115	ug/L	
Nickel	40	36.92	92	85-115	ug/L	
Zinc	200	186.6	93	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 179277 Matrix: Water

Parent Sample Id: ICV 1 ICV Sample Id: ICV 1 Analyzed Date: 10/30/20 13:17

Parameter	Spike Amount	ICV Result	ICV %Rec	Limits	Units	Flag
Copper	40	38.54	96	90-110	ug/L	
Lead	40	39.13	98	90-110	ug/L	
Zinc	200	201	101	90-110	ug/L	

Analytical Method: EPA 200.8

Seq Number: 179297 Matrix: Water
Parent Sample Id: ICV 1 ICV Sample Id: ICV 1 Analyzed Date: 10/30/20 13:17

Parameter	Spike Amount	ICV Result	ICV %Rec	Limits	Units	Flag
Copper	40	38.54	96	90-110	ug/L	
Lead	40	39.13	98	90-110	ug/L	
Zinc	200	201	101	90-110	ug/L	

Analytical Method: EPA 200.8

Seq Number: 179384 Matrix: Water

Parent Sample Id: ICV 1 ICV Sample Id: ICV 1 Analyzed Date: 11/04/20 16:20

Parameter	Spike Amount	ICV Result	ICV %Rec	Limits	Units	Flag
Copper	40	39.62	99	90-110	ug/L	
Lead	40	38.39	96	90-110	ug/L	
Nickel	40	37.50	94	90-110	ug/L	
Zinc	200	188.9	94	90-110	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Analyzed Date: 10/28/20 15:12

Project Name Kop-Flex PSS Project No.: 20102612

Analytical Method: EPA 624 .1

Seq Number: 179209 Matrix: Water Parent Sample Id: ICV-01 ICV Sample Id: ICV-01

ICV **ICV** Spike Limits Units Flag **Parameter Amount** Result %Rec Dichlorodifluoromethane 0.05012 54-148 .05 100 mg/L mg/L Chloromethane .05 0.04935 99 57-135 Vinyl Chloride .05 0.05045 101 64-129 mg/L Bromomethane .05 0.05319 106 67-132 mg/L Chloroethane .05 0.04715 94 62-133 mg/L 71-137 Trichlorofluoromethane .05 100 0.05001 mg/L .05 0.04959 99 67-126 mg/L 1,1-Dichloroethene Methylene Chloride .05 0.04907 98 73-120 mg/L trans-1,2-dichloroethene .05 0.05015 100 75-127 mg/L 1,1-Dichloroethane .05 0.05088 102 76-127 mg/L Chloroform .05 0.05078 102 79-125 mg/L 0.05362 mg/L 1,1,1-Trichloroethane .05 107 73-130 Carbon Tetrachloride .05 0.04991 100 73-130 mg/L Benzene .05 0.05128 103 73-132 mg/L 77-129 1,2-Dichloroethane .05 0.05076 102 mg/L Trichloroethene .05 0.05175 104 79-126 mg/L .05 0.05144 103 74-129 mg/L 1,2-Dichloropropane Bromodichloromethane .05 0.04964 99 81-125 mg/L .05 0.05078 102 mg/L cis-1,3-Dichloropropene 76-116 Toluene .05 0.05104 102 77-127 mg/L trans-1,3-dichloropropene .05 0.05084 102 78-114 mg/L 1,1,2-Trichloroethane .05 0.05154 103 78-127 mg/L 103 Tetrachloroethylene .05 0.05126 78-128 mg/L Dibromochloromethane .05 0.04995 100 70-132 mg/L Chlorobenzene .05 0.05090 102 mg/L 72-128 Ethylbenzene .05 0.05256 105 69-131 mg/L .05 0.05030 101 Bromoform 70-130 mg/L 1,1,2,2-Tetrachloroethane .05 0.05235 105 62-134 mg/L 0.05302 70-129 1,3-Dichlorobenzene .05 106 mg/L 1.4-Dichlorobenzene .05 0.05242 105 69-127 mg/L 1,2-Dichlorobenzene .05 0.05347 107 65-133 mg/L ICV Limits Units Flag Surrogate Result 87-120 Dibromofluoromethane 101 %

X = Recovery outside of QC Criteria

4-Bromofluorobenzene

Toluene-D8

99

100

85-147

88-110

%

%

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

PSS C	LIENT	WSP	OFFIC	E LOCATION: Ì	Hemdor	n, VA	PSS Wo	rk Order	#: 2	010	261	2			nilien			PA	GE	OF	1
BILL TO	O (if d	lifferent):	PHONI	#: 703 -	709-6	500	Matrix C SW=Surfa		DW =Dr	inking W	/ater	GW =Gro	und Wate	er WW	/=Waste	Water	0 =0il	S =Soi	I SOL=	=Solid A =A	ir WI=Wipe
CONTA	CT: T	Eric Johnson	EMAIL	enc.jol	hnson@	wsp.om		8		vatives Codes	1			3	3						Preservative Codes
PROJE	CT N	AME: KOP - Flex		PROJECT #	314015	45.010	s o	G=GRAB	Analys Metho	d /_	1	7	12	3/	4	/	7	1	1	1	1 - HCL 2 - H ₂ SO ₄
		10N: Hanover, Md		P.O. #			NNER	PE:	Requir	ed be	/	/	73	per al	al a		/	/		//	3 - HŇO ₃ 4 - NaOH 5 - E624KIT
		: Lauren Johnso	n	DW CERT #			# OF CONTAINERS	NE TY	/	20/	0/	- /s	200	Et 3		/	/	/	/	/	6 - ICE 7 - Sodium
PSS		SAMPLE IDENTIFICA	No. of Persons Street	DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes	# OF	SAMPLE TYPE: C=COMPOSITE	30	Boy	1/4	5/05/0	753	37	/		/				Thiosulfate 8 - Ascorbic Acid 9 - TerraCore Kit
		Effluent VSP-	-4	10/26/20		ww	7	G	X	X	X	X	X								5 Torradore Na
					110																
					1,11,111																
			a ve																		
Relinqu	ished	By: (2)	Date	Time 13: 10	Received By	Cha.			□ 5-E	Dav		ne TAT 3-Day		12-Da	y	Ice Pr	esent:	PRE	S	TB: 1	
Relingu	ished	BV	10/26/20 Date	Time	Received By		ν_{-}					Emerge REPORT	ency 🍞	Othe	r	# Coo	dy Sea lers:	i: Co	Dev-	Intac	F 2 50
									□ ME		E	PA 🔲	VA 🗋	wv	L	530	2016.2017		21Hc		°-3.5°c
Relinqu	ished	By: (3)	Date	Time	Received By:	TETT				PLIANC	CE?	Specia	al Instru	uctions	:						
Relinqu	ished	By: (4)	Date	Time	Received By					RMAT T	YPE	dis	solva	ed ard	met 10	als	TH	bls	filt	ered	

Client Name

Cyanides

Sulfide

Sample Receipt Checklist

Received By

Thomas Wingate

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102612

WSP USA - Herndon

Disposal Date 11/30/2020 **Date Received** 10/26/2020 01:10:00 PM **Delivered By** Client **Tracking No** Not Applicable Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 3.5 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Lauren Johnson Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 1 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 Preservation **Total Metals** (pH<2)Yes Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	Time Windle	Date: 10/26/2020	
	Thomas Wingate		

PM Review and Approval: July 7 loger

TOC, DOC (field filtered), COD, Phenols

VOC, BTEX (VOA Vials Rcvd Preserved)

624 VOC (Rcvd at least one unpreserved VOA vial)

Do VOA vials have zero headspace?

524 VOC (Rcvd with trip blanks)

TOX, TKN, NH3, Total Phos

Amber Confer Page 15 of 15 Date: 10/27/2020

(pH>12)

(pH>9)

(pH<2)

(pH<2)

(pH<2)

(pH<2)

Version 1.000

N/A

N/A

N/A

N/A

Yes

Yes

No

N/A

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102613

November 9, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20102613

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010-04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20102613**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on November 30, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102613

Project ID: 31401545.010-04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 10/26/2020 at 01:10 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected
20102613-001	Effluent VSP-4	WASTE WATER	10/26/20 10:20
20102613-002	TB-092820	WATER	10/26/20 00:00

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102613

Sample ID: Effluent VSP-4 Date/Time Sampled: 10/26/2020 10:20 PSS Sample ID: 20102613-001

Matrix: WASTE WATER Date/Time Received: 10/26/2020 13:10

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	2.0	ug/L	1.0	1	11/04/20	11/04/20 14:32	2 1045
Surrogate(s)	Recovery		Limits				
Toluene-D	8 96	%	80-120	1	11/04/20	11/04/20 14:3	2 1045

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102613

Sample ID: TB-092820 Date/Time Sampled: 10/26/2020 00:00 **PSS Sample ID: 20102613-002**

Date/Time Received: 10/26/2020 13:10 Matrix: WATER

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

pH=2	
------	--

pH=2	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	_
Chloromethane	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Vinyl Chloride	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Bromomethane	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Chloroethane	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Trichlorofluoromethane	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Methylene Chloride	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Chloroform	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Carbon Tetrachloride	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Benzene	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Trichloroethene	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Bromodichloromethane	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Toluene	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Tetrachloroethylene	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Dibromochloromethane	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Chlorobenzene	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Ethylbenzene	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Bromoform	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	11/04/20	11/04/20 15:40	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	102	%	87-120	1	11/04/20	11/04/20 15:40	1011
4-Bromofluorobenzene	108	%	85-147	1	11/04/20	11/04/20 15:40	1011
Toluene-D8	101	%	88-110	1	11/04/20	11/04/20 15:40	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102613

Sample ID: TB-092820

Date/Time Sampled: 10/26/2020 00:00 PSS Sample ID: 20102613-002

Matrix: WATER Date/Time Received: 10/26/2020 13:10

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	11/04/20	11/04/20 14:54	4 1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	96	%	80-120	1	11/04/20	11/04/20 14:54	4 1045

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20102613

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102613

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Batch	n Prepared	Analyzed
EPA 624.1	TB-092820	Initial	20102613-002	W	83770	179378	11/04/2020 12:51	11/04/2020 15:40
	83770-1-BKS	BKS	83770-1-BKS	W	83770	179378	11/04/2020 12:51	11/04/2020 13:13
	83770-1-BLK	BLK	83770-1-BLK	W	83770	179378	11/04/2020 12:51	11/04/2020 14:55
	13680-EFF-11/20 S	MS	20110413-001 S	W	83770	179378	11/04/2020 12:51	11/04/2020 17:10
	13680-EFF-11/20 SD	MSD	20110413-001 S	W	83770	179378	11/04/2020 12:51	11/04/2020 17:33
SW-846 8260 B-	Effluent VSP-4	Initial	20102613-001	W	83760	179362	11/04/2020 07:53	11/04/2020 14:32
Modified	TB-092820	Initial	20102613-002	W	83760	179362	11/04/2020 07:53	11/04/2020 14:54
	83760-1-BKS	BKS	83760-1-BKS	W	83760	179362	11/04/2020 07:53	11/04/2020 10:51
	83760-1-BLK	BLK	83760-1-BLK	W	83760	179362	11/04/2020 07:53	11/04/2020 12:20
	83760-1-BSD	BSD	83760-1-BSD	W	83760	179362	11/04/2020 07:53	11/04/2020 11:13

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20102613

Analytical Method: EPA 624 .1

Seq Number: 179378 Matrix: Water Prep Method: E624PREP

Date Prep: 11/04/20

MB Sample Id: 83770-1-BLK LCS Sample Id: 83770-1-BKS

IVID Sample Id. 63770	- I-DLK	L	.co campie	iu. 03//0-1-	DICO			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethane	<1.000	50.00	45.41	91	54-148		ug/L	
Chloromethane	<1.000	50.00	50.06	100	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	67.88	136	5-195		ug/L	
Bromomethane	<1.000	50.00	49.32	99	15-185		ug/L	
Chloroethane	<1.000	50.00	48.54	97	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	49.63	99	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	48.80	98	50-150		ug/L	
Methylene Chloride	<1.000	50.00	48.57	97	60-140		ug/L	
trans-1,2-dichloroethene	<1.000	50.00	48.97	98	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	51.99	104	70-130		ug/L	
Chloroform	<1.000	50.00	48.85	98	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	49.86	100	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	45.77	92	70-130		ug/L	
Benzene	<1.000	50.00	49.00	98	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	49.70	99	70-130		ug/L	
Trichloroethene	<1.000	50.00	48.09	96	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	50.71	101	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	48.35	97	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	48.71	97	25-175		ug/L	
Toluene	<1.000	50.00	48.69	97	70-130		ug/L	
trans-1,3-dichloropropene	<1.000	50.00	48.71	97	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	50.12	100	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	46.46	93	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	48.29	97	70-135		ug/L	
Chlorobenzene	<1.000	50.00	48.36	97	65-135		ug/L	
Ethylbenzene	<1.000	50.00	50.96	102	60-140		ug/L	
Bromoform	<1.000	50.00	48.33	97	70-130		ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	50.95	102	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	48.48	97	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	47.76	96	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	48.44	97	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	102		99		87-120	%		
4-Bromofluorobenzene	108		99		85-147	%		
Toluene-D8	100		100		88-110	%		

Analytical Method: SW-846 8260 B-ModifiedPrep Method:SW5030BSeq Number:179362Matrix:WaterDate Prep:11/04/20MB Sample Id:83760-1-BLKLCS Sample Id:83760-1-BKSLCSD Sample Id:83760-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxane)	<1.000	30.00	32.13	107	33.09	110	50-150	3	20	ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS t Flag		CSD esult	LCSD Flag	Limits	Units		
Toluene-D8	97		97			98		80-120	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20102613

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

OF			
Preservative Codes			
2 - H ₂ SO ₄ 3 - HNO ₃ 4 - NaOH 5 - E624KIT			
6 - ICE 7 - Sodium			
Thiosulfate 8 - Ascorbic Acid 9 - TerraCore Kit			
Lange Committee			
100			
TB: 1.6°C			
Tatest-			
Shipping Carrier: CIrat day TAT			

This chain of custody is a legal document. The client (PSS Client), by signing, or having client's agent sign, this "Chain of Custody Form", agrees to pay for the above requested services per the latest version of the Service Brochure of PSS-provided quotation in an all attorney's or others reasonable fees if collection becomes necessary.

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20102613

Client Name WSP USA - Herndon Received By Thomas Wingate

Disposal Date 11/30/2020 Date Received 10/26/2020 01:10:00 PM

Delivered By Client

Tracking No Not Applicable

Seal(s) Signed / Dated

Not Applicable

Logged In By Thomas Wingate

Shipping Container(s)

No. of Coolers 1

Custody Seal(s) Intact? Yes Temp (deg C) 3.5
Seal(s) Signed / Dated? Yes Temp Blank Present Yes

DocumentationSampler NameLauren JohnsonCOC agrees with sample labels?YesMD DW Cert. No.N/A

Chain of Custody Yes

Sample Container

Custody Seal(s) Intact? Not Applicable
Appropriate for Specified Analysis?

Yes

Seal(s) Signed / Detail. Not Applicable

Intact? Yes

Labeled and Labels Legible? Yes

Holding Time Total No. of Samples Received 2

All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7

Preservation

Total Metals (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	Timer Windle	Date: 1	10/26/2020
	Thomas Wingate		

PM Review and Approval:

Lynn Jackson
Page 11 of 11

Date: 10/26/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20111203

November 30, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20111203

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010-04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20111203**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on December 17, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20111203

Project ID: 31401545.010-04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 11/12/2020 at 09:55 am

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20111203-001	Effluent VSP-4	WASTE WATER	11/12/20 09:05	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20111203

Sample ID: Effluent VSP-4 Date/Time Sampled: 11/12/2020 09:05 PSS Sample ID: 20111203-001

Matrix: WASTE WATER Date/Time Received: 11/12/2020 09:55

Dissolved Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Copper	1.3	ug/L	1.0	1	11/16/20	11/17/20 14:39	9 1064
Lead	ND	ug/L	1.0	1	11/16/20	11/16/20 20:38	3 1064
Nickel	15.7	ug/L	1.00	1	11/16/20	11/17/20 14:39	9 1064
Zinc	21.4	ug/L	20.0	1	11/16/20	11/17/20 14:39	9 1064

Total Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
Copper	2.2	ug/L	1.0	1	11/13/20	11/17/20 13:43	3 1064
Lead	ND	ug/L	1.0	1	11/13/20	11/16/20 19:51	I 1064
Nickel	16.6	ug/L	1.00	1	11/13/20	11/17/20 13:43	3 1064
Zinc	31.3	ug/L	20.0	1	11/13/20	11/17/20 13:43	3 1064

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 179623 on Case Narrative.

pH=2

Result	Units	RL FI	ag Dil	Prepared	Analyzed	Analyst
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	7 1011
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ug/L ND ug/L	ND ug/L 1.0 ND ug/L 1.0	ND ug/L 1.0 1 ND ug/L 1.0 1 <td>ND ug/L 1.0 1 11/13/20 ND ug/L<td>ND ug/L 1.0 1 11/13/20 11/13/20 14:57 ND ug/L 1.0 1 11/13/20 11/13/20 14:57</td></td>	ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L 1.0 1 11/13/20 ND ug/L <td>ND ug/L 1.0 1 11/13/20 11/13/20 14:57 ND ug/L 1.0 1 11/13/20 11/13/20 14:57</td>	ND ug/L 1.0 1 11/13/20 11/13/20 14:57 ND ug/L 1.0 1 11/13/20 11/13/20 14:57

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20111203

Sample ID: Effluent VSP-4 Date/Time Sampled: 11/12/2020 09:05 PSS Sample ID: 20111203-001

Matrix: WASTE WATER Date/Time Received: 11/12/2020 09:55

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 179623 on Case Narrative.

pH=2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	1011
Toluene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	1011
Tetrachloroethylene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	1011
Dibromochloromethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	1011
Chlorobenzene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	1011
Ethylbenzene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	1011
Bromoform	ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:57	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	102	%	87-120	1	11/13/20	11/13/20 14:57	1011
4-Bromofluorobenzene	106	%	85-147	1	11/13/20	11/13/20 14:57	1011
Toluene-D8	100	%	88-110	1	11/13/20	11/13/20 14:57	1011

Hardness, Total by Calculation Analytical Method: SM 2340B Preparation Method: 200.8

 Result
 Units
 RL
 Flag
 Dil
 Prepared
 Analyzed
 Analyst

 Hardness (Ca & Mg)
 14
 mg/L
 33
 50
 11/16/20
 11/17/20 03:27
 1064

Total Suspended Solids Analytical Method: SM 2540D -2011

 Result
 Units
 RL
 Flag
 Dil
 Prepared
 Analyzed
 Analyst

 Suspended Solids
 ND
 mg/L
 1.0
 1
 11/12/20
 11/12/20
 13:34
 1061

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20111203

Sample ID: Effluent VSP-4 Date/Time Sampled: 11/12/2020 09:05 PSS Sample ID: 20111203-001

Matrix: WASTE WATER Date/Time Received: 11/12/2020 09:55

Biochemical Oxygen Demand Analytical Method: SM 5210B -2011

Start time: 12-Nov-20 15:31

ResultUnitsRLFlagPreparedAnalyzedAnalystBiochemical Oxygen Demand, 5 dayNDmg/L5.011/12/2011/17/2015:454005

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20111203

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

20111203: Analyses associated with analyst code 4005 were performed by Enviro-Chem Laboratories, Inc., 47 Loveton Circle, Suite K, Sparks, MD 21152

Analytical:

Volatile Organics Compounds (TVO)

Batch: 179623

Method exceedance: A target analyte was detected in the method blank; chloromethane was 0.13 ppb in method blank.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SM 5210B -2011

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20111203

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Batch	Prepared	Analyzed
EPA 200.8	Effluent VSP-4	Initial	20111203-001	W	83871	179667	11/13/2020 12:12	11/16/2020 19:51
	83871-1-BKS	BKS	83871-1-BKS	W	83871	179667	11/13/2020 12:12	11/16/2020 19:14
	83871-1-BLK	BLK	83871-1-BLK	W	83871	179667	11/13/2020 12:12	11/16/2020 19:09
	Mississippi Ave S	MS	20111010-001 S	W	83871	179667	11/13/2020 12:12	11/16/2020 19:23
	Mississippi Ave SD	MSD	20111010-001 S	W	83871	179667	11/13/2020 12:12	11/16/2020 19:28
	83871-1-BKS	Reanalysis	83871-1-BKS	W	83871	179698	11/13/2020 12:12	11/17/2020 13:22
	83871-1-BLK	Reanalysis	83871-1-BLK	W	83871	179698	11/13/2020 12:12	11/17/2020 13:17
	Effluent VSP-4	Reanalysis	20111203-001	W	83871	179698	11/13/2020 12:12	11/17/2020 13:43
EPA 200.8	Effluent VSP-4	Initial	20111203-001	W	83888	179669	11/16/2020 15:32	11/16/2020 20:38
	83888-1-BKS	BKS	83888-1-BKS	W	83888	179669	11/16/2020 15:32	11/16/2020 20:33
	83888-1-BLK	BLK	83888-1-BLK	W	83888	179669	11/16/2020 15:32	11/16/2020 20:29
	Effluent VSP-4 S	MS	20111203-001 S	W	83888	179669	11/16/2020 15:32	11/16/2020 20:43
	DPS Wet Well S	MS	20111606-004 S	W	83888	179669	11/16/2020 15:32	11/16/2020 22:49
	Effluent VSP-4 SD	MSD	20111203-001 S	W	83888	179669	11/16/2020 15:32	11/16/2020 20:47
	83888-1-BKS	Reanalysis	83888-1-BKS	W	83888	179717	11/16/2020 15:32	11/17/2020 14:34
	83888-1-BLK	Reanalysis	83888-1-BLK	W	83888	179717	11/16/2020 15:32	11/17/2020 14:30
	Effluent VSP-4	Reanalysis	20111203-001	W	83888	179717	11/16/2020 15:32	11/17/2020 14:39
EPA 624.1	Effluent VSP-4	Initial	20111203-001	W	83878	179623	11/13/2020 08:00	11/13/2020 14:57
	83878-1-BKS	BKS	83878-1-BKS	W	83878	179623	11/13/2020 08:00	11/13/2020 09:08
	83878-1-BLK	BLK	83878-1-BLK	W	83878	179623	11/13/2020 08:00	11/13/2020 13:42
	13668-EFF-11/20 S	MS	20111115-001 S	W	83878	179623	11/13/2020 08:00	11/13/2020 09:59
	13668-EFF-11/20 SD	MSD	20111115-001 S	W	83878	179623	11/13/2020 08:00	11/13/2020 10:22
SM 2340B	Effluent VSP-4	Initial	20111203-001	W	83892	179697	11/16/2020 17:33	11/17/2020 03:27
SM 2540D -2011	Effluent VSP-4	Initial	20111203-001	W	179572	179572	11/12/2020 13:34	11/12/2020 13:34
	179572-1-BLK	BLK	179572-1-BLK	W	179572	179572	11/12/2020 13:34	11/12/2020 13:34
	13668-EFF-11/20 D	MD	20111115-001 D	W	179572	179572	11/12/2020 13:34	11/12/2020 13:34
	OF-032 D	MD	20111208-003 D	W	179572	179572	11/12/2020 13:34	11/12/2020 13:34
SM 5210B -2011	Effluent VSP-4	Initial	20111203-001	W	179939	179939	11/12/2020 00:00	11/17/2020 15:45

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20111203

Analytical Method: SM 2540D -2011

Seq Number: 179572 Matrix: Water

MB Sample Id: 179572-1-BLK

Parameter MB LOD RL Units Flag

Suspended Solids ND 0.5000 1.000 mg/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 179667 Matrix: Water Date Prep: 11/13/20

MB Sample Id: 83871-1-BLK LCS Sample Id: 83871-1-BKS

Parameter MB Spike LCS LCS Limits Units Flag
Result Amount Result %Rec

Lead <1.000 40.00 41.76 104 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 179698 Matrix: Water Date Prep: 11/13/20

MB Sample Id: 83871-1-BLK LCS Sample Id: 83871-1-BKS

LCS LCS MB **Spike** Limits Units **Parameter** Flag Result **Amount** Result %Rec <1.000 40.00 38.97 97 85-115 Copper ug/L Nickel 40.00 38.40 96 85-115 <1.000 ug/L Zinc <20.00 200 191.1 85-115 ug/L 96

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 179669 Matrix: Water Date Prep: 11/16/20

MB Sample Id: 83888-1-BLK LCS Sample Id: 83888-1-BKS

Parameter MB Spike LCS LCS Limits Units Flag
Result Amount Result %Rec

Lead <1.000 40.00 39.46 99 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seg Number: 179717 Matrix: Water Date Prep: 11/16/20

MB Sample Id: 83888-1-BLK LCS Sample Id: 83888-1-BKS

LCS MB **Spike** LCS Limits **Units Parameter** Flag Amount Result %Rec Result Copper <1.000 40.00 38.75 97 85-115 ug/L Nickel <1.000 40.00 38.72 97 85-115 ug/L Zinc <20.00 200 195.4 98 85-115 ug/L

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex
PSS Project No.: 20111203

Analytical Method: EPA 200.8Prep Method:E200.8_PREPSeq Number:179669Matrix:Waste WaterDate Prep:11/16/20

Parent Sample Id: 20111203-001 MS Sample Id: 20111203-001 S MSD Sample Id: 20111203-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Copper	1.066	40.00	39.37	96	41.29	101	70-130	5	25	ug/L	
Lead	<1.000	40.00	37.54	94	38.67	97	70-130	3	25	ug/L	
Nickel	13.96	40.00	51.22	93	54.30	101	70-130	8	25	ug/L	
Zinc	<20.00	200	210	105	223.8	112	70-130	6	25	ug/L	

Analytical Method: EPA 624 .1Prep Method:E624PREPSeq Number:179623Matrix:WaterDate Prep:11/13/20

MB Sample Id: 83878-1-BLK LCS Sample Id: 83878-1-BKS

IVID Sample Id. 03070	0-1-DLK	_	oo oampio	id. 00070 i	Bito			
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethane	<1.000	50.00	40.25	81	54-148		ug/L	
Chloromethane	<1.000	50.00	41.27	83	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	46.26	93	5-195		ug/L	
Bromomethane	<1.000	50.00	33.94	68	15-185		ug/L	
Chloroethane	<1.000	50.00	44.84	90	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	44.23	88	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	46.33	93	50-150		ug/L	
Methylene Chloride	<1.000	50.00	48.34	97	60-140		ug/L	
trans-1,2-dichloroethene	<1.000	50.00	48.35	97	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	49.83	100	70-130		ug/L	
Chloroform	<1.000	50.00	50.23	100	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	51.72	103	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	48.42	97	70-130		ug/L	
Benzene	<1.000	50.00	51.12	102	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	50.01	100	70-130		ug/L	
Trichloroethene	<1.000	50.00	50.84	102	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	51.96	104	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	52.40	105	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	53.21	106	25-175		ug/L	
Toluene	<1.000	50.00	50.31	101	70-130		ug/L	
trans-1,3-dichloropropene	<1.000	50.00	53.54	107	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	52.27	105	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	49.60	99	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	53.84	108	70-135		ug/L	
Chlorobenzene	<1.000	50.00	51.58	103	65-135		ug/L	
Ethylbenzene	<1.000	50.00	52.66	105	60-140		ug/L	
Bromoform	<1.000	50.00	56.64	113	70-130		ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	54.21	108	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	53.54	107	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	53.32	107	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	54.50	109	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	104		102		87-120	%		
4-Bromofluorobenzene	105		99		85-147	%		
Toluene-D8	99		99		88-110	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20111203

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Flag

Flag

Units

Flag

Project Name Kop-Flex PSS Project No.: 20111203

Parameter

Parameter

Analytical Method: EPA 200.8

Seq Number: 179667

CCV₁

Matrix: Water

%Rec

Analyzed Date: 11/16/20 20:05

CCV Sample Id: CCV CCV **Spike** Units Limits

Lead 40 39.36 98 85-115 ug/L

Result

Analytical Method: EPA 200.8

Seq Number: 179669

CCV Sample Id: CCV₁ Matrix: Water

Analyzed Date: 11/16/20 20:05 **Spike** CCV CCV Limits Units

Amount Result %Rec

Lead 40 39.36 98 85-115 ug/L

Analytical Method: EPA 200.8

Seq Number: 179669 Matrix: Water

Amount

Analyzed Date: 11/16/20 21:20 CCV Sample Id: CCV₂

CCV CCV **Spike** Limits Units **Parameter** Flag Amount Result %Rec

40 38.90 97 85-115 Lead ug/L

Analytical Method: EPA 200.8

Seq Number: 179669 Matrix: Water

CCV₃ Analyzed Date: 11/16/20 22:21 CCV Sample Id:

CCV **Spike** CCV Limits Units **Parameter** Flag Result Amount %Rec

40 85-115 Lead 38.85 97 ug/L

Analytical Method: EPA 200.8

Seq Number: 179669 Matrix: Water

Spike

Analyzed Date: 11/16/20 23:22 CCV Sample Id: CCV 4

CCV

CCV

Parameter %Rec Result Amount

40 85-115 Lead 38.13 95 ug/L

Limits

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20111203

Analytical Method: EPA 200.8

Seq Number: 179698 Matrix: Water

CCV Sample Id: CCV 1 Analyzed Date: 11/17/20 14:09

CCV CCV Spike Limits Units **Parameter** Flag Amount Result %Rec Copper 40 38.22 96 85-115 ug/L Nickel 40 38.19 95 85-115 ug/L 200 95 ug/L Zinc 189.2 85-115

Analytical Method: EPA 200.8

Seq Number: 179717 Matrix: Water

CCV Sample Id: CCV 1 Analyzed Date: 11/17/20 14:09

Spike CCV CCV Limits **Units Parameter** Flag Amount Result %Rec Copper 40 38.22 96 85-115 ug/L Nickel 40 38.19 95 85-115 ug/L Zinc 200 189.2 95 85-115 ug/L

Analytical Method: EPA 200.8

Seq Number: 179717 Matrix: Water

CCV Sample Id: CCV 2 Analyzed Date: 11/17/20 16:31

CCV CCV Limits Units **Spike Parameter** Flag Amount %Rec Result 40 38.94 97 85-115 Copper ug/L Nickel 40 38.64 97 85-115 ug/L Zinc 200 190.9 95 85-115 ug/L

Analytical Method: EPA 200.8

Seq Number: 179717 Matrix: Water

CCV Sample Id: CCV 3 Analyzed Date: 11/17/20 17:28

CCV CCV Spike Limits **Units Parameter** Flag Amount Result %Rec 40 37.70 94 85-115 ug/L Copper Nickel 40 37.45 94 85-115 ug/L 200 Zinc 186.9 93 85-115 ug/L

Analytical Method: EPA 200.8

Seq Number: 179667 Matrix: Water

Parent Sample Id: ICV 1 ICV Sample Id: ICV 1 Analyzed Date: 11/16/20 18:36

ICV **Spike ICV** Limits Units Flag **Parameter** Result **Amount** %Rec Lead 40 39.53 99 90-110 ug/L

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20111203

Analytical Method: EPA 200.8

Seq Number: 179669 Matrix: Water

Parent Sample Id: ICV 1 ICV Sample Id: ICV 1 Analyzed Date: 11/16/20 18:36

ICV ICV Units Spike Limits **Parameter** Flag **Amount** Result %Rec Lead 40 39.53 99 90-110 ug/L

Analytical Method: EPA 200.8

Seq Number: 179698 Matrix: Water

Parent Sample Id: ICV 1 ICV Sample Id: ICV 1 Analyzed Date: 11/17/20 12:39

Spike ICV **ICV** Limits Units **Parameter** Flag Amount Result %Rec Copper 40 39.71 99 90-110 ug/L Nickel 40 39.72 99 90-110 ug/L Zinc 200 200.2 100 90-110 ug/L

Analytical Method: EPA 200.8

Seq Number: 179717 Matrix: Water

Parent Sample Id: ICV 1 ICV Sample Id: ICV 1 Analyzed Date: 11/17/20 12:39

ICV ICV Limits Units **Spike** Flag **Parameter** Amount Result %Rec 40 39.71 99 Copper 90-110 ug/L Nickel 40 39.72 99 90-110 ug/L Zinc 200 200.2 100 90-110 ug/L

Analytical Method: EPA 200.8

Seq Number: 179667 Matrix: Water

Parent Sample Id: LLICV 1 LLICV 1 Analyzed Date: 11/16/20 18:41

Parameter Spike LLICV LLICV Limits Units Flag
Amount Result %Rec

Lead 1 0.9770 98 70-130 ug/L

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Analyzed Date: 11/05/20 11:52

Project Name Kop-Flex PSS Project No.: 20111203

Analytical Method: EPA 624 .1

Seq Number: 179415 Matrix: Water Parent Sample Id: ICV-01 ICV Sample Id: ICV-01

ICV **ICV** Spike Limits Units **Parameter** Flag **Amount** Result %Rec Dichlorodifluoromethane .05 0.05093 102 54-148 mg/L Chloromethane .05 0.05298 106 57-135 mg/L Vinyl Chloride .05 0.05282 106 mg/L 64-129 Bromomethane .05 0.05221 104 67-132 mg/L 101 Chloroethane .05 0.05048 62-133 mg/L 71-137 Trichlorofluoromethane .05 104 0.05215 mg/L .05 105 67-126 1,1-Dichloroethene 0.05235 mg/L Methylene Chloride .05 0.05186 104 73-120 mg/L trans-1,2-dichloroethene .05 0.05241 105 75-127 mg/L 1,1-Dichloroethane .05 0.05393 108 76-127 mg/L Chloroform .05 0.05300 106 79-125 mg/L 0.05574 mg/L 1,1,1-Trichloroethane .05 111 73-130 Carbon Tetrachloride .05 0.05343 107 73-130 mg/L Benzene .05 0.05413 108 73-132 mg/L 77-129 1,2-Dichloroethane .05 0.05331 107 mg/L Trichloroethene .05 0.05426 109 79-126 mg/L .05 0.05468 109 74-129 mg/L 1,2-Dichloropropane Bromodichloromethane .05 0.05289 106 81-125 mg/L .05 109 mg/L cis-1,3-Dichloropropene 0.05442 76-116 Toluene .05 0.05369 107 77-127 mg/L trans-1,3-dichloropropene .05 0.05489 110 78-114 mg/L 1,1,2-Trichloroethane .05 0.05365 107 78-127 mg/L 110 78-128 Tetrachloroethylene .05 0.05480 mg/L Dibromochloromethane .05 0.05347 107 70-132 mg/L mg/L Chlorobenzene .05 0.05394 108 72-128 0.05657 Ethylbenzene .05 113 69-131 mg/L .05 0.05393 108 Bromoform 70-130 mg/L 1,1,2,2-Tetrachloroethane .05 0.05363 107 62-134 mg/L 0.05500 70-129 1,3-Dichlorobenzene .05 110 mg/L 1.4-Dichlorobenzene .05 0.05404 108 69-127 mg/L 1,2-Dichlorobenzene .05 0.05518 110 65-133 mg/L ICV Limits Units Flag Surrogate Result 87-120 Dibromofluoromethane 100 % 4-Bromofluorobenzene 98 85-147 %

X = Recovery outside of QC Criteria

Toluene-D8

100

88-110

%

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

PSS C	LIENT: WSP	M.S.A	OFFIC	E LOCATION:	Herndo	n, vA	PSS Wo	rk Order	#: 2	011	1203							PA	GE		F I	
BILL T	O (if different):		PHON	E#:703 -	709-1	0500	Matrix C SW=Surfa		DW =Dr	rinking V	Vater (GW=Gro	und Wat	er WW	=Waste \	Nater 1	0 =0il			=Solid /		W1=Wipe
CONT	ACT: Eric ,	Johnson) EMAIL	ericjo	hnson@	wsp.		AB	Prese	vatives Codes			HNO3									Preservative Codes
	ECT NAME: KO P			PROJECT #	:314015	45.00		G=GRAB	Analys Metho	sis/	(p)	10)	1	7	1	7	1	/	/	1		- HCL - H ₂ SO ₄
SITE L	ocation: Han	over, M	d	P.O. #	t :		AINER	/PE:	Requir 3		eta	2	13/	/	//	/	/		/	/	/ 4	- HNO ₃ - NaOH - E624KIT
SAMP	er(s): Laure	in John	son	DW CERT #	r:		# OF CONTAINERS	SAMPLE TYPE: C=COMPOSITE	/	20101	123	-		0/			/	/	/	//	6	- ICE - Sodium
PSS	ID SA	MPLE IDENTIFIC	CATION	DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes	# 0F	SAME	15	2	The state of the s	A fetal	2/3/8	8/	//	/			/			Thiosulfate - Ascorbic Acid - TerraCore Kit
	Efflu	ent vs	P-4	11/12/20	9:05	ww	7	G	×	X	X	X	X								,	MINORO INC
																_						
															-	-			100		112/	- protection
															1						-6	
					4 13 5																×	
													-									
Relinqu	ished By: (1)	·~	Date 11/12/20	Time	Received By:	lun	واكنا	n	□ 5-C)av	□ 3	3-Day	per Co	2-Day	, 🗀	BEU FE	esent: dy Sea		PR	_		=3.4°
Relinqu	ished By: (2)		Date	Time	Received By:				STATE	RESU	LTS R	EPORT	ED TO:	:	#	Cool	ers: ng Car			emp:		4.5°C
Relinqu	shed By: (3)		Date	Time	Received By:					PLIANC	w l	diss	al Instru	ed r	neta	15	fie	ld (ilt	ered		
Relinqui	shed By: (4)		Date	Time	Received By:				EDD FO	RMAT T	YPE	met	rais ndo	= c	u, P	da	VI,	Zh				

This chain of custody is a legal document. The client (PSS Client), by signing, or having client's agent sign, this "Chain of Custody Form", agrees to pay for the above requested services per the latest version of the Service Brochure of PSS-provided quotation and all attorney's or others as a content of the Service Brochure of PSS-provided quotation and all attorney's or others as a content of the Service Brochure of PSS-provided quotation and all attorney's or others as a content of the Service Brochure of PSS-provided quotation and all attorney's or others are content of the Service Brochure of PSS-provided quotation and all attorney's or others are content of the Service Brochure of PSS-provided quotation and all attorney's or others are content of the Service Brochure of PSS-provided quotation and all attorney's or others are content of the Service Brochure of PSS-provided quotation and all attorney's or others are content of the Service Brochure of PSS-provided quotation and all attorney's or others.

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20111203

WSP USA - Herndon **Client Name** Received By Amber Confer **Disposal Date** 12/17/2020 Date Received 11/12/2020 09:55:00 AM **Delivered By** Client **Tracking No** Not Applicable Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 4.5 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Lauren Johnson Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 1 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 **Preservation Total Metals** (pH<2)Yes Dissolved Metals, filtered within 15 minutes of collection (pH<2) Yes Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	Temme Windle	Date: 11/12/2020	
	Thomas Wingate	<u> </u>	_

PM Review and Approval: July 7 longer

524 VOC (Rcvd with trip blanks)

Amber Confer
Page 16 of 16

Date: 11/12/2020

(pH<2)

Version 1.000

N/A

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20111204

November 30, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20111204

Project Name: Kop Flex

Project Location: Hanover, MD Project ID.: 31401545.010-04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20111204**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on December 17, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20111204

Project ID: 31401545.010-04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 11/12/2020 at 09:55 am

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20111204-001	Effluent VSP-4	WASTE WATER	11/12/20 09:05	
20111204-002	Influent VSP-1	GROUND WATER	11/12/20 08:55	
20111204-003	TB-111220	WATER	11/12/20 08:52	
20111204-003	TB-111220	WATER	11/12/20 08:52	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268

NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20111204

Sample ID: Effluent VSP-4 Date/Time Sampled: 11/12/2020 09:05 PSS Sample ID: 20111204-001

Matrix: WASTE WATER Date/Time Received: 11/12/2020 09:55

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	43	ug/L	1.0	1	11/26/20	11/26/20 16:49	1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	104	%	80-120	1	11/26/20	11/26/20 16:49	1045

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20111204

Sample ID: Influent VSP-1 Date/Time Sampled: 11/12/2020 08:55 PSS Sample ID: 20111204-002

Matrix: GROUND WATER Date/Time Received: 11/12/2020 09:55

TCL Volatile Organic Compounds Analytical Method: SW-846 8260 B Preparation Method: 5030B

Qualifier(s): See Batch 179706 on Case Narrative.

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Acetone	ND	ug/L	5.0	1	11/17/20	11/17/20 14:00	1011
Benzene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Bromochloromethane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Bromodichloromethane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Bromoform	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Bromomethane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
2-Butanone (MEK)	ND	ug/L	5.0	1	11/17/20	11/17/20 14:00	1011
Carbon Disulfide	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Carbon tetrachloride	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Chlorobenzene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Chloroethane	4.2	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Chloroform	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Chloromethane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Cyclohexane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
1,2-Dibromo-3-chloropropane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Dibromochloromethane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
1,2-Dibromoethane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Dichlorodifluoromethane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
1,1-Dichloroethane	47	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
1,2-Dichloroethane	1.4	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
cis-1,2-Dichloroethene	1.2	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
1,1-Dichloroethene	220	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
trans-1,3-Dichloropropene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
trans-1,2-Dichloroethene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Ethylbenzene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
2-Hexanone (MBK)	ND	ug/L	5.0	1	11/17/20	11/17/20 14:00	1011
Isopropylbenzene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Methyl Acetate	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Methylcyclohexane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011
Methylene chloride	ND	ug/L	1.0	1	11/17/20	11/17/20 14:00	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20111204

Sample ID: Influent VSP-1 Date/Time Sampled: 11/12/2020 08:55 PSS Sample ID: 20111204-002

Matrix: GROUND WATER Date/Time Received: 11/12/2020 09:55

Toluene-D8

103

%

TCL Volatile Organic Compounds Analytical Method: SW-846 8260 B Preparation Method: 5030B

Qualifier(s): See Batch 179706 on Case Narr	ative.						
_	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
4-Methyl-2-Pentanone (MIBK)	ND	ug/L	5.0	1	11/17/20	11/17/20 14:0	0 1011
Methyl-t-Butyl Ether	ND	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
Naphthalene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
Styrene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
Tetrachloroethene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
Toluene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
1,1,1-Trichloroethane	19	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
Trichloroethene	1.1	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
Trichlorofluoromethane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
1,1,2-Trichlorotrifluoroethane	ND	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
Vinyl chloride	ND	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
m&p-Xylene	ND	ug/L	2.0	1	11/17/20	11/17/20 14:0	0 1011
o-Xylene	ND	ug/L	1.0	1	11/17/20	11/17/20 14:0	0 1011
Surrogate(s)	Recovery		Limits				
4-Bromofluorobenzene	104	%	88-112	1	11/17/20	11/17/20 14:0	0 1011
Dibromofluoromethane	103	%	93-111	1	11/17/20	11/17/20 14:0	0 1011
Toluene-D8	100	%	94-107	1	11/17/20	11/17/20 14:0	00 1011
1,4-Dioxane by GC/MS - SIM	Analytica	l Method:	SW-846 8260 B-	-Modified	Preparation Meth	nod: 5030B	
_	Result	Units	RL F	lag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	110	ug/L	10	10	11/26/20	11/26/20 17:5	6 1045
Surrogate(s)	Recovery		Limits				

80-120

10

11/26/20

11/26/20 17:56 1045

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20111204

Sample ID: TB-111220 Date/Time Sampled: 11/12/2020 08:52 PSS Sample ID: 20111204-003

Matrix: WATER Date/Time Received: 11/12/2020 09:55

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 179623 on Case Narrative.

pH=2

μπ=2							
<u> </u>	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Chloromethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Vinyl Chloride	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Bromomethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Chloroethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Trichlorofluoromethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
1,1-Dichloroethene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Methylene Chloride	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
trans-1,2-dichloroethene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
1,1-Dichloroethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Chloroform	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
1,1,1-Trichloroethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Carbon Tetrachloride	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Benzene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
1,2-Dichloroethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Trichloroethene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
1,2-Dichloropropane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Bromodichloromethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Toluene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
trans-1,3-dichloropropene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
1,1,2-Trichloroethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Tetrachloroethylene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Dibromochloromethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Chlorobenzene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Ethylbenzene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Bromoform	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
1,3-Dichlorobenzene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
1,4-Dichlorobenzene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
1,2-Dichlorobenzene	ND	ug/L	1.0	1	11/13/20	11/13/20 14:12	1011
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	103	%	87-120	1	11/13/20	11/13/20 14:12	1011
4-Bromofluorobenzene	104	%	85-147	1	11/13/20	11/13/20 14:12	1011
Toluene-D8	99	%	88-110	1	11/13/20	11/13/20 14:12	1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20111204

Sample ID: TB-111220 Date/Time Sampled: 11/12/2020 08:52 PSS Sample ID: 20111204-003

Matrix: WATER Date/Time Received: 11/12/2020 09:55

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL F	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	11/26/20	11/26/20 18:18	1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	102	%	80-120	1	11/26/20	11/26/20 18:18	1045

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20111204

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Analytical:

Volatile Organics Compounds (TVO)

Batch: 179623

Method exceedance: A target analyte was detected in the method blank; chloromethane was 0.13 ppb in method blank.

Analytical:

TCL Volatile Organic Compounds

Batch: 179706

Method exceedance: Laboratory control sample exceedances identified; see QC summary.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20111204

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical I	Batch Prepared	Analyzed
EPA 624.1	TB-111220	Initial	20111204-003	W	83878	179623	11/13/2020 08:00	11/13/2020 14:12
	83878-1-BKS	BKS	83878-1-BKS	W	83878	179623	11/13/2020 08:00	11/13/2020 09:08
	83878-1-BLK	BLK	83878-1-BLK	W	83878	179623	11/13/2020 08:00	11/13/2020 13:42
	13668-EFF-11/20 S	MS	20111115-001 S	W	83878	179623	11/13/2020 08:00	11/13/2020 09:59
	13668-EFF-11/20 SD	MSD	20111115-001 S	W	83878	179623	11/13/2020 08:00	11/13/2020 10:22
SW-846 8260 B	Influent VSP-1	Initial	20111204-002	W	83917	179706	11/17/2020 09:12	11/17/2020 14:00
	83917-1-BKS	BKS	83917-1-BKS	W	83917	179706	11/17/2020 09:12	11/17/2020 10:06
	83917-1-BLK	BLK	83917-1-BLK	W	83917	179706	11/17/2020 09:12	11/17/2020 11:37
	MW-2 S	MS	20111111-005 S	W	83917	179706	11/17/2020 09:12	11/17/2020 14:23
	MW-2 SD	MSD	20111111-005 S	W	83917	179706	11/17/2020 09:12	11/17/2020 14:46
SW-846 8260 B-	Effluent VSP-4	Initial	20111204-001	W	84032	179951	11/30/2020 13:01	11/26/2020 16:49
Modified	Influent VSP-1	Initial	20111204-002	W	84032	179951	11/30/2020 13:01	11/26/2020 17:56
	TB-111220	Initial	20111204-003	W	84032	179951	11/30/2020 13:01	11/26/2020 18:18
	84032-1-BKS	BKS	84032-1-BKS	W	84032	179951	11/30/2020 13:01	11/26/2020 14:57
	84032-1-BLK	BLK	84032-1-BLK	W	84032	179951	11/30/2020 13:01	11/26/2020 16:26
	84032-1-BSD	BSD	84032-1-BSD	W	84032	179951	11/30/2020 13:01	11/26/2020 15:19

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20111204

Analytical Method: EPA 624 .1Prep Method:E624PREPSeq Number:179623Matrix:WaterDate Prep:11/13/20

MB Sample Id:	83878-1-BLK	L	.CS Sample	e ld: 8387	8-1-BKS	·		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethan	e <1.000	50.00	40.25	81	54-148		ug/L	
Chloromethane	<1.000	50.00	41.27	83	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	46.26	93	5-195		ug/L	
Bromomethane	<1.000	50.00	33.94	68	15-185		ug/L	
Chloroethane	<1.000	50.00	44.84	90	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	44.23	88	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	46.33	93	50-150		ug/L	
Methylene Chloride	<1.000	50.00	48.34	97	60-140		ug/L	
trans-1,2-dichloroethen	e <1.000	50.00	48.35	97	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	49.83	100	70-130		ug/L	
Chloroform	<1.000	50.00	50.23	100	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	51.72	103	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	48.42	97	70-130		ug/L	
Benzene	<1.000	50.00	51.12	102	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	50.01	100	70-130		ug/L	
Trichloroethene	<1.000	50.00	50.84	102	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	51.96	104	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	52.40	105	65-135		ug/L	
cis-1,3-Dichloropropen	e <1.000	50.00	53.21	106	25-175		ug/L	
Toluene	<1.000	50.00	50.31	101	70-130		ug/L	
trans-1,3-dichloroprope	ene <1.000	50.00	53.54	107	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	52.27	105	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	49.60	99	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	53.84	108	70-135		ug/L	
Chlorobenzene	<1.000	50.00	51.58	103	65-135		ug/L	
Ethylbenzene	<1.000	50.00	52.66	105	60-140		ug/L	
Bromoform	<1.000	50.00	56.64	113	70-130		ug/L	
1,1,2,2-Tetrachloroetha	ane <1.000	50.00	54.21	108	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	53.54	107	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	53.32	107	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	54.50	109	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	104		102		87-120	%		
4-Bromofluorobenzene	105		99		85-147	%		
Toluene-D8	99		99		88-110	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20111204

Analytical Method: SW-846 8260 B
Seq Number: 179706 Matrix: Water Date Prep: 11/17/20

MB Sample Id: 83917-1-BLK LCS Sample Id: 83917-1-BKS

MB Sample Id: 83917	7-1-BLK	L	CS Sample	e Id: 839	117-1-BKS		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Acetone	<5.000	50.00	43.82	88	26-128	ug/L	
Benzene	<1.000	50.00	52.04	104	82-115	ug/L	
Bromochloromethane	<1.000	50.00	51.96	104	91-115	ug/L	
Bromodichloromethane	<1.000	50.00	52.13	104	88-122	ug/L	
Bromoform	<1.000	50.00	54.23	108	79-122	ug/L	
Bromomethane	<1.000	50.00	40.16	80	50-143	ug/L	
2-Butanone (MEK)	<5.000	50.00	53.86	108	51-113	ug/L	
Carbon Disulfide	<1.000	50.00	54.57	109	71-132	ug/L	
Carbon tetrachloride	<1.000	50.00	51.71	103	85-125	ug/L	
Chlorobenzene	<1.000	50.00	52.20	104	80-116	ug/L	
Chloroethane	<1.000	50.00	49.20	98	58-115	ug/L	
Chloroform	<1.000	50.00	51.66	103	81-113	ug/L	
Chloromethane	<1.000	50.00	46.19	92	48-132	ug/L	
Cyclohexane	<1.000	50.00	53.46	107	81-125	ug/L	
1,2-Dibromo-3-chloropropane	<1.000	50.00	54.72	109	63-122	ug/L	
Dibromochloromethane	<1.000	50.00	52.87	106	84-120	ug/L	
1,2-Dibromoethane	<1.000	50.00	54.26	109	82-122	ug/L	
1,2-Dichlorobenzene	<1.000	50.00	54.69	109	79-122	ug/L	
1,3-Dichlorobenzene	<1.000	50.00	54.88	110	79-122	ug/L	
Dichlorodifluoromethane	<1.000	50.00	45.59	91	73-126	ug/L	
1,4-Dichlorobenzene	<1.000	50.00	54.39	109	79-119	ug/L	
1,1-Dichloroethane	<1.000	50.00	53.71	107	70-121	ug/L	
1,2-Dichloroethane	<1.000	50.00	51.66	103	78-118	ug/L	
cis-1,2-Dichloroethene	<1.000	50.00	55.04	110	76-116	ug/L	
1,1-Dichloroethene	<1.000	50.00	52.18	104	71-124	ug/L	
1,2-Dichloropropane	<1.000	50.00	52.88	106	79-121	ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	52.60	105	83-123	ug/L	
trans-1,3-Dichloropropene	<1.000	50.00	53.25	107	82-125	ug/L	
trans-1,2-Dichloroethene	<1.000	50.00	51.62	103	74-118	ug/L	
Ethylbenzene	<1.000	50.00	54.93	110	85-120	ug/L	
2-Hexanone (MBK)	<5.000	50.00	49.98	100	51-126	ug/L	
Isopropylbenzene	<1.000	50.00	55.56	111	84-125	ug/L	
Methyl Acetate	<1.000	50.00	52.94	106	75-114	ug/L	
Methylcyclohexane	<1.000	50.00	52.94	106	88-124	ug/L	
Methylene chloride	<1.000	50.00	50.23	100	70-117	ug/L	
4-Methyl-2-Pentanone (MIBK)	<5.000	50.00	51.88	104	63-112	ug/L	
Methyl-t-Butyl Ether	<1.000	50.00	52.98	106	70-127	ug/L	
Naphthalene	<1.000	50.00	55.47	111	71-138	ug/L	
Styrene	<1.000	50.00	52.74	105	78-121	ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	53.98	108	70-118	ug/L	
Tetrachloroethene	<1.000	50.00	52.72	105	83-113	ug/L	
Toluene	<1.000	50.00	51.87	104	85-112	ug/L	
1,2,3-Trichlorobenzene	<1.000	50.00	54.84	110	80-134	ug/L	
1,2,4-Trichlorobenzene	<1.000	50.00	55.61	111	83-134	ug/L	
1,1,1-Trichloroethane	<1.000	50.00	54.01	108	84-122	ug/L	
Trichloroethene	<1.000	50.00	52.24	104	82-117	ug/L	
1,1,2-Trichloroethane	<1.000	50.00	52.95	106	82-115	ug/L	
Trichlorofluoromethane	<1.000	50.00	52.40	105	71-123	ug/L	
1,1,2-Trichlorotrifluoroethane	<1.000	50.00	52.97	106	72-126	ug/L	
Vinyl chloride	<1.000	50.00	60.12	120	75-113	ug/L	Н
m&p-Xylene	<2.000	100	110.7	111	87-120	ug/L	
						-	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20111204

Analytical Method: SW-846 8260 B
Seq Number: 179706 Matrix: Water Date Prep: 11/17/20

MB Sample Id: 83917-1-BLK LCS Sample Id: 83917-1-BKS

MB campiona. 0001	, i beix	_					
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
o-Xylene	<1.000	50.00	54.69	109	87-122	ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units	
4-Bromofluorobenzene	106		99		88-112	%	
Dibromofluoromethane	102		101		93-111	%	
Toluene-D8	100		100		94-107	%	

Analytical Method: SW-846 8260 B-Modified

Seq Number: 179951 Matrix: Water Date Prep: 11/30/20

Matrix: Water Date Prep: 11/30/20

MB Sample Id: 84032-1-BLK LCS Sample Id: 84032-1-BKS LCSD Sample Id: 84032-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec		%RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxane)	<1.000	20.00	26.27	131	26.35	132	2 50-150	1	20	ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag		CSD esult	LCSD Flag	Limits	Units		
Toluene-D8	105		112			111		80-120	%		

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Analyzed Date: 11/05/20 11:52

Project Name Kop Flex PSS Project No.: 20111204

Toluene-D8

Analytical Method: EPA 624 .1

Seq Number: 179415 Matrix: Water Parent Sample Id: ICV-01 ICV Sample Id: ICV-01

ICV **ICV** Spike Limits Units Flag **Parameter** Result %Rec Amount Dichlorodifluoromethane 0.05000 0.05093 54-148 102 mg/L Chloromethane 0.05000 0.05298 106 57-135 mg/L Vinyl Chloride 0.05000 0.05282 106 mg/L 64-129 Bromomethane 0.05000 0.05221 104 67-132 mg/L 101 Chloroethane 0.05000 0.05048 62-133 mg/L 104 71-137 Trichlorofluoromethane 0.05000 0.05215 mg/L 105 1,1-Dichloroethene 0.05000 0.05235 67-126 mg/L Methylene Chloride 0.05000 0.05186 104 73-120 mg/L trans-1,2-dichloroethene 0.05000 0.05241 105 75-127 mg/L 1,1-Dichloroethane 0.05000 0.05393 108 76-127 mg/L 0.05000 0.05300 106 Chloroform 79-125 mg/L 1,1,1-Trichloroethane 0.05000 0.05574 111 73-130 mg/L Carbon Tetrachloride 0.05000 0.05343 107 73-130 mg/L Benzene 0.05000 0.05413 108 73-132 mg/L 107 77-129 1,2-Dichloroethane 0.05000 0.05331 mg/L Trichloroethene 0.05000 0.05426 109 79-126 mg/L 0.05468 109 74-129 mg/L 1,2-Dichloropropane 0.05000 Bromodichloromethane 0.05000 0.05289 106 81-125 mg/L 109 cis-1,3-Dichloropropene 0.05000 0.05442 76-116 mg/L Toluene 0.05000 0.05369 107 77-127 mg/L 0.05000 0.05489 110 78-114 trans-1,3-dichloropropene mg/L 1,1,2-Trichloroethane 0.05000 0.05365 107 78-127 mg/L 78-128 Tetrachloroethylene 0.05000 0.05480 110 mg/L Dibromochloromethane 0.05000 0.05347 107 70-132 mg/L Chlorobenzene 0.05000 0.05394 108 72-128 mg/L Ethylbenzene 0.05000 0.05657 113 69-131 mg/L Bromoform 108 0.05000 0.05393 70-130 mg/L 1,1,2,2-Tetrachloroethane 0.05000 0.05363 107 62-134 mg/L 1,3-Dichlorobenzene 0.05000 0.05500 110 70-129 mg/L 1.4-Dichlorobenzene 0.05000 0.05404 108 69-127 mg/L 1,2-Dichlorobenzene 0.05000 0.05518 110 65-133 mg/L ICV Limits Units Flag Surrogate Result Dibromofluoromethane 100 87-120 % 98 4-Bromofluorobenzene 85-147 %

100

88-110

%

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20111204

Analytical Method: SW-846 8260 B

Seq Number: 179706 Matrix: Water

CCV Sample Id: CCV-01 Analyzed Date: 11/17/20 09:35

Acetone 50.00 46.35 93 80-120 Benzene 50.00 52.16 104 80-120 Bromochloromethane 50.00 52.98 106 80-120 Bromodichloromethane 50.00 52.38 105 80-120 Bromoform 50.00 53.66 107 80-120 Bromomethane 50.00 37.95 76 80-120 2-Butanone (MEK) 50.00 55.63 111 80-120 Carbon Disulfide 50.00 53.97 108 80-120 Carbon tetrachloride 50.00 50.21 100 80-120 Carbon tetrachloride 50.00 50.13 102 80-120 Chlorobenzene 50.00 50.13 100 80-120 Chlorobethane 50.00 51.82 104 80-120 Chloromethane 50.00 52.05 104 80-120 Cyclohexane 50.00 52.21 104 80-120 1,2-Dibromo-3-chloropropane	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Х
Bromochloromethane 50.00 52.98 106 80-120 Bromodichloromethane 50.00 52.38 105 80-120 Bromoform 50.00 53.66 107 80-120 Bromomethane 50.00 37.95 76 80-120 2-Butanone (MEK) 50.00 55.63 111 80-120 Carbon Disulfide 50.00 53.97 108 80-120 Carbon tetrachloride 50.00 50.21 100 80-120 Chlorobenzene 50.00 51.13 102 80-120 Chlorotethane 50.00 51.82 104 80-120 Chloroform 50.00 51.82 104 80-120 Chloromethane 50.00 52.05 104 80-120 Cyclohexane 50.00 52.21 104 80-120 1,2-Dibromo-3-chloropropane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,2-Dichlorobenze	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Х
Bromodichloromethane 50.00 52.38 105 80-120 Bromoform 50.00 53.66 107 80-120 Bromomethane 50.00 37.95 76 80-120 2-Butanone (MEK) 50.00 55.63 111 80-120 Carbon Disulfide 50.00 53.97 108 80-120 Carbon tetrachloride 50.00 50.21 100 80-120 Chlorobenzene 50.00 51.13 102 80-120 Chloroethane 50.00 50.13 100 80-120 Chloromethane 50.00 51.82 104 80-120 Chloromethane 50.00 52.05 104 80-120 Cyclohexane 50.00 52.21 104 80-120 1,2-Dibromo-3-chloropropane 50.00 52.21 104 80-120 1,2-Dibromoethane 50.00 52.43 105 80-120 1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobe	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	X
Bromoform 50.00 53.66 107 80-120 Bromomethane 50.00 37.95 76 80-120 2-Butanone (MEK) 50.00 55.63 111 80-120 Carbon Disulfide 50.00 53.97 108 80-120 Carbon tetrachloride 50.00 50.21 100 80-120 Chlorobenzene 50.00 51.13 102 80-120 Chloroethane 50.00 50.13 100 80-120 Chloroform 50.00 51.82 104 80-120 Chloromethane 50.00 52.05 104 80-120 Cyclohexane 50.00 52.05 104 80-120 1,2-Dibromo-3-chloropropane 50.00 52.21 104 80-120 Dibromochloromethane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 1,4-Dichlorobenze	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Х
Bromomethane 50.00 37.95 76 80-120 2-Butanone (MEK) 50.00 55.63 111 80-120 Carbon Disulfide 50.00 53.97 108 80-120 Carbon tetrachloride 50.00 50.21 100 80-120 Chlorobenzene 50.00 51.13 102 80-120 Chloroethane 50.00 50.13 100 80-120 Chloroform 50.00 51.82 104 80-120 Chloromethane 50.00 51.82 104 80-120 Cyclohexane 50.00 52.05 104 80-120 1,2-Dibromo-3-chloropropane 50.00 52.21 104 80-120 1,2-Dibromoethane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 1,4-Dichlo	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	X
Bromomethane 50.00 37.95 76 80-120 2-Butanone (MEK) 50.00 55.63 111 80-120 Carbon Disulfide 50.00 53.97 108 80-120 Carbon tetrachloride 50.00 50.21 100 80-120 Chlorobenzene 50.00 51.13 102 80-120 Chloroethane 50.00 50.13 100 80-120 Chloroform 50.00 51.82 104 80-120 Chloromethane 50.00 51.82 104 80-120 Cyclohexane 50.00 52.05 104 80-120 1,2-Dibromo-3-chloropropane 50.00 52.21 104 80-120 1,2-Dibromoethane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,3-Dichlorobenzene 50.00 50.72 101 80-120 1,4-Dichlorobenzene 50.00 50.16 100 80-120 1,4-Dichlo	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	X
2-Butanone (MEK) 50.00 55.63 111 80-120 Carbon Disulfide 50.00 53.97 108 80-120 Carbon tetrachloride 50.00 50.21 100 80-120 Chlorobenzene 50.00 51.13 102 80-120 Chloroethane 50.00 50.13 100 80-120 Chloroform 50.00 51.82 104 80-120 Chloromethane 50.00 46.94 94 80-120 Cyclohexane 50.00 52.05 104 80-120 1,2-Dibromo-3-chloropropane 50.00 52.21 104 80-120 Dibromochloromethane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 Dichlorodifluoromethane 50.00 50.14 100 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120	ug/L ug/L ug/L ug/L ug/L ug/L	
Carbon Disulfide 50.00 53.97 108 80-120 Carbon tetrachloride 50.00 50.21 100 80-120 Chlorobenzene 50.00 51.13 102 80-120 Chloroethane 50.00 50.13 100 80-120 Chloroform 50.00 51.82 104 80-120 Chloromethane 50.00 51.82 104 80-120 Cyclohexane 50.00 52.05 104 80-120 1,2-Dibromo-3-chloropropane 50.00 52.21 104 80-120 1,2-Dibromoethane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 Dichlorodifluoromethane 50.00 50.14 100 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120	ug/L ug/L ug/L ug/L ug/L ug/L	
Carbon tetrachloride 50.00 50.21 100 80-120 Chlorobenzene 50.00 51.13 102 80-120 Chloroethane 50.00 50.13 100 80-120 Chloroform 50.00 51.82 104 80-120 Chloromethane 50.00 46.94 94 80-120 Cyclohexane 50.00 52.05 104 80-120 1,2-Dibromo-3-chloropropane 50.00 52.21 104 80-120 Dibromochloromethane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 Dichlorodifluoromethane 50.00 50.14 100 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120 1,1-Dichloroethane 50.00 54.73 109 80-120	ug/L ug/L ug/L ug/L ug/L	
Chlorobenzene 50.00 51.13 102 80-120 Chloroethane 50.00 50.13 100 80-120 Chloroform 50.00 51.82 104 80-120 Chloromethane 50.00 46.94 94 80-120 Cyclohexane 50.00 52.05 104 80-120 1,2-Dibromo-3-chloropropane 50.00 52.21 104 80-120 Dibromochloromethane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 Dichlorodifluoromethane 50.00 43.68 87 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120 1,1-Dichloroethane 50.00 54.73 109 80-120	ug/L ug/L ug/L ug/L	
Chloroform 50.00 51.82 104 80-120 Chloromethane 50.00 46.94 94 80-120 Cyclohexane 50.00 52.05 104 80-120 1,2-Dibromo-3-chloropropane 50.00 52.21 104 80-120 Dibromochloromethane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 Dichlorodifluoromethane 50.00 43.68 87 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120 1,1-Dichloroethane 50.00 54.73 109 80-120	ug/L ug/L ug/L	
Chloroform 50.00 51.82 104 80-120 Chloromethane 50.00 46.94 94 80-120 Cyclohexane 50.00 52.05 104 80-120 1,2-Dibromo-3-chloropropane 50.00 52.21 104 80-120 Dibromochloromethane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 Dichlorodifluoromethane 50.00 43.68 87 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120 1,1-Dichloroethane 50.00 54.73 109 80-120	ug/L ug/L	
Chloromethane 50.00 46.94 94 80-120 Cyclohexane 50.00 52.05 104 80-120 1,2-Dibromo-3-chloropropane 50.00 52.21 104 80-120 Dibromochloromethane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 Dichlorodifluoromethane 50.00 43.68 87 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120 1,1-Dichloroethane 50.00 54.73 109 80-120	ug/L	
Cyclohexane 50.00 52.05 104 80-120 1,2-Dibromo-3-chloropropane 50.00 52.21 104 80-120 Dibromochloromethane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 Dichlorodifluoromethane 50.00 43.68 87 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120 1,1-Dichloroethane 50.00 54.73 109 80-120		
Dibromochloromethane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 Dichlorodifluoromethane 50.00 43.68 87 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120 1,1-Dichloroethane 50.00 54.73 109 80-120	~ ~ ~	
Dibromochloromethane 50.00 52.43 105 80-120 1,2-Dibromoethane 50.00 53.34 107 80-120 1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 Dichlorodifluoromethane 50.00 43.68 87 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120 1,1-Dichloroethane 50.00 54.73 109 80-120	ug/L	
1,2-Dibromoethane 50.00 53.34 107 80-120 1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 Dichlorodifluoromethane 50.00 43.68 87 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120 1,1-Dichloroethane 50.00 54.73 109 80-120	ug/L	
1,2-Dichlorobenzene 50.00 50.72 101 80-120 1,3-Dichlorobenzene 50.00 50.16 100 80-120 Dichlorodifluoromethane 50.00 43.68 87 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120 1,1-Dichloroethane 50.00 54.73 109 80-120	ug/L	
1,3-Dichlorobenzene 50.00 50.16 100 80-120 Dichlorodifluoromethane 50.00 43.68 87 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120 1,1-Dichloroethane 50.00 54.73 109 80-120	ug/L	
Dichlorodifluoromethane 50.00 43.68 87 80-120 1,4-Dichlorobenzene 50.00 50.14 100 80-120 1,1-Dichloroethane 50.00 54.73 109 80-120	ug/L	
1,4-Dichlorobenzene 50.00 50.14 100 80-120 1,1-Dichloroethane 50.00 54.73 109 80-120	ug/L	
1,1-Dichloroethane 50.00 54.73 109 80-120	ug/L	
	ug/L	
	ug/L	
cis-1,2-Dichloroethene 50.00 50.61 101 80-120	ug/L	
1,1-Dichloroethene 50.00 51.31 103 80-120	ug/L	
1,2-Dichloropropane 50.00 53.29 107 80-120	ug/L	
cis-1,3-Dichloropropene 50.00 52.43 105 80-120	ug/L	
trans-1,3-Dichloropropene 50.00 52.55 105 80-120	ug/L	
trans-1,2-Dichloroethene 50.00 51.85 104 80-120	ug/L	
Ethylbenzene 50.00 53.69 107 80-120	ug/L	
2-Hexanone (MBK) 50.00 51.06 102 80-120	ug/L	
Isopropylbenzene 50.00 51.49 103 80-120	ug/L	
Methyl Acetate 50.00 54.75 110 80-120	ug/L	
Methylcyclohexane 50.00 50.81 102 80-120	ug/L	
Methylene chloride 50.00 51.60 103 80-120	ug/L	
4-Methyl-2-Pentanone (MIBK) 50.00 52.90 106 80-120	ug/L	
Methyl-t-Butyl Ether 50.00 53.50 107 80-120	ug/L	
Naphthalene 50.00 50.71 101 80-120	ug/L	
Styrene 50.00 51.48 103 80-120	ug/L	
1,1,2,2-Tetrachloroethane 50.00 51.74 103 80-120	ug/L	
Tetrachloroethene 50.00 50.84 102 80-120	ug/L	
Toluene 50.00 51.35 103 80-120	ug/L	
1,2,3-Trichlorobenzene 50.00 49.85 100 80-120	ug/L	
1,2,4-Trichlorobenzene 50.00 49.56 99 80-120	ug/L	
1,1,1-Trichloroethane 50.00 52.41 105 80-120	ug/L	
Trichloroethene 50.00 51.20 102 80-120	ug/L	
1,1,2-Trichloroethane 50.00 53.28 107 80-120	ug/L	
Trichlorofluoromethane 50.00 51.43 103 80-120	ug/L	
1,1,2-Trichlorotrifluoroethane 50.00 50.85 102 80-120	ug/L	
Vinyl chloride 50.00 58.49 117 80-120	ua/I	
m&p-Xylene 100 108.2 108 80-120	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20111204

Analytical Method: SW-846 8260 B

Seq Number: 179706 Matrix: Water

CCV Sample Id: CCV-01 Analyzed Date: 11/17/20 09:35

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits		Units	Flag
o-Xylene	50.00	53.62	107	80-120		ug/L	
Surrogate		CCV Result		Limits	Units		Flag
4-Bromofluorobenzene		96		80-120	%		
Dibromofluoromethane		101		80-120	%		
Toluene-D8		101		80-120	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Analyzed Date: 11/05/20 11:52

Project Name Kop Flex PSS Project No.: 20111204

Analytical Method: SW-846 8260 B

Seq Number: 179414 Matrix: Water Parent Sample Id: ICV-01 ICV Sample Id: ICV-01

ICV ICV Spike Limits Units Flag **Parameter** Result %Rec **Amount** Acetone 75-125 50.00 48.41 97 ug/L Benzene 50.00 54.13 108 75-125 ug/L 50.00 54.30 109 ug/L Bromochloromethane 75-125 Bromodichloromethane 50.00 52.89 106 75-125 ug/L Bromoform 50.00 53.93 108 75-125 ug/L 104 Bromomethane 50.00 52.21 75-125 ug/L 48.92 98 2-Butanone (MEK) 50.00 75-125 ug/L Carbon Disulfide 50.00 54.56 109 75-125 ug/L Carbon tetrachloride 53.43 107 50.00 75-125 ug/L Chlorobenzene 50.00 53.94 108 75-125 ug/L 50.48 101 Chloroethane 50.00 75-125 ug/L Chloroform 50.00 53.00 106 75-125 ug/L Chloromethane 52.98 106 50.00 75-125 ug/L Cyclohexane 50.00 55.29 111 75-125 ug/L 53.95 108 75-125 1,2-Dibromo-3-chloropropane 50.00 ug/L Dibromochloromethane 50.00 53.47 107 75-125 ug/L 1,2-Dibromoethane 50.00 56.73 113 75-125 ug/L 1,2-Dichlorobenzene 50.00 55.18 110 75-125 ug/L 1,3-Dichlorobenzene 50.00 55.00 110 75-125 ug/L Dichlorodifluoromethane 50.00 50.93 102 75-125 ug/L 54.04 108 1,4-Dichlorobenzene 50.00 75-125 ug/L 53.93 108 75-125 1,1-Dichloroethane 50.00 ug/L 1,2-Dichloroethane 50.00 53.31 107 75-125 ug/L cis-1,2-Dichloroethene 50.00 52.10 104 75-125 ug/L 105 1,1-Dichloroethene 50.00 52.35 75-125 ug/L 1,2-Dichloropropane 50.00 54.68 109 75-125 ug/L 109 cis-1,3-Dichloropropene 50.00 54.42 75-125 ug/L trans-1,3-Dichloropropene 50.00 54.89 110 75-125 ug/L trans-1,2-Dichloroethene 50.00 52.41 105 75-125 ug/L Ethylbenzene 50.00 56.57 113 75-125 ug/L 50.00 53.00 106 75-125 ug/L 2-Hexanone (MBK) 57.31 Isopropylbenzene 50.00 115 75-125 ug/L 53.44 107 75-125 ug/L Methyl Acetate 50.00 50.00 56.31 113 75-125 ug/L Methylcyclohexane 50.00 51.86 104 ug/L Methylene chloride 75-125 4-Methyl-2-Pentanone (MIBK) 53.94 108 50.00 75-125 ug/L Methyl-t-Butyl Ether 50.00 53.91 108 75-125 ug/L Naphthalene 50.00 54.46 109 75-125 ug/L 50.00 53.72 107 Styrene 75-125 ug/L 1,1,2,2-Tetrachloroethane 50.00 53.63 107 75-125 ug/L Tetrachloroethene 54.80 110 75-125 ug/L 50.00 Toluene 50.00 53.69 107 75-125 ug/L ug/L 1,2,3-Trichlorobenzene 50.00 56.52 113 75-125 1,2,4-Trichlorobenzene 57.71 75-125 ug/L 50.00 115 1,1,1-Trichloroethane 50.00 55.74 111 75-125 ug/L Trichloroethene 50.00 54.26 109 75-125 ug/L 1.1.2-Trichloroethane 50.00 53.65 107 75-125 ug/L Trichlorofluoromethane 50.00 52.15 104 75-125 ug/L 1.1.2-Trichlorotrifluoroethane 50.00 52.48 105 75-125 ug/L Vinvl chloride 50.00 52.82 106 75-125 ug/L m&p-Xylene 100 113.7 114 75-125 ug/L

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Flag

Project Name Kop Flex PSS Project No.: 20111204

Analytical Method: SW-846 8260 B

Seq Number: 179414 Matrix: Water

ICV Sample Id: ICV-01 Parent Sample Id: ICV-01 Analyzed Date: 11/05/20 11:52

ICV **Spike ICV** Limits Units **Parameter** Flag Amount Result %Rec

o-Xylene 50.00 56.22 112 75-125 ug/L

ICV Limits Units Surrogate Result 75-125 4-Bromofluorobenzene 98 % Dibromofluoromethane 100 75-125 % 100 Toluene-D8 75-125 %

Analytical Method: SW-846 8260 B-Modified

Seq Number: 179951 Matrix: Water

CCV Sample Id: CCV, VOC-1 Analyzed Date: 11/26/20 14:35

CCV Spike CCV Limits Units **Parameter** Flag Amount %Rec Result 1,4-Dioxane (P-Dioxane) 20.00 24.16 121 80-120 ug/L Χ

CCV Limits Units Flag Surrogate Result

Toluene-D8 80-120 % 114

Analytical Method: SW-846 8260 B-Modified

Seq Number: 179362 Matrix: Water

ICV Sample Id: ICV, 1,4-DIOXANE Analyzed Date: 11/04/20 10:29 Parent Sample Id: ICV, 1,4-DIOXANE

ICV ICV **Spike** Limits Units Parameter Flag Amount Result %Rec 1,4-Dioxane (P-Dioxane) 30.00 31.20 104 70-130

ug/L

ICV Limits Units Flag Surrogate Result

Toluene-D8 96 80-120 %

X = Recovery outside of QC Criteria

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

BILL TO (if different): PHONE #: 703 - 709 - V500 Matrix Codes: W=Surface Water W=Westerwates W=Ground Water W=Waste Water W=Westerwates W=Ground Water W=Wester Water W=Wester Water W=Westerwates W=Ground Water W=Wester Water W=Wester Water W=Wester Water W=Wester Water W=Westerwates W=Ground Water W=Wester Water W=Wester Water W=Wester Water W=Wester Water W=Westerwates W=Ground Water W=Wester Water W=Wester Water W=Westerwates W=Ground Water W=Wester Water W=West	L
CONTACT: EFIC Johnson EMAIL: **Inc.johnson & Wsp. Com PROJECT NAME: KOP-Flex PROJECT #: 31401545.010 SITE LOCATION: Hanover, Md P.O. #: SAMPLER(S): Lauren Johnson Dw Cert #: PSS ID SAMPLE IDENTIFICATION DATE SAMPLED SAMPLED Use Codes Effluent VSP-4 11/12/20 9:05 WW 3 G X X Influent VSP-1 11/12/20 8:55 GW V G X X	
PROJECT NAME: KOP-Flex PROJECT #: 31401545.010 SITE LOCATION: Hanover, Md P.O. #: SAMPLER(S): Lauren Johnson DATE SAMPLED SAMPLED Use Codes Effluent VSP-4 Influent VSP-1 Influent VSP	Preservative Codes
SITE LOCATION: Hanover, Md PO. #: SAMPLER(S): Lauren Johnson DW CERT #: PSS ID SAMPLE IDENTIFICATION DATE SAMPLED SAMPLED Use Codes Effluent VSP-4 Influent VSP-1 Inf	1 - HCL 2 - H ₂ SO ₄
Effluent VSP-4 11/12/20 9:05 WW 3 G X I I I I I I I I I I I I I I I I I I	3 - HNO ₃ 4 - NaOH 5 - E624KIT
Effluent VSP-4 11/12/20 9:05 WW 3 G X I I I I I I I I I I I I I I I I I I	6 - ICE 7 - Sodium
Effluent VSP-4 11/12/20 9:05 WW 3 G X I I I I I I I I I I I I I I I I I I	Thiosulfate 8 - Ascorbic Acid 9 - TerraCore Kit
	3 TOTALOGIC FAIL
TB-111220 11/12/20 - W 4 - X X	
	TUTT9
Relinguished By: (1) Date Time Received By:	-3.4°C
DAD DE DRA DVA DVA	
Relinquished By: (3) Date Time Received By: COMPLIANCE? Special Instructions:	
Relinquished By: (4) Date Time Received By: EDD FORMAT TYPE STANDARD 10-day TAT	
Relinquished By: (4) Date Time Received By: EDD FORMAT TYPE	

This chain of custody is a legal document. The client (PSS Client), by signing, or having client's agent sign, this "Chain of Custody Form", agrees to pay for the above requested services per the latest version of the Service Brochure of PSS-provided quotation and all attorney's or others as not the service becomes necessary.

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20111204

Client Name WSP USA - Herndon Received By Amber Confer

Disposal Date 12/17/2020 Date Received 11/12/2020 09:55:00 AM

Delivered By Client

Tracking No Not Applicable

Logged In By Thomas Wingate

Shipping Container(s)

No. of Coolers 1

Custody Seal(s) Intact? Yes Temp (deg C) 5.7
Seal(s) Signed / Dated? Yes Temp Blank Present Yes

DocumentationSampler NameLauren JohnsonCOC agrees with sample labels?YesMD DW Cert. No.N/A

Chain of Custody Yes

Sample ContainerCustody Seal(s) Intact?Not ApplicableAppropriate for Specified Analysis?YesSeal(s) Signed / DatedNot Applicable

Intact? Yes

Labeled and Labels Legible? Yes

Holding Time Total No. of Samples Received 3

All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 13

Preservation

Total Metals (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	Time Winde	Date: 11/12/2020	
•	Thomas Wingate		_

PM Review and Approval: July 7 loge

Amber Confer
Page 19 of 19

Date: 11/12/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120309

December 17, 2020

Eric Johnson WSP USA - Herndon13530 Dulles Technology Dr, Ste 300
Herndon, VA 20171

Reference: PSS Project No: 20120309

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20120309**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on January 7, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120309

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 12/03/2020 at 12:55 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20120309-001	Effluent VSP-4	WASTE WATER	12/03/20 12:00	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120309

Sample ID: Effluent VSP-4 Date/Time Sampled: 12/03/2020 12:00 PSS Sample ID: 20120309-001

Matrix: WASTE WATER Date/Time Received: 12/03/2020 12:55

Dissolved Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Copper	1.3	ug/L	1.0	1	12/04/20	12/05/20 00:47	7 1064
Lead	ND	ug/L	1.0	1	12/04/20	12/05/20 00:47	7 1064
Nickel	17.2	ug/L	1.00	1	12/04/20	12/05/20 00:47	7 1064
Zinc	22.7	ug/L	20.0	1	12/04/20	12/05/20 00:47	7 1064

Total Metals Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
Copper	2.7	ug/L	1.0	1	12/04/20	12/04/20 20:23	3 1064
Lead	ND	ug/L	1.0	1	12/04/20	12/04/20 20:23	3 1064
Nickel	17.7	ug/L	1.00	1	12/04/20	12/04/20 20:23	3 1064
Zinc	27.5	ug/L	20.0	1	12/04/20	12/04/20 20:23	3 1064

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 180249 on Case Narrative.

pH=2

Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ug/L ND ug/L	ND ug/L 1.0 ND ug/L 1.0	ND ug/L 1.0 1 ND ug/L 1.0 1	ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L 1.0 1 12/09/20 ND ug/L <td>ND ug/L 1.0 1 12/09/20 12/09/20 16:58 ND ug/L 1.0 1 12/09/20 12/09/20 16:58</td>	ND ug/L 1.0 1 12/09/20 12/09/20 16:58 ND ug/L 1.0 1 12/09/20 12/09/20 16:58

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120309

Sample ID: Effluent VSP-4 Date/Time Sampled: 12/03/2020 12:00 PSS Sample ID: 20120309-001

Matrix: WASTE WATER Date/Time Received: 12/03/2020 12:55

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 180249 on Case Narrative.

pH=2

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
Toluene	ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
trans-1,3-dichloropropene	ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
1,1,2-Trichloroethane	ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
Tetrachloroethylene	ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
Dibromochloromethane	ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
Chlorobenzene	ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
Ethylbenzene	ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
Bromoform	ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
1,3-Dichlorobenzene	ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
1,4-Dichlorobenzene	ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
1,2-Dichlorobenzene	ND	ug/L	1.0	1	12/09/20	12/09/20 16:58	1014
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	102	%	87-120	1	12/09/20	12/09/20 16:58	1014
4-Bromofluorobenzene	105	%	85-147	1	12/09/20	12/09/20 16:58	1014
Toluene-D8	100	%	88-110	1	12/09/20	12/09/20 16:58	1014

Hardness, Total by Calculation Analytical Method: SM 2340B Preparation Method: 200.8

 Result
 Units
 RL
 Flag
 Dil
 Prepared
 Analyzed
 Analyst

 Hardness (Ca & Mg)
 24
 mg/L
 0.66
 1
 12/07/20
 12/07/20
 17:12
 1064

Total Suspended Solids Analytical Method: SM 2540D -2011

 Result
 Units
 RL
 Flag
 Dil
 Prepared
 Analyzed
 Analyst

 Suspended Solids
 ND
 mg/L
 1.0
 1
 12/04/20
 12/04/20
 14:15
 1061

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120309

Sample ID: Effluent VSP-4 Date/Time Sampled: 12/03/2020 12:00 PSS Sample ID: 20120309-001

Matrix: WASTE WATER Date/Time Received: 12/03/2020 12:55

Biochemical Oxygen Demand Analytical Method: SM 5210B -2011

Start time: 03-Dec-20 15:45

ResultUnitsRLFlagPreparedAnalyzedAnalystBiochemical Oxygen Demand, 5 dayNDmg/L5.012/03/2012/08/20 17:50 4005

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20120309

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

20120309: Analyses associated with analyst code 4005 were performed by Enviro-Chem Laboratories, Inc., 47 Loveton Circle, Suite K, Sparks, MD 21152

Analytical:

Volatile Organics Compounds (TVO)

Batch: 180249

Method exceedance: A target analyte was detected in the method blank; Chloromethane was 0.19ppb, Chloroform was 0.24ppb in method blank.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SM 5210B -2011

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120309

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Pren Batch	Analytical Ba	atch Prepared	Analyzed
- Triceriou		, ,,			F		<u> </u>	
EPA 200.8	Effluent VSP-4	Initial	20120309-001	W	84086	180092	12/04/2020 10:21	12/04/2020 20:23
	84086-1-BKS	BKS	84086-1-BKS	W	84086	180092	12/04/2020 10:21	12/04/2020 14:30
	84086-1-BLK	BLK	84086-1-BLK	W	84086	180092	12/04/2020 10:21	12/04/2020 14:26
	13409-EFF-11/30/20 S	MS	20120108-001 S	W	84086	180092	12/04/2020 10:21	12/04/2020 18:16
	Effluent VSP-4 S	MS	20120309-001 S	W	84086	180092	12/04/2020 10:21	12/04/2020 20:28
	13409-EFF-11/30/20 SD	MSD	20120108-001 S	W	84086	180092	12/04/2020 10:21	12/04/2020 18:21
EPA 200.8	Effluent VSP-4	Initial	20120309-001	W	84094	180136	12/04/2020 18:57	12/05/2020 00:47
	84094-1-BKS	BKS	84094-1-BKS	W	84094	180136	12/04/2020 18:57	12/04/2020 23:37
	84094-1-BLK	BLK	84094-1-BLK	W	84094	180136	12/04/2020 18:57	12/04/2020 23:32
	20201202-001 S	MS	20120214-001 S	W	84094	180136	12/04/2020 18:57	12/04/2020 23:46
	Discharge 201202 S	MS	20120312-002 S	W	84094	180136	12/04/2020 18:57	12/05/2020 01:01
	20201202-001 SD	MSD	20120214-001 S	W	84094	180136	12/04/2020 18:57	12/04/2020 23:51
EPA 624.1	Effluent VSP-4	Initial	20120309-001	W	84163	180249	12/09/2020 08:25	12/09/2020 16:58
	84163-1-BKS	BKS	84163-1-BKS	W	84163	180249	12/09/2020 08:25	12/09/2020 09:10
	84163-1-BLK	BLK	84163-1-BLK	W	84163	180249	12/09/2020 08:25	12/09/2020 12:59
	1015 Discharge - 120720 S	MS	20120713-001 S	W	84163	180249	12/09/2020 08:25	12/09/2020 09:57
	1015 Discharge - 120720 SD	MSD	20120713-001 S	W	84163	180249	12/09/2020 08:25	12/09/2020 10:20
SM 2340B	Effluent VSP-4	Initial	20120309-001	W	84086	180160	12/07/2020 15:35	12/07/2020 17:12
SM 2540D -2011	Effluent VSP-4	Initial	20120309-001	W	180088	180088	12/04/2020 14:15	12/04/2020 14:15
	180088-1-BLK	BLK	180088-1-BLK	W	180088	180088	12/04/2020 14:15	12/04/2020 14:15
	Millville 001 D	MD	20120305-001 D	W	180088	180088	12/04/2020 14:15	12/04/2020 14:15
	RIA TDA JG MEDIAN DEC 2020 D	MD	20120335-001 D	W	180088	180088	12/04/2020 14:15	12/04/2020 14:15
SM 5210B -2011	Effluent VSP-4	Initial	20120309-001	W	180443	180443	12/03/2020 00:00	12/08/2020 17:50

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20120309

Analytical Method: SM 2540D -2011

Seq Number: 180088 Matrix: Water

MB Sample Id: 180088-1-BLK

Parameter MB LOD RL Units Flag

Suspended Solids ND 0.5000 1.000 mg/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 180092 Matrix: Water Date Prep: 12/04/20

MB Sample Id: 84086-1-BLK LCS Sample Id: 84086-1-BKS

MB **Spike** LCS LCS Limits Units **Parameter** Flag Result Result Amount %Rec Copper <1.000 40.00 41.46 104 85-115 ug/L Lead <1.000 40.00 37.85 95 85-115 ug/L Nickel <1.000 40.00 40.96 102 85-115 ug/L Zinc <20.00 200 205.6 103 85-115 ug/L

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 180136 Matrix: Water Date Prep: 12/04/20

MB Sample Id: 84094-1-BLK LCS Sample Id: 84094-1-BKS

MB LCS LCS Units Limits **Spike Parameter** Flag %Rec Result Amount Result Copper <1.000 40.00 37.50 94 85-115 ug/L <1.000 40.00 35.33 88 85-115 Lead ug/L Nickel <1.000 40.00 37.31 93 85-115 ug/L 85-115 ug/L Zinc <20.00 200 193.2 97

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP

Seq Number: 180092 Matrix: Waste Water Date Prep: 12/04/20

Parent Sample Id: 20120309-001 MS Sample Id: 20120309-001 S

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	Limits	Units	Flag
Copper	2.749	40.00	40.19	94	70-130	ug/L	
Lead	<1.000	40.00	35.86	90	70-130	ug/L	
Nickel	17.67	40.00	53.87	91	70-130	ug/L	
Zinc	27.47	200	214.5	94	70-130	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20120309

Analytical Method: EPA 624 .1 Prep Method: E624PREP Seq Number: 180249 Matrix: Water Date Prep: 12/09/20

LCS Sample Id: 84163-1-BKS MB Sample Id: 84163-1-BLK

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits		Units	Flag
Dichlorodifluoromethane	<1.000	50.00	42.23	84	54-148		ug/L	
Chloromethane	<1.000	50.00	46.08	92	1-205		ug/L	
Vinyl Chloride	<1.000	50.00	53.67	107	5-195		ug/L	
Bromomethane	<1.000	50.00	42.24	84	15-185		ug/L	
Chloroethane	<1.000	50.00	46.29	93	40-160		ug/L	
Trichlorofluoromethane	<1.000	50.00	46.38	93	50-150		ug/L	
1,1-Dichloroethene	<1.000	50.00	48.29	97	50-150		ug/L	
Methylene Chloride	<1.000	50.00	50.19	100	60-140		ug/L	
trans-1,2-dichloroethene	<1.000	50.00	50.16	100	70-130		ug/L	
1,1-Dichloroethane	<1.000	50.00	53.63	107	70-130		ug/L	
Chloroform	<1.000	50.00	51.76	104	70-135		ug/L	
1,1,1-Trichloroethane	<1.000	50.00	52.14	104	70-130		ug/L	
Carbon Tetrachloride	<1.000	50.00	48.80	98	70-130		ug/L	
Benzene	<1.000	50.00	52.09	104	65-135		ug/L	
1,2-Dichloroethane	<1.000	50.00	52.51	105	70-130		ug/L	
Trichloroethene	<1.000	50.00	50.99	102	65-135		ug/L	
1,2-Dichloropropane	<1.000	50.00	54.32	109	35-165		ug/L	
Bromodichloromethane	<1.000	50.00	52.94	106	65-135		ug/L	
cis-1,3-Dichloropropene	<1.000	50.00	54.52	109	25-175		ug/L	
Toluene	<1.000	50.00	51.22	102	70-130		ug/L	
trans-1,3-dichloropropene	<1.000	50.00	55.04	110	50-150		ug/L	
1,1,2-Trichloroethane	<1.000	50.00	53.07	106	70-130		ug/L	
Tetrachloroethylene	<1.000	50.00	48.74	97	70-130		ug/L	
Dibromochloromethane	<1.000	50.00	50.46	101	70-135		ug/L	
Chlorobenzene	<1.000	50.00	48.60	97	65-135		ug/L	
Ethylbenzene	<1.000	50.00	50.06	100	60-140		ug/L	
Bromoform	<1.000	50.00	51.00	102	70-130		ug/L	
1,1,2,2-Tetrachloroethane	<1.000	50.00	48.24	96	60-140		ug/L	
1,3-Dichlorobenzene	<1.000	50.00	47.11	94	70-130		ug/L	
1,4-Dichlorobenzene	<1.000	50.00	46.92	94	65-135		ug/L	
1,2-Dichlorobenzene	<1.000	50.00	47.36	95	65-135		ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units		
Dibromofluoromethane	102		98		87-120	%		
4-Bromofluorobenzene	105		97		85-147	%		
Toluene-D8	100		106		88-110	%		

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits L = Recovery of BS,BSD or both below the laboratory control limits

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

ug/L

ug/L

Project Name Kop-Flex PSS Project No.: 20120309

Analytical Method: EPA 200.8

Seq Number: 180092 Matrix: Water

CCV Sample Id: CCV 1 Analyzed Date: 12/04/20 15:01

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Copper	40.00	37.34	93	85-115	ug/L	
Lead	40.00	39.32	98	85-115	ug/L	
Nickel	40.00	36.97	92	85-115	ug/L	
Zinc	200	187.5	94	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180092 Matrix: Water

CCV Sample Id: CCV 2 Analyzed Date: 12/04/20 18:35

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Copper	40.00	37.80	95	85-115	ug/L	
Lead	40.00	39.09	98	85-115	ug/L	
Nickel	40.00	37.80	95	85-115	ug/L	
Zinc	200	191.1	96	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180092 Matrix: Water

CCV Sample Id: CCV 3 Analyzed Date: 1

174.4

186.7

200

200

Analyzed Date: 12/04/20 19:45 CCV Sample Id: Spike CCV CCV Limits Units **Parameter** Flag Result Amount %Rec 35.20 Copper 40.00 88 85-115 ug/L Lead 40.00 40.74 102 85-115 ug/L ug/L Nickel 40.00 34.89 87 85-115

87

85-115

85-115

Analytical Method: EPA 200.8

Zinc

Zinc

Seq Number: 180092 Matrix: Water

CCV Sample Id: CCV 4 Analyzed Date: 12/04/20 20:51

CCV CCV Spike Limits Units Parameter Flag Result Amount %Rec 36.81 92 ug/L 40.00 Copper 85-115 40.00 39.38 98 85-115 ug/L Lead 92 Nickel 40.00 36.74 85-115 ug/L

93

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20120309

Analytical Method: EPA 200.8

Seq Number: 180136 Matrix: Water

CCV Sample Id: CCV 6 Analyzed Date: 12/04/20 23:03

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Copper	40.00	38.41	96	85-115	ug/L	
Lead	40.00	36.63	92	85-115	ug/L	
Nickel	40.00	38.41	96	85-115	ug/L	
Zinc	200	195.2	98	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180136 Matrix: Water

CCV Sample Id: CCV 7 Analyzed Date: 12/05/20 00:09

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Copper	40.00	37.33	93	85-115	ug/L	
Lead	40.00	37.96	95	85-115	ug/L	
Nickel	40.00	37.29	93	85-115	ug/L	
Zinc	200	192.2	96	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180136 Matrix: Water

CCV Sample Id: CCV 8 Analyzed Date: 12/05/20 01:15

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units Flag
Copper	40.00	40.20	101	85-115	ug/L
Lead	40.00	34.88	87	85-115	ug/L
Nickel	40.00	40.56	101	85-115	ug/L
Zinc .	200	202.3	101	85-115	ua/l

Analytical Method: EPA 200.8

Seq Number: 180092 Matrix: Water
Parent Sample Id: ICV 1 ICV Sample Id: ICV 1 Analyzed Date: 12/04/20 12:59

Parameter	Spike Amount	ICV Result	ICV %Rec	Limits	Units	Flag
	Amount	Nesuit	70Rec			
Copper	40.00	38.19	95	90-110	ug/L	
Lead	40.00	38.79	97	90-110	ug/L	
Nickel	40.00	38.10	95	90-110	ug/L	
Zinc	200	193.2	97	90-110	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20120309

Analytical Method: EPA 200.8

Seq Number: 180136 Matrix: Water

Parent Sample Id: ICV 1 ICV Sample Id: ICV 1 Analyzed Date: 12/04/20 12:59

Parameter	Spike Amount	ICV Result	ICV %Rec	Limits	Units	Flag
Copper	40.00	38.19	95	90-110	ug/L	
Lead	40.00	38.79	97	90-110	ug/L	
Nickel	40.00	38.10	95	90-110	ug/L	
Zinc	200	193.2	97	90-110	ug/L	

Analytical Method: EPA 624 .1

Seq Number: 179415 Matrix: Water
Parent Sample Id: ICV-01 ICV Sample Id: ICV-01 Analyzed Date: 11/05/20 11:52

Parameter	Spike Amount	ICV Result	ICV %Rec	Limits	Units	Flag
Dichlorodifluoromethane	0.05000	0.05093	102	54-148	mg/L	
Chloromethane	0.05000	0.05298	106	57-135	mg/L	
Vinyl Chloride	0.05000	0.05282	106	64-129	mg/L	
Bromomethane	0.05000	0.05221	104	67-132	mg/L	
Chloroethane	0.05000	0.05048	101	62-133	mg/L	
Trichlorofluoromethane	0.05000	0.05215	104	71-137	mg/L	
1,1-Dichloroethene	0.05000	0.05235	105	67-126	mg/L	
Methylene Chloride	0.05000	0.05186	104	73-120	mg/L	
trans-1,2-dichloroethene	0.05000	0.05241	105	75-127	mg/L	
1,1-Dichloroethane	0.05000	0.05393	108	76-127	mg/L	
Chloroform	0.05000	0.05300	106	79-125	mg/L	
1,1,1-Trichloroethane	0.05000	0.05574	111	73-130	mg/L	
Carbon Tetrachloride	0.05000	0.05343	107	73-130	mg/L	
Benzene	0.05000	0.05413	108	73-132	mg/L	
1,2-Dichloroethane	0.05000	0.05331	107	77-129	mg/L	
Trichloroethene	0.05000	0.05426	109	79-126	mg/L	
1,2-Dichloropropane	0.05000	0.05468	109	74-129	mg/L	
Bromodichloromethane	0.05000	0.05289	106	81-125	mg/L	
cis-1,3-Dichloropropene	0.05000	0.05442	109	76-116	mg/L	
Toluene	0.05000	0.05369	107	77-127	mg/L	
trans-1,3-dichloropropene	0.05000	0.05489	110	78-114	mg/L	
1,1,2-Trichloroethane	0.05000	0.05365	107	78-127	mg/L	
Tetrachloroethylene	0.05000	0.05480	110	78-128	mg/L	
Dibromochloromethane	0.05000	0.05347	107	70-132	mg/L	
Chlorobenzene	0.05000	0.05394	108	72-128	mg/L	
Ethylbenzene	0.05000	0.05657	113	69-131	mg/L	
Bromoform	0.05000	0.05393	108	70-130	mg/L	
1,1,2,2-Tetrachloroethane	0.05000	0.05363	107	62-134	mg/L	
1,3-Dichlorobenzene	0.05000	0.05500	110	70-129	mg/L	
1,4-Dichlorobenzene	0.05000	0.05404	108	69-127	mg/L	
1,2-Dichlorobenzene	0.05000	0.05518	110	65-133	mg/L	

Surrogate	ICV Result	Limits	Units	Flag
Dibromofluoromethane	100	87-120	%	
4-Bromofluorobenzene	98	85-147	%	
Toluene-D8	100	88-110	%	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20120309

X = Recovery outside of QC Criteria

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

PSS CLIE	WSP	OFFICE	LOCATION:	Herndon	, VA	PSS W	ork Order	#: 20	212	03	09						PAG	GE	OF	
	different):		#: 703-			Matrix (SW=Sur	Codes: face Water	DW=Dr	inking W	ater	GW =Grou	und Wate	er WW :	=Waste V	Vater	0 =0il	S =Soi	SOL	=Solid A=A	ir WI =Wipe
CONTACT	Eric Johnson	EMAIL:	eric.joh	nson@	Nig.com		AB B		vatives Codes	١	3	3					35			Preservative Codes
PROJECT	NAME: KOP-FIEX		PROJECT #	: 3140154	5.010/04	S	G=GRAB	Analys Metho	is/	0/4	5/4	3				/	/	/	/	71 - HCL 2 - H ₂ SO ₄ 3 - HNO ₃
SITE LOC	ATION: Holhover, MK)	P.O. #	:		AINER	PE:	Requir	ed 3	The sale	15	7	/_	/ /	/	/	/		//	4 - NaOH 5 - E624KIT
	(s): Shannon Bur		DW CERT #	:		# OF CONTAINERS	LE TY	/	5/2	254	See S	5/	8/	/		/	/	/	/	6 - ICE 7 - Sodium Thlosulfate
PSS ID	SAMPLE IDENTIFICA		DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes	# OF (SAMPLE TYPE: C=COMPOSITE	13	18	12	A See The Park A	10	7	//	/	/	/			8 - Ascorbic Acid 9 - TerraCore Kit
1	Effluent VSF	-4	12/3/20	1200	ww	7	6	X	X	X	X	X	7						Bed-	d metals filtered
											10						- 1			
																	1	. 6		g dinner
															377					
		H						\vdash					1			1				en en en en en en en en en en en en en e
		×.																		
								-				2.11			-			-00		- *
	ned By: (1)	Date	Time	Received By		1.		Requ			One TAT		OC) 2-Day						TA.	
Stop	Bull	12/3/20	1255		ac	1	/	□ N	ext Day		Emerge	ency y	Othe						PINTAC	
Relinquish	ned By: (2)	Date	Time	Received By	y:			□ M	E RESI D 🔲 [THER _	DE [REPORT	IED TO):) WV	1.0	17.148		rrier: C		The state of the s	; 2.1°C
Relinquis	ned By: (3)	Date	Time	Received By	y:		Mig Is		PLIAN		Speci	ial Instr Omolo 2401 (uctions	10-	da	4	TA	-T		
Relinquisl	ned By: (4)	Date	Time	Received B	y:			EDD F	ORMAT :	TYPE	Me	etal	5 =	pb,	Cu	IN	113	n		

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120309

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 01/07/2021 **Date Received** 12/03/2020 12:55:00 PM **Delivered By** Client **Tracking No** Not Applicable Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 5.1 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 7 Preservation **Total Metals** (pH<2)Yes Dissolved Metals, filtered within 15 minutes of collection (pH<2) Yes Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

Samples Inspected/Checklist Completed By:	The Words	Date: 12/03/2020	
	Thomas Wingate		

PM Review and Approval: Men 7 longer

Amber Confer
Page 15 of 15

Date: 12/03/2020

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120310

December 8, 2020

Eric Johnson WSP USA - Herndon13530 Dulles Technology Dr, Ste 300
Herndon, VA 20171

Reference: PSS Project No: 20120310

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20120310**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on January 7, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120310

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 12/03/2020 at 12:55 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20120310-001	Effluent VSP-4	WASTE WATER	12/03/20 12:00	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120310

Sample ID: Effluent VSP-4 Date/Time Sampled: 12/03/2020 12:00 PSS Sample ID: 20120310-001

Matrix: WASTE WATER Date/Time Received: 12/03/2020 12:55

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	2.0	ug/L	1.0	1	12/07/20	12/07/20 16:0	6 1011
Surrogate(s)	Recovery		Limits				
Toluene-D8	102	%	80-120	1	12/07/20	12/07/20 16:0	6 1011

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20120310

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

General Comments:

Per client, analyze sample 001 on a 3-day turnaround. Refer to work order 20120311 for remaining results.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120310

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Batch	Prepared	Analyzed
SW-846 8260 B- Modified	Effluent VSP-4 84126-1-BKS	Initial BKS	20120310-001 84126-1-BKS	W W	84126 84126	180149 180149	12/07/2020 12:57 12/07/2020 12:57	12/07/2020 16:06 12/07/2020 14:37
Nounc	84126-1-BLK 84126-1-BSD	BLK BSD	84126-1-BLK 84126-1-BSD	W W	84126 84126	180149 180149	12/07/2020 12:57 12/07/2020 12:57 12/07/2020 12:57	12/07/2020 14:57 12/07/2020 15:44 12/07/2020 14:59

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex
PSS Project No.: 20120310

Analytical Method: SW-846 8260 B-Modified
Seq Number: 180149 Matrix: Water Prep: 12/07/20

MB Sample Id: 84126-1-BLK LCS Sample Id: 84126-1-BKS LCSD Sample Id: 84126-1-BSD

LCS RPD MB LCS %RPD Units **Spike LCSD LCSD** Limits **Parameter** Flag Result **Amount** Result %Rec Limit Result %Rec 1,4-Dioxane (P-Dioxane) <1.000 30.00 27.63 92 27.43 91 50-150 1 20 ug/L

Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	LCSD Result	LCSD Flag	Limits	Units
Toluene-D8	100		102		102		80-120	%

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20120310

Analytical Method: SW-846 8260 B-Modified

Seq Number: 175110 Matrix: Water

CCV

CCV Sample Id: CCV-01 Analyzed Date: 06/11/20 11:36

CCV **Spike Parameter** Amount Result 30.00

%Rec 101

Units Flag

1,4-Dioxane (P-Dioxane)

30.40

80-120 ug/L

Surrogate

CCV Result Limits Units Flag

99 Toluene-D8

80-120 %

Analytical Method: SW-846 8260 B-Modified

Seq Number: 180149 Matrix: Water

Analyzed Date: 12/07/20 14:08

CCV Sample Id:

CCV-01 Spike

Units

Parameter

Amount

CCV %Rec Limits

Units Flag

1,4-Dioxane (P-Dioxane)

Result 30.00 28.03 93

80-120

Limits

CCV

CCV

ug/L

Surrogate

Result

Limits

Toluene-D8

104

80-120 %

Analytical Method: SW-846 8260 B-Modified

Seq Number:

175110

Matrix: Water

80-120

Analyzed Date: 06/11/20 11:14

Parent Sample Id: ICV-01

ICV Sample Id: ICV-01

ICV

Parameter

Spike Amount

ICV

%Rec

Limits

Units

Flag

Flag

1,4-Dioxane (P-Dioxane)

30.00

Result 31.22

104

70-130

ug/L

Surrogate

Toluene-D8

ICV Result

99

Limits

Units

%

Flag

X = Recovery outside of QC Criteria

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

PSS CI	JENT:	MSP	OFFICE	LOCATION:	Herndon	NUA	PSS Wo	rk Order	#: 20	0121	>31	0				PA	GE _	1_0)F	
BILL TO) (if di	ifferent):	PHONE	#:703-	709-6	500	Matrix C SW=Surf	Codes: ace Water	DW=Dri	inking Wa	iter G	SW =Ground Wat	er WV	V=Waste Wa	er 0 =0i	\$ =\$0	il SOL	=Solid	A=Air	WI=Wipe
CONTA	ст: Е	Fric Johnson	EMAIL:	etic, johr	van@w	specin		BA	Preser Use (DOM: NO.	1	1								Preservative Codes
PROJE	CT N	AME: KOP-Flex		PROJECT #:	31401545	1.010/04	σ,	G=GRAB	Analys Method	is/	SO .	7/	/		//		/			1 - HCL 2 - H ₂ SO ₄ 3 - HNO ₂
		ion: Hanover, Mi)	P.O. #:			OF CONTAINERS	PE:	Requir ③	ed 2	(624)	//		//	/	1		/	/	4 - NaOH 5 - E624KIT
SAMPL	ER(S)	Shannan Burk	R	DW CERT #:			CONT	TE T	/-	24/	2/	//	/		//	//	/	//		6 - ICE 7 - Sodium Thiosulfate
PSS		SAMPLE IDENTIFICAT		DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes	# OF	SAMPLE TYPE: C=COMPOSITE	15	codes is/ of of of of of of of of of of of of of		//		//	/	/	/	/		8 - Ascorbic Acid 9 - TerraCore Kit
1		Effluent VSP-	4	12/3/20		ww	3	6	X									17		
2	/	TB-120320		_	_	W	4	-	X	X								Tri	PE	olank
			15 11			In the	7	1				16							•	
			74																	
					10.03										13					
			10												1					
		7													1					
																				April
			7					1							1					7 00
-						-									-	_				
Relinqu	ished	By: (1)	Date	Time	Received By	P 1 1					AT (O	one TAT per (lo	Presen	t: Pe	ES	TB'	: 3.	301
Sen		Bulee	12/3/20	1255	U	ble	,		□ 5-I	Day ext Day		3-Day [Emergency]	2-D	er C	stody S	eal: ()	mer	- Int	and	
		By: (2)	Date	Time	Received By	r.			☐ MI	D DI		PA VA		# !	Coolers:	PEE	5	Temp:	5. 1°-	5.42
			5.1	-	D i i D		*		01	THER _		I 0 1			ipping C				1 1 1 1	
Helinqu	iished	By: (3)	Date	Time	Received By	<i>(</i> .				W W		Stano	101	rd 1	0-0	da	1	TA	T	
Relinqu	ished	By: (4)	Date	Time	Received By	<i>y</i> :			EDD F	ORMAT TY	YPE						,			

This chain of custody is a legal document. The client (PSS Client), by signing, or having client's agent sign, this "Chain of Custody Form", agrees to pay for the above requested services per the latest version of the Service Brochure of PSS-provided quotation riagglading any and all attorney's or others for the service Brochure of PSS-provided quotation riagglading any and all attorney's or others for the service Brochure of PSS-provided quotation riagglading any and all attorney's or others for the service Brochure of PSS-provided quotation riagglading any and all attorney's or others for the service Brochure of PSS-provided quotation riagglading any and all attorney's or others for the service Brochure of PSS-provided quotation riagglading and all attorney's or others for the service Brochure of PSS-provided quotation riagglading and all attorney is or other formation and the service Brochure of PSS-provided quotation riagglading and all attorney is or other formation and the service Brochure of PSS-provided quotation riagglading and all attorney is or other formation and the service Brochure of PSS-provided quotation riagglading and all attorney is or other formation and the service Brochure of PSS-provided quotation riagglading and all attorney is or other formations.

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120310

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 01/07/2021 **Date Received** 12/03/2020 12:55:00 PM **Delivered By** Client **Tracking No** Not Applicable Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 5.4 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 1 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 3 Preservation **Total Metals** (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2) N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2) Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) N/A 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:	The Words	Date: 12/03/2020	
	Thomas Wingate		
PM Review and Approval:	Jules of longer	Doto: 12/02/2020	

Amber Confer

Page 9 of 9

Version 1.000

Date: 12/03/2020

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120311

December 17, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20120311

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20120311**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on January 7, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120311

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 12/03/2020 at 12:55 pm

PSS Sample ID	Sample ID	Matrix Date/Time Collected
20120311-002	TB-120320	WATER 12/03/20 11:18
20120311-002	TB-120320	WATER 12/03/20 11:18

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156

State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120311

Sample ID: TB-120320 Date/Time Sampled: 12/03/2020 11:18 PSS Sample ID: 20120311-002

Matrix: WATER Date/Time Received: 12/03/2020 12:55

Volatile Organics Compounds (TVO) Analytical Method: EPA 624 .1 Preparation Method: 624

Qualifier(s): See Batch 180249 on Case Narrative.

pH=2

	Result	Units	RL FI	ag Dil	Prepared	Analyzed	Analyst
Dichlorodifluoromethane	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Chloromethane	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Vinyl Chloride	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Bromomethane	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Chloroethane	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Trichlorofluoromethane	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
1,1-Dichloroethene	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Methylene Chloride	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
trans-1,2-dichloroethene	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
1,1-Dichloroethane	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Chloroform	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
1,1,1-Trichloroethane	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Carbon Tetrachloride	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Benzene	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
1,2-Dichloroethane	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Trichloroethene	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
1,2-Dichloropropane	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Bromodichloromethane	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Toluene	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
trans-1,3-dichloropropene	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
1,1,2-Trichloroethane	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Tetrachloroethylene	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Dibromochloromethane	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Chlorobenzene	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Ethylbenzene	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Bromoform	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
1,3-Dichlorobenzene	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
1,4-Dichlorobenzene	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
1,2-Dichlorobenzene	ND	ug/L	1.0	1	12/09/20	12/09/20 15:04	1014
Surrogate(s)	Recovery		Limits				
Dibromofluoromethane	102	%	87-120	1	12/09/20	12/09/20 15:04	1014
4-Bromofluorobenzene	104	%	85-147	1	12/09/20	12/09/20 15:04	1014
Toluene-D8	100	%	88-110	1	12/09/20	12/09/20 15:04	1014

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120311

Sample ID: TB-120320 Date/Time Sampled: 12/03/2020 11:18 PSS Sample ID: 20120311-002

Matrix: WATER Date/Time Received: 12/03/2020 12:55

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL FI	ag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	12/07/20	12/07/20 16:2	8 1011
Surrogate(s)	Recovery		Limits				
Toluene-D8	100	%	80-120	1	12/07/20	12/07/20 16:2	8 1011

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20120311

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Acrolein, acrylonitrile, and 2-chloroethyl vinyl ether not required for EPA 624 samples.

General Comments:

Refer to work order 20120310 for remaining results.

Analytical:

Volatile Organics Compounds (TVO)

Batch: 180249

Method exceedance: A target analyte was detected in the method blank; Chloromethane was 0.19ppb, Chloroform was 0.24ppb in method blank.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120311

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Batch	Prepared	Analyzed
EPA 624.1	TB-120320	Initial	20120311-002	W	84163	180249	12/09/2020 08:25	12/09/2020 15:04
	84163-1-BKS	BKS	84163-1-BKS	W	84163	180249	12/09/2020 08:25	12/09/2020 09:10
	84163-1-BLK	BLK	84163-1-BLK	W	84163	180249	12/09/2020 08:25	12/09/2020 12:59
	1015 Discharge - 120720 S	MS	20120713-001 S	W	84163	180249	12/09/2020 08:25	12/09/2020 09:57
	1015 Discharge - 120720 SD	MSD	20120713-001 S	W	84163	180249	12/09/2020 08:25	12/09/2020 10:20
SW-846 8260 B-	TB-120320	Initial	20120311-002	W	84126	180149	12/07/2020 12:57	12/07/2020 16:28
Modified	84126-1-BKS	BKS	84126-1-BKS	W	84126	180149	12/07/2020 12:57	12/07/2020 14:37
	84126-1-BLK	BLK	84126-1-BLK	W	84126	180149	12/07/2020 12:57	12/07/2020 15:44
	84126-1-BSD	BSD	84126-1-BSD	W	84126	180149	12/07/2020 12:57	12/07/2020 14:59

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20120311

Analytical Method: EPA 624 .1

Seq Number: 180249 Matrix: Water Date Prep: 12/09/20

MB Sample Id: 84163-1-BLK LCS Sample Id: 84163-1-BKS

IVID Sample Iu. 64 163	0-1-DLK	<u> </u>	.co campie	iu. 0 - 100-1-1	Sito		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Ur	nits Flag
Dichlorodifluoromethane	<1.000	50.00	42.23	84	54-148	uç	g/L
Chloromethane	<1.000	50.00	46.08	92	1-205	uç	g/L
Vinyl Chloride	<1.000	50.00	53.67	107	5-195	uç	g/L
Bromomethane	<1.000	50.00	42.24	84	15-185	uç	g/L
Chloroethane	<1.000	50.00	46.29	93	40-160	uç	g/L
Trichlorofluoromethane	<1.000	50.00	46.38	93	50-150	uç	g/L
1,1-Dichloroethene	<1.000	50.00	48.29	97	50-150	uç	g/L
Methylene Chloride	<1.000	50.00	50.19	100	60-140	uç	g/L
trans-1,2-dichloroethene	<1.000	50.00	50.16	100	70-130	uç	g/L
1,1-Dichloroethane	<1.000	50.00	53.63	107	70-130	uç	g/L
Chloroform	<1.000	50.00	51.76	104	70-135	uç	g/L
1,1,1-Trichloroethane	<1.000	50.00	52.14	104	70-130	uç	g/L
Carbon Tetrachloride	<1.000	50.00	48.80	98	70-130	uç	g/L
Benzene	<1.000	50.00	52.09	104	65-135	uç	g/L
1,2-Dichloroethane	<1.000	50.00	52.51	105	70-130	uç	g/L
Trichloroethene	<1.000	50.00	50.99	102	65-135	uç	g/L
1,2-Dichloropropane	<1.000	50.00	54.32	109	35-165	uç	g/L
Bromodichloromethane	<1.000	50.00	52.94	106	65-135	uç	g/L
cis-1,3-Dichloropropene	<1.000	50.00	54.52	109	25-175	uç	g/L
Toluene	<1.000	50.00	51.22	102	70-130		g/L
trans-1,3-dichloropropene	<1.000	50.00	55.04	110	50-150	uç	g/L
1,1,2-Trichloroethane	<1.000	50.00	53.07	106	70-130	u(g/L
Tetrachloroethylene	<1.000	50.00	48.74	97	70-130	u(g/L
Dibromochloromethane	<1.000	50.00	50.46	101	70-135	uç	g/L
Chlorobenzene	<1.000	50.00	48.60	97	65-135		g/L
Ethylbenzene	<1.000	50.00	50.06	100	60-140		g/L
Bromoform	<1.000	50.00	51.00	102	70-130		g/L
1,1,2,2-Tetrachloroethane	<1.000	50.00	48.24	96	60-140		g/L
1,3-Dichlorobenzene	<1.000	50.00	47.11	94	70-130		g/L
1,4-Dichlorobenzene	<1.000	50.00	46.92	94	65-135		g/L
1,2-Dichlorobenzene	<1.000	50.00	47.36	95	65-135	uç	g/L
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag	Limits	Units	
Dibromofluoromethane	102		98		87-120	%	
4-Bromofluorobenzene	105		97		85-147	%	
Toluene-D8	100		106		88-110	%	

Analytical Method: SW-846 8260 B-ModifiedPrep Method: SW5030BSeq Number:180149Matrix: WaterDate Prep: 12/07/20MB Sample Id:84126-1-BLKLCS Sample Id: 84126-1-BKSLCSD Sample Id: 84126-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec		%RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxane)	<1.000	30.00	27.63	92	27.43	91	1 50-150) 1	20	ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS t Flag		CSD esult	LCSD Flag	Limits	Units		
Toluene-D8	100		102			102		80-120	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20120311

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20120311

Analytical Method: EPA 624 .1

Seq Number: 179415 Matrix: Water

Parent Sample Id: ICV-01 ICV Sample Id: ICV-01 Analyzed Date: 11/05/20 11:52

Parameter	Spike Amount	ICV Result	ICV %Rec	Limits	Uni	ts Flag
Dichlorodifluoromethane	0.05000	0.05093	102	54-148	mg.	L_
Chloromethane	0.05000	0.05298	106	57-135	mg.	′L
Vinyl Chloride	0.05000	0.05282	106	64-129	mg.	′L
Bromomethane	0.05000	0.05221	104	67-132	mg.	′L
Chloroethane	0.05000	0.05048	101	62-133	mg.	′L
Trichlorofluoromethane	0.05000	0.05215	104	71-137	mg.	′L
1,1-Dichloroethene	0.05000	0.05235	105	67-126	mg.	′L
Methylene Chloride	0.05000	0.05186	104	73-120	mg.	′L
trans-1,2-dichloroethene	0.05000	0.05241	105	75-127	mg.	′L
1,1-Dichloroethane	0.05000	0.05393	108	76-127	mg.	′L
Chloroform	0.05000	0.05300	106	79-125	mg.	′L
1,1,1-Trichloroethane	0.05000	0.05574	111	73-130	mg.	′L
Carbon Tetrachloride	0.05000	0.05343	107	73-130	mg.	′L
Benzene	0.05000	0.05413	108	73-132	mg.	′L
1,2-Dichloroethane	0.05000	0.05331	107	77-129	mg.	′L
Trichloroethene	0.05000	0.05426	109	79-126	mg.	′L
1,2-Dichloropropane	0.05000	0.05468	109	74-129	mg.	′L
Bromodichloromethane	0.05000	0.05289	106	81-125	mg.	L L
cis-1,3-Dichloropropene	0.05000	0.05442	109	76-116	mg.	L L
Toluene	0.05000	0.05369	107	77-127	mg.	L L
trans-1,3-dichloropropene	0.05000	0.05489	110	78-114	mg.	L L
1,1,2-Trichloroethane	0.05000	0.05365	107	78-127	mg.	L L
Tetrachloroethylene	0.05000	0.05480	110	78-128	mg.	L L
Dibromochloromethane	0.05000	0.05347	107	70-132	mg.	L L
Chlorobenzene	0.05000	0.05394	108	72-128	mg.	L L
Ethylbenzene	0.05000	0.05657	113	69-131	mg.	L .
Bromoform	0.05000	0.05393	108	70-130	mg.	L'
1,1,2,2-Tetrachloroethane	0.05000	0.05363	107	62-134	mg.	L _
1,3-Dichlorobenzene	0.05000	0.05500	110	70-129	mg.	L _
1,4-Dichlorobenzene	0.05000	0.05404	108	69-127	mg.	L L
1,2-Dichlorobenzene	0.05000	0.05518	110	65-133	mg.	L L
Surrogate		ICV Result		Limits	Units	Flag

Surrogate	ICV Result	Limits	Units	Flag
Dibromofluoromethane	100	87-120	%	
4-Bromofluorobenzene	98	85-147	%	
Toluene-D8	100	88-110	%	

Analytical Method: SW-846 8260 B-Modified

Seq Number: 175110 Matrix: Water

CCV Sample Id: CCV-01 Analyzed Date: 06/11/20 11:36

CCV Sample Id. CCV-01				Allalyzed Date	. 00/11/20 11.30
Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units Flag
1,4-Dioxane (P-Dioxane)	30.00	30.40	101	80-120	ug/L
Surrogate		CCV Result		Limits U	nits Flag
Toluene-D8		99		80-120	%

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20120311

Analytical Method: SW-846 8260 B-Modified

Seq Number: 180149 Matrix: Water

CCV Sample Id: CCV-01 Analyzed Date: 12/07/20 14:08

Parameter Spike CCV CCV Limits Units Flag
Amount Result %Rec

1,4-Dioxane (P-Dioxane) 30.00 28.03 93 80-120 ug/L

Surrogate CCV Limits Units Flag Result

Toluene-D8 104 80-120 %

Analytical Method: SW-846 8260 B-Modified

Seq Number: 175110 Matrix: Water

Parent Sample Id: ICV-01 ICV Sample Id: ICV-01 Analyzed Date: 06/11/20 11:14

Parameter Spike ICV ICV Limits Units Flag
Amount Result %Rec

1,4-Dioxane (P-Dioxane) 30.00 31.22 104 70-130 ug/L

Surrogate ICV Limits Units Flag
Result

Toluene-D8 99 80-120 %

X = Recovery outside of QC Criteria

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

1	Dec Clien	E 1020	NO THE STREET, WHEN THE REST	CIVALIONAL	CONTRACTOR ENGINEERING OF LABOR.	THE RESIDENCE AND LABOR THE PARTY OF									,		J4 <i>7</i>	and and	The side of the state of the st	- Marie 18 April 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		D. House V
		u: MSP	OFFIC	CE LOCATION:	Hemdo	n, VA	PSS Wo	ork Order	#: 2	018	103	16	201	20	311			PA	GE_	<u>L</u> 0	F	1
18	BILL TO (if		PHON	IE#:703-	709-6	500	Matrix C	Codes: ace Water									0=0il	S-Sni	1 501	-Solid 1	.—Δir	WI-Wine
	CONTACT:	Eric Johnson	EMAII	: etic, joh	nson@w	span		1	Prese	ervatives	1	1				1	1	0_00	002	-50114	I-AII	Preservative
A STATE OF THE	PROJECT I	NAME: KOP-Flex		PROJECT :	#: 31401545	5.0 10/04		G=GRAB	Analy	rsis/	(वरु	/	/		} 	/ 	} 			-)		Codes - HCL
		TION: Hanover, M		P.O. #	~		OF CONTAINERS	ij E	Requi	ired	87/3							/			/ 3	! - H ₂ SO ₄ ! - HNO ₃ ! - NaOH
Section 1	SAMPLER(s): Shannan Bur	<u>r</u>	DW CERT #			ONTA	E TYP	/.	100		/ /	/ /	/ /	/ /	/ ,	/ /	/ /	/ /	/ /	5 6	- E624KIT - ICE
2	PSS ID	SAMPLE IDENTIFICA	THE PERSON NAMED AND ADDRESS OF THE PARTY OF	DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes	# OF C	SAMPLE TYPE: C=COMPOSITE	Z	codes sis/ od ired	(8)/3)											- Sodium Thiosulfate - Ascorbic Acid
	ſ	Effluent VSP-	- - 4	12/3/20		WW	3	6	X							$\overline{}$			/	/		- TerraCore Kit
	2	TB-120320			-	W	4	_	X	X									\neg	Tric) as c
							·			•								\dashv		1114	0	lank
																		\dashv				
																		\dashv	-			
									-									_				
			ž.																			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							All the state of t												-		
													\dashv						\dashv			
- 10	Relinquished		Date		Received By:	11	The market of the same of		Reque	ested T			per CO		of a selection and the	Ice Pre	esent:	POE	5 -	TB: 1	1 0	
24		Bulle	12/3/20		Ch	Me	_	2. 10 to 10. 10 to 10.	5-D Nex		☐ 3. ☐ E	-Day merger	ncy 🔯	2-Day Other		Custo	dy Seal	Con	br-	Intac	1	
	Relinquished	1 By: (2)	Date	Time	Received By:				STATE	RESU	LTS RE	PORT	ED TO:	W/V/		# Cool	ers: 🥫	ZES	Ter	np: 5	S. 8.	,4°C
R	elinquished	Bv: (3)	Date	Time	Received By:			-	ПОП	HER						Shippii	ng Carr	ier: (1 rev	_		12
	•	7.1.7	Date	THILE	neceived by:			8		LIANC		Specia 5+0	il Instru i NO	ctions: Ol M								
R	elinquished	By: (4)	Date	Time	Received By:				EDD FO	RMAT TY		5,-			- 1	-	-,	}		,		
			solds and states a successful to the sold	material and the same of the s	and the second of the second of the second of		a the same of the same of the same of	Verene	Charles Martin	2-Nation 10-12-12-12												

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20120311

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 01/07/2021 **Date Received** 12/03/2020 12:55:00 PM **Delivered By** Client Not Applicable **Tracking No** Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 5.4 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 1 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 4 Preservation **Total Metals** (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2) N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides N/A (pH>12)Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2) Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) No 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

	Acrolein, acrylo	nitrile, and 2	 chloroethyl vii 	nvl ether not	required for EF	³ A 624 sample
--	------------------	----------------	-------------------------------------	---------------	-----------------	---------------------------

Samples Inspected/Checklist Completed By:	Amber Confer	Date:	12/03/2020
PM Review and Approval:	Amber Confer	Date:	12/03/2020

Page 12 of 12

Version 1.000

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

December 22, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20121516

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20121516**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on January 19, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 12/15/2020 at 02:22 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected
20121516-001	VSP-2	WASTE WATER	12/15/20 11:40
20121516-002	VSP-3	WASTE WATER	12/15/20 11:50
20121516-003	T-1200 Lead EF	WASTE WATER	12/15/20 11:55
20121516-004	Effluent VSP-4	WASTE WATER	12/15/20 11:30
20121516-005	TB-121520	WATER	12/15/20 14:22

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268

NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

Date/Time Sampled: 12/15/2020 11:40

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

PSS Sample ID: 20121516-001

12/17/20 12/17/20 18:35 1051

12/17/20 12/17/20 18:35 1051

Project Name: Kop-Flex PSS Project No.: 20121516

Sample ID: VSP-2

Nickel

Zinc

Date/Time Received: 12/15/2020 14:22 **Matrix: WASTE WATER** Dissolved Metals (6) Analytical Method: EPA 200.8 Preparation Method: 200.8 Result **Units** RL Flag Dil **Prepared** Analyzed **Analyst** Aluminum 100 1 12/17/20 12/17/20 16:18 1051 129 ug/L Copper 4.8 ug/L 1.0 1 12/17/20 12/17/20 16:18 1051 Iron ND ug/L 100 1 12/17/20 12/17/20 16:18 1051 ND 1.0 12/17/20 12/17/20 16:18 1051 Lead ug/L 1 Nickel 1.00 1 12/17/20 12/17/20 16:18 1051 14.5 ug/L Zinc 25.8 ug/L 20.0 1 12/17/20 12/17/20 16:18 1051 Total Metals (6) Analytical Method: EPA 200.8 Preparation Method: 200.8 **Units** Dil Result RLFlag **Prepared** Analyzed Analyst Aluminum 135 ug/L 100 1 12/17/20 12/17/20 18:35 1051 1 Copper 5.5 ug/L 1.0 12/17/20 12/17/20 18:35 1051 ND ug/L 100 1 12/17/20 12/17/20 18:35 1051 Iron Lead ND ug/L 1.0 1 12/17/20 12/17/20 18:35 1051

Hardness, Total by Calculation Analytical Method: SM 2340B Preparation Method: 200.8

ug/L

ug/L

15.0

40.1

	Result	Units	RL Flag Dil	Prepared	Analyzed Analys	t
Hardness (Ca & Mg)	7.8	mg/L	0.66	12/17/20	12/17/20 18:35 1051	

1.00

20.0

1

1

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

Sample ID: VSP-3 Date/Time Sampled: 12/15/2020 11:50 PSS Sample ID: 20121516-002

Matrix: WASTE WATER Date/Time Received: 12/15/2020 14:22

Dissolved Metals (6) Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL Flag	Dil	Prepared	Analyzed Ana	alyst
Aluminum	120	ug/L	100	1	12/17/20	12/17/20 16:22 10)51
Copper	4.8	ug/L	1.0	1	12/17/20	12/17/20 16:22 10)51
Iron	ND	ug/L	100	1	12/17/20	12/17/20 16:22 10)51
Lead	ND	ug/L	1.0	1	12/17/20	12/17/20 16:22 10)51
Nickel	14.5	ug/L	1.00	1	12/17/20	12/17/20 16:22 10)51
Zinc	26.2	ug/L	20.0	1	12/17/20	12/17/20 16:22 10)51

Total Metals (6) Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Aluminum	126	ug/L	100	1	12/17/20	12/17/20 18:49	1051
Copper	5.6	ug/L	1.0	1	12/17/20	12/17/20 18:49	1051
Iron	ND	ug/L	100	1	12/17/20	12/17/20 18:49	1051
Lead	ND	ug/L	1.0	1	12/17/20	12/17/20 18:49	1051
Nickel	14.8	ug/L	1.00	1	12/17/20	12/17/20 18:49	1051
Zinc	24.5	ug/L	20.0	1	12/17/20	12/17/20 18:49	1051

Hardness, Total by Calculation Analytical Method: SM 2340B Preparation Method: 200.8

	Result	Units	RL Flag D	il	Prepared	Analyzed	Analyst
Hardness (Ca & Mg)	7.8	mg/L	0.66	1	12/17/20	12/17/20 18:49	9 1051

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

Hardness (Ca & Mg)

Sample ID: T-1200 Lead EF Matrix: WASTE WATER		Date/Time Sampled: Date/Time Received:				PSS Sample ID: 20121516-003			
Dissolved Metals (6)	Analytica	Analytical Method: EPA 200.8			Preparation Method: 200.8				
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
Aluminum	185	ug/L	100		1	12/17/20	12/17/20 16:20	5 1051	
Copper	11.7	ug/L	1.00		1	12/17/20	12/17/20 16:20	3 1051	
Iron	ND	ug/L	100		1	12/17/20	12/17/20 16:20	5 1051	
Lead	ND	ug/L	1.0		1	12/17/20	12/17/20 16:20	3 1051	
Nickel	14.8	ug/L	1.00		1	12/17/20	12/17/20 16:20	3 1051	
Zinc	41.1	ug/L	20.0		1	12/17/20	12/17/20 16:20	5 1051	
Total Metals (6)	Analytica	Analytical Method: EPA 200.8			Preparation Method: 200.8				
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
Aluminum	182	ug/L	100		1	12/17/20	12/17/20 18:53	3 1051	
Copper	16.4	ug/L	1.00		1	12/17/20	12/17/20 18:53	3 1051	
Iron	ND	ug/L	100		1	12/17/20	12/17/20 18:53	3 1051	
Lead	ND	ug/L	1.0		1	12/17/20	12/17/20 18:53	3 1051	
Nickel	14.8	ug/L	1.00		1	12/17/20	12/17/20 18:53	3 1051	
Zinc	59.5	ug/L	20.0		1	12/17/20	12/17/20 18:53	3 1051	
Hardness, Total by Calculation	Analytica	Analytical Method: SM 2340B			Preparation Method: 200.8				
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	

0.66

7.7

mg/L

12/17/20 12/17/20 18:53 1051

1

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

			-	12/15/2020 11:30		·				
Matrix: WASTE WATER	Date/Time Received: 12/1			12/15/	12/15/2020 14:22					
Dissolved Metals (6)	Analytical Method: EPA 200.8			Preparation Method: 200.8						
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst		
Aluminum	ND	ug/L	100		1	12/17/20	12/17/20 16:3	0 1051		
Copper	2.2	ug/L	1.0		1	12/17/20	12/17/20 16:3	0 1051		
Iron	ND	ug/L	100		1	12/17/20	12/17/20 16:3	0 1051		
Lead	ND	ug/L	1.0		1	12/17/20	12/17/20 16:3	0 1051		
Nickel	17.5	ug/L	1.00		1	12/17/20	12/17/20 16:3	0 1051		
Zinc	25.1	ug/L	20.0		1	12/17/20	12/17/20 16:3	0 1051		
Total Metals (6)	Analytica	EPA 200.8		Preparation Method: 200.8						
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst		
Aluminum	ND	ug/L	100		1	12/17/20	12/17/20 18:5	8 1051		
Copper	3.7	ug/L	1.0		1	12/17/20	12/17/20 18:5	8 1051		
Iron	ND	ug/L	100		1	12/17/20	12/17/20 18:5	8 1051		
Lead	ND	ug/L	1.0		1	12/17/20	12/17/20 18:5	8 1051		
Nickel	17.0	ug/L	1.00		1	12/17/20	12/17/20 18:5	8 1051		
Zinc	26.3	ug/L	20.0		1	12/17/20	12/17/20 18:5	8 1051		
Hardness, Total by Calculation	Analytical Method: SM 2340B					Preparation Method: 200.8				
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst		
Hardness (Ca & Mg)	8.0	mg/L	0.66		1	12/17/20	12/17/20 18:5	8 1051		
1,4-Dioxane by GC/MS - SIM	Analytica	al Method: S	SW-846 8260	B-Modi	fied	Preparation Meth	nod: 5030B			
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst		
1,4-Dioxane (P-Dioxane)	2.2	ug/L	1.0		1	12/22/20	12/22/20 11:3	5 1011		
Surrogate(s)	Recovery		Limits							
Toluene-D8	98	%	80-120		1	12/22/20	12/22/20 11:3	5 1011		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

Sample ID: TB-121520 Date/Time Sampled: 12/15/2020 14:22 PSS Sample ID: 20121516-005

Matrix: WATER Date/Time Received: 12/15/2020 14:22

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	12/22/20	12/22/20 13:4	6 1011
Surrogate(s)	Recovery		Limits				
Toluene-D8	100	%	80-120	1	12/22/20	12/22/20 13:4	6 1011

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20121516

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical 1	Batch Prepared	Analyzed
						<u> </u>	<u> </u>
VSP-2	Initial	20121516-001	W	84260	180502	12/17/2020 10:49	12/17/2020 18:35
VSP-3	Initial	20121516-002	W	84260	180502	12/17/2020 10:49	12/17/2020 18:49
T-1200 Lead EF	Initial	20121516-003	W	84260	180502	12/17/2020 10:49	12/17/2020 18:53
Effluent VSP-4	Initial	20121516-004	W	84260	180502	12/17/2020 10:49	12/17/2020 18:58
84260-1-BKS	BKS	84260-1-BKS	W	84260	180502	12/17/2020 10:49	12/17/2020 18:30
84260-1-BLK	BLK	84260-1-BLK	W	84260	180502	12/17/2020 10:49	12/17/2020 18:25
VSP-2 S	MS	20121516-001 S	W	84260	180502	12/17/2020 10:49	12/17/2020 18:39
VSP-2 SD	MSD	20121516-001 S	W	84260	180502	12/17/2020 10:49	12/17/2020 18:44
VSP-2	Initial	20121516-001	W	84264	180497	12/17/2020 12:37	12/17/2020 16:18
VSP-3	Initial	20121516-002	W	84264	180497	12/17/2020 12:37	12/17/2020 16:22
T-1200 Lead EF	Initial	20121516-003	W	84264	180497	12/17/2020 12:37	12/17/2020 16:26
Effluent VSP-4	Initial	20121516-004	W	84264	180497	12/17/2020 12:37	12/17/2020 16:30
84264-1-BKS	BKS	84264-1-BKS	W	84264	180497	12/17/2020 12:37	12/17/2020 16:01
84264-1-BLK	BLK	84264-1-BLK	W	84264	180497	12/17/2020 12:37	12/17/2020 15:56
Millville 001 S	MS	20121506-001 S	W	84264	180497	12/17/2020 12:37	12/17/2020 16:10
Millville 001 SD	MSD	20121506-001 S	W	84264	180497	12/17/2020 12:37	12/17/2020 16:14
VSP-2	Initial	20121516-001	W	84260	180503	12/18/2020 12:59	12/17/2020 18:35
VSP-3	Initial	20121516-002	W	84260	180503	12/18/2020 12:59	12/17/2020 18:49
T-1200 Lead EF	Initial	20121516-003	W	84260	180503	12/18/2020 12:59	12/17/2020 18:53
Effluent VSP-4	Initial	20121516-004	W	84260	180503	12/18/2020 12:59	12/17/2020 18:58
Effluent VSP-4	Initial	20121516-004	W	84342	180587	12/22/2020 08:48	12/22/2020 11:35
TB-121520	Initial	20121516-005	W	84342	180587	12/22/2020 08:48	12/22/2020 13:46
84342-1-BKS	BKS	84342-1-BKS	W	84342	180587	12/22/2020 08:48	12/22/2020 09:43
84342-1-BLK	BLK	84342-1-BLK	W	84342	180587	12/22/2020 08:48	12/22/2020 11:12
84342-1-BSD	BSD	84342-1-BSD	W	84342	180587	12/22/2020 08:48	12/22/2020 10:05
	VSP-2 VSP-3 T-1200 Lead EF Effluent VSP-4 84260-1-BKS 84260-1-BLK VSP-2 S VSP-2 SD VSP-2 VSP-3 T-1200 Lead EF Effluent VSP-4 84264-1-BKS 84264-1-BLK Millville 001 SD VSP-2 VSP-3 T-1200 Lead EF Effluent VSP-4 8410-1-BLK Effluent VSP-4 SAMILIVILLE	VSP-2 Initial VSP-3 Initial T-1200 Lead EF Initial Effluent VSP-4 Initial 84260-1-BKS BKS 84260-1-BLK BLK VSP-2 S MS VSP-2 SD MSD VSP-2 Initial T-1200 Lead EF Initial Effluent VSP-4 Initial Effluent VSP-4 Initial 84264-1-BKS BKS 84264-1-BLK BLK Millville 001 S MS Millville 001 SD MSD VSP-2 Initial T-1200 Lead EF Initial Effluent VSP-4 Initial Effluent VSP-4 Initial Effluent VSP-4 Initial T-1200 Lead EF Initial Effluent VSP-4 Initial T-1200 Lead EF Initial Effluent VSP-4 Initial	VSP-2 Initial 20121516-001 VSP-3 Initial 20121516-002 T-1200 Lead EF Initial 20121516-003 Effluent VSP-4 Initial 20121516-004 84260-1-BKS BKS 84260-1-BKS 84260-1-BLK BLK 84260-1-BLK VSP-2 S MS 20121516-001 S VSP-2 SD MSD 20121516-001 S VSP-3 Initial 20121516-002 T-1200 Lead EF Initial 20121516-003 Effluent VSP-4 Initial 20121516-004 84264-1-BKS BKS 84264-1-BKS 84264-1-BLK BLK 84264-1-BLK Millville 001 S MS 20121506-001 S MSD 20121506-001 S VSP-2 Initial 20121516-004 Effluent VSP-4 Initial 20121516-003 T-1200 Lead EF Initial 20121516-001 S MSD 20121506-001 S MSD 20121506-001 S USP-2 Initial 20121516-002 T-1200 Lead EF Initial 20121516-002 T-1200 Lead EF Initial 20121516-003 Effluent VSP-4 Initial 20121516-004 Effluent VSP-4 Initial 20121516-004 Effluent VSP-4 Initial 20121516-004 Effluent VSP-4 Initial 20121516-005 84342-1-BKS BKS 84342-1-BKS	VSP-2 Initial 20121516-001 W VSP-3 Initial 20121516-002 W T-1200 Lead EF Initial 20121516-003 W Effluent VSP-4 Initial 20121516-004 W 84260-1-BKS BKS 84260-1-BKS W 84260-1-BLK BLK 84260-1-BLK W VSP-2 S MS 20121516-001 S W VSP-2 SD MSD 20121516-001 S W VSP-2 Initial 20121516-001 W VSP-3 Initial 20121516-002 W T-1200 Lead EF Initial 20121516-003 W Effluent VSP-4 Initial 20121516-004 W 84264-1-BKS BKS 84264-1-BKS W 84264-1-BLK BLK 84264-1-BLK W Millville 001 S MS 20121506-001 S W Millville 001 S MS 20121506-001 S W VSP-2 Initial 20121516-004 W Millville 001 S MS 20121506-001 S W Millville 001 S MS 20121506-001 S W F-1200 Lead EF Initial 20121516-004 W Effluent VSP-4 Initial 20121516-004 W USP-3 Initial 20121516-001 W USP-3 Initial 20121516-004 W Effluent VSP-4 Initial 20121516-004 W Effluent VSP-4 Initial 20121516-004 W Effluent VSP-4 Initial 20121516-004 W Effluent VSP-4 Initial 20121516-004 W Effluent VSP-4 Initial 20121516-005 W SH342-1-BKS BKS 84342-1-BKS W SH342-1-BKS BKS 84342-1-BKS W SH342-1-BKS BKS SH342-1-BKS W SH342-1-BKS BKS SH342-1-BKS W	VSP-2 Initial 20121516-001 W 84260 VSP-3 Initial 20121516-002 W 84260 T-1200 Lead EF Initial 20121516-003 W 84260 Effluent VSP-4 Initial 20121516-004 W 84260 84260-1-BKS BKS 84260-1-BKS W 84260 VSP-2 S MS 20121516-001 S W 84260 VSP-2 SD MSD 20121516-001 S W 84260 VSP-2 Initial 20121516-001 W 84264 VSP-3 Initial 20121516-002 W 84264 T-1200 Lead EF Initial 20121516-003 W 84264 Effluent VSP-4 Initial 20121516-004 W 84264 Millville 001 S MS 20121506-001 S W 84264 Millville 001 S MS 20121506-001 S W 84264 Millville 001 S MS 20121506-001 S W 84264 VSP-2 Initial 20121516-004 W 84264 Millville 001 S MS 20121506-001 S W 84264 Millville 001 S MS 20121506-001 S W 84264 Millville 001 S MS 20121506-001 S W 84264 USP-2 Initial 20121516-001 W 84264 VSP-2 Initial 20121516-001 W 84260 VSP-3 Initial 20121516-001 W 84260 VSP-3 Initial 20121516-004 W 84260 USP-3 Initial 20121516-004 W 84260 USP-3 Initial 20121516-004 W 84260 USP-3 Initial 20121516-004 W 84260 USP-4 Initial 20121516-004 W 84260 USP-3 Initial 20121516-004 W 84260 USP-3 Initial 20121516-004 W 84260 USP-4 Initial 20121516-004 W 84260 USP-5 Initial 20121516-004 W 84260 USP-6 Initial 20121516-005 W 84342 USP-1 Initial 20121516-005 W 84342 USP-1 Initial 20121516-005 W 84342 USP-1 Initial 20121516-005 W 84342 USP-1 Initial 20121516-005 W 84342 USP-1 Initial 20121516-005 W 84342	VSP-2 Initial 20121516-001 W 84260 180502 VSP-3 Initial 20121516-002 W 84260 180502 T-1200 Lead EF Initial 20121516-003 W 84260 180502 Effluent VSP-4 Initial 20121516-004 W 84260 180502 84260-1-BKS BKS 84260-1-BKS W 84260 180502 VSP-2 S MS 20121516-001 S W 84260 180502 VSP-2 SD MSD 20121516-001 S W 84260 180502 VSP-2 Initial 20121516-001 W 84264 180497 VSP-3 Initial 20121516-002 W 84264 180497 T-1200 Lead EF Initial 20121516-004 W 84264 180497 Effluent VSP-4 Initial 20121516-004 W 84264 180497 84264-1-BKS BKS 84264-1-BKS W 84264 180497 Millville 001 S MS 20121506-001 S W 84264 180497 Millville 001 S MS 20121506-001 S W 84264 180497 Millville 001 S MS 20121506-001 S W 84264 180497 Millville 001 S MS 20121506-001 S W 84264 180497 Millville 001 S MS 20121506-001 S W 84264 180497 Millville 001 S MS 20121506-001 S W 84264 180497 Millville 001 S MS 20121506-001 S W 84264 180497 Millville 001 S MS 20121506-001 S W 84264 180497 Millville 001 S MS 20121506-001 S W 84264 180497 Millville 001 S MS 20121506-001 S W 84264 180497 Millville 001 S MS 20121506-001 S W 84260 180503 T-1200 Lead EF Initial 20121516-002 W 84260 180503 T-1200 Lead EF Initial 20121516-004 W 84260 180503 Effluent VSP-4 Initial 20121516-004 W 84260 180503 Effluent VSP-4 Initial 20121516-004 W 84260 180503 Effluent VSP-4 Initial 20121516-004 W 84260 180503 Effluent VSP-4 Initial 20121516-005 W 84342 180587 TB-121520 Initial 20121516-005 W 84342 180587 TB-121520 Initial 20121516-005 W 84342 180587 84342-1-BKS BKS 84342-1-BKS W 84342 180587	VSP-2 Initial 20121516-001 W 84260 180502 12/17/2020 10:49 VSP-3 Initial 20121516-002 W 84260 180502 12/17/2020 10:49 T-1200 Lead EF Initial 20121516-003 W 84260 180502 12/17/2020 10:49 Effluent VSP-4 Initial 20121516-004 W 84260 180502 12/17/2020 10:49 84260-1-BKS BKS 84260-1-BKS W 84260 180502 12/17/2020 10:49 84260-1-BLK BLK 84260-1-BLK W 84260 180502 12/17/2020 10:49 VSP-2 S MS 20121516-001 S W 84260 180502 12/17/2020 10:49 VSP-2 SD MSD 20121516-001 S W 84260 180502 12/17/2020 10:49 VSP-2 Initial 20121516-001 W 84264 180497 12/17/2020 10:37 VSP-3 Initial 20121516-002 W 84264 180497 12/17/2020 12:37 T-1200 Lead EF Initial 20121516-003 W 84264 180497 12/17/2020 12:37 Effluent VSP-4 Initial 20121516-004 W 84264 180497 12/17/2020 12:37 84264-1-BLK BLK 84264-1-BLK W 84264 180497 12/17/2020 12:37 Millville 001 S MS 20121506-001 S W 84264 180497 12/17/2020 12:37 Millville 001 S MS 20121506-001 S W 84264 180497 12/17/2020 12:37 Millville 001 S MS 20121506-001 S W 84264 180497 12/17/2020 12:37 VSP-2 Initial 20121516-001 W 84264 180497 12/17/2020 12:37 Millville 001 S MS 20121506-001 S W 84264 180497 12/17/2020 12:37 VSP-2 Initial 20121516-001 W 84264 180497 12/17/2020 12:37 VSP-2 Initial 20121516-001 W 84264 180497 12/17/2020 12:37 VSP-2 Initial 20121516-001 W 84264 180497 12/17/2020 12:37 VSP-2 Initial 20121516-001 W 84264 180497 12/17/2020 12:37 VSP-2 Initial 20121516-001 W 84260 180503 12/18/2020 12:59 VSP-3 Initial 20121516-004 W 84260 180503 12/18/2020 12:59 VSP-3 Initial 20121516-004 W 84260 180503 12/18/2020 12:59 Effluent VSP-4 Initial 20121516-004 W 84260 180503 12/18/2020 12:59 Effluent VSP-4 Initial 20121516-004 W 84260 180503 12/18/2020 12:59 Effluent VSP-4 Initial 20121516-005 W 84342 180587 12/22/2020 08:48 84342-1-BKS BKS 84342-1-BKS W 84342 180587 12/22/2020 08:48

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20121516

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP Seq Number: 180502 Matrix: Water Date Prep: 12/17/20

MB Sample Id: 84260-1-BLK LCS Sample Id: 84260-1-BKS

			•				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Aluminum	<100	200	196.2	98	85-115	ug/L	
Copper	<1.000	40.00	39.45	99	85-115	ug/L	
Iron	<100	400	372.8	93	85-115	ug/L	
Lead	<1.000	40.00	39.24	98	85-115	ug/L	
Nickel	<1.000	40.00	37.32	93	85-115	ug/L	
Zinc	<20.00	200	191.3	96	85-115	ug/L	

Analytical Method: EPA 200.8
Seq Number: 180497 Matrix: Water Prep Method: E200.8_PREP Date Prep: 12/17/20

MB Sample Id: 84264-1-BLK LCS Sample Id: 84264-1-BKS

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Aluminum	<100	200	197.4	99	85-115	ug/L	
Copper	<1.000	40.00	37.84	95	85-115	ug/L	
Iron	<100	400	422.9	106	85-115	ug/L	
Lead	<1.000	40.00	38.04	95	85-115	ug/L	
Nickel	<1.000	40.00	37.07	93	85-115	ug/L	
Zinc	<20.00	200	192.4	96	85-115	ug/L	

Analytical Method: EPA 200.8
Seq Number: 180502 Matrix: Waste Water Prep Method: E200.8_PREP
Date Prep: 12/17/20

Parent Sample Id: 20121516-001 MS Sample Id: 20121516-001 S MSD Sample Id: 20121516-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Aluminum	134.7	200	306.8	86	307.9	87	70-130	1	25	ug/L	
Copper	5.488	40.00	44.20	97	47.31	105	70-130	8	25	ug/L	
Iron	<100	400	411.6	103	420.2	105	70-130	2	25	ug/L	
Lead	<1.000	40.00	38.27	96	38.63	97	70-130	1	25	ug/L	
Nickel	15.02	40.00	52.21	93	55.63	102	70-130	9	25	ug/L	
Zinc	40.14	200	218.7	89	247	103	70-130	15	25	ug/L	

Analytical Method: SW-846 8260 B-ModifiedPrep Method: SW5030BSeq Number:180587Matrix: WaterDate Prep: 12/22/20MB Sample Id:84342-1-BLKLCS Sample Id: 84342-1-BKSLCSD Sample Id: 84342-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxane)	<1.000	30.00	31.20	104	31.83	106	50-150	2	20	ug/L	
Surrogate	MB %Rec	MB Flag	LCS Result	LCS Flag		CSD esult	LCSD Flag	Limits	Units		
Toluene-D8	99		103			102		80-120	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20121516

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex
PSS Project No.: 20121516

Analytical Method: EPA 200.8

Seq Number: 180497 Matrix: Water

CCV Sample Id: CCV 3 Analyzed Date: 12/17/20 15:37

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Aluminum	200	211.3	106	85-115	ug/L	
Copper	40.00	39.48	99	85-115	ug/L	
Iron	400	389	97	85-115	ug/L	
Lead	40.00	42.18	105	85-115	ug/L	
Nickel	40.00	38.40	96	85-115	ug/L	
Zinc	200	197.2	99	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180497 Matrix: Water

CCV Sample Id: CCV 4 Analyzed Date: 12/17/20 16:46

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Aluminum	200	202.3	101	85-115	ug/L	
Copper	40.00	39.88	100	85-115	ug/L	
Iron	400	380.9	95	85-115	ug/L	
Lead	40.00	39.66	99	85-115	ug/L	
Nickel	40.00	38.36	96	85-115	ug/L	
Zinc	200	198.1	99	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180497 Matrix: Water

CCV Sample Id: CCV 6 Analyzed Date: 12/17/20 18:11

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Aluminum	200	209.5	105	85-115	ug/L	
Copper	40.00	39.29	98	85-115	ug/L	
Iron	400	377.6	94	85-115	ug/L	
Lead	40.00	41.66	104	85-115	ug/L	
Nickel	40.00	38.10	95	85-115	ug/L	
Zinc	200	194.9	97	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180502 Matrix: Water

CCV Sample Id: CCV 6 Analyzed Date: 12/17/20 18:11

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Aluminum	200	209.5	105	85-115	ug/L	
Copper	40.00	39.29	98	85-115	ug/L	
Iron	400	377.6	94	85-115	ug/L	
Lead	40.00	41.66	104	85-115	ug/L	
Nickel	40.00	38.10	95	85-115	ug/L	
Zinc	200	194.9	97	85-115	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex
PSS Project No.: 20121516

Analytical Method: EPA 200.8

Seq Number: 180502 Matrix: Water

CCV Sample Id: CCV 8 Analyzed Date: 12/17/20 19:24

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units Flag
Aluminum	200	202.3	101	85-115	ug/L
Copper	40.00	39.40	99	85-115	ug/L
Iron	400	378.3	95	85-115	ug/L
Lead	40.00	40.31	101	85-115	ug/L
Nickel	40.00	38.13	95	85-115	ug/L
Zinc	200	194.9	97	85-115	ug/L

Analytical Method: EPA 200.8

Seq Number: 180502 Matrix: Water

CCV Sample Id: CCV 9 Analyzed Date: 12/17/20 20:39

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Aluminum	200	201.7	101	85-115	ug/L	
Copper	40.00	38.98	97	85-115	ug/L	
Iron	400	378.5	95	85-115	ug/L	
Lead	40.00	39.26	98	85-115	ug/L	
Nickel	40.00	37.92	95	85-115	ug/L	
Zinc	200	193.2	97	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180497 Matrix: Water
Parent Sample Id: ICV 1 ICV Sample Id: ICV 1 Analyzed Date: 12/17/20 11:50

Parameter	Spike Amount	ICV Result	ICV %Rec	Limits	Units	Flag
Aluminum	200	203.2	102	90-110	ug/L	
Copper	40.00	39.93	100	90-110	ug/L	
Iron	400	397	99	90-110	ug/L	
Lead	40.00	40.29	101	90-110	ug/L	
Nickel	40.00	38.99	97	90-110	ug/L	
Zinc	200	198.7	99	90-110	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180502 Matrix: Water

Parent Sample Id: ICV 1 ICV Sample Id: ICV 1 Analyzed Date: 12/17/20 11:50

Parameter	Spike Amount	ICV Result	ICV %Rec	Limits	Units	Flag
Aluminum	200	203.2	102	90-110	ug/L	
Copper	40.00	39.93	100	90-110	ug/L	
Iron	400	397	99	90-110	ug/L	
Lead	40.00	40.29	101	90-110	ug/L	
Nickel	40.00	38.99	97	90-110	ug/L	
Zinc	200	198.7	99	90-110	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Flag

Flag

Flag

Units

Project Name Kop-Flex PSS Project No.: 20121516

Surrogate

Analytical Method: SW-846 8260 B-Modified

Seq Number: 175110

Analyzed Date: 06/11/20 11:36 CCV Sample Id: CCV-01

CCV CCV Limits Units **Spike Parameter** Flag Amount Result %Rec

Matrix: Water

1,4-Dioxane (P-Dioxane) 30.00 30.40 101 80-120 ug/L

CCV Limits Units Flag Surrogate Result

99 Toluene-D8 80-120 %

Analytical Method: SW-846 8260 B-Modified

Seq Number: 180587 Matrix: Water

Analyzed Date: 12/22/20 09:21 CCV Sample Id: CCV-01

Spike CCV CCV Limits Units **Parameter**

Amount Result %Rec 1,4-Dioxane (P-Dioxane) 30.00 29.03 97 80-120 ug/L

CCV Limits **Units**

Result 104 80-120 % Toluene-D8

Analytical Method: SW-846 8260 B-Modified

Seq Number: 175110 Matrix: Water

ICV Sample Id: ICV-01 Analyzed Date: 06/11/20 11:14 Parent Sample Id: ICV-01

Spike Limits **Parameter** Amount Result %Rec 30.00 31.22 104 70-130 1,4-Dioxane (P-Dioxane) ug/L

ICV Limits Units Flag Surrogate

ICV

Result Toluene-D8 99 80-120 %

ICV

X = Recovery outside of QC Criteria

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

PSS CLIE	NT: WSP USA	OFFICE	E LOCATION:	Herndo	n, VA	PSS Wo	rk Order	#: 20	121	151	6	10.7				PAG	E_	OF		
	f different):			709-6		Matrix C SW=Surfa	odes:					1 Water	WW=Waste	Water	0 =0il	S=Soli	SOL:	=Solid A	=Air V	VI=Wipe
CONTACT	Eric Johnson	EMAIL:	eric.jol	mson@	NSACOM		9		vatives Codes	3	3	1								Preservative Codes
	NAME: KOP-Flex		PROJECT #	3140545	010/04	W	G=GRAB	Analys Method	is/	3	8	1	11	1	1	1	7	1	/2	- HCL - H ₂ SO ₄
	ATION: Hanover, M		P.O. #	:		INER		Require 3	ed by	%	10 mg	7 /	///		/	/		//	4	- HNO ₃ - NaOH - E624KIT
	RIS): Shannon Bl		DW CERT #	:		ATNO:	MPOS	1	Discharge also	50	(53)	/	//	/	/	/	/	/	6	- ICE - Sodium
PSS ID	SAMPLE IDENTIFI		DATE SAMPLED	TIME	MATRIX Use Codes	# OF CONTAINERS	SAMPLE TYPE: C=COMPOSITE	187	10/2	195	3	//	///	/		/	/			Thiosulfate - Ascorbic Acid - TerraCore Kit
1	VSP-2		12/15/20	21140	WW	2	6	X	X	100								Time		
2	VSP-3		12/15/20			2	G	X	X									Time	, il	50
3	T-1200 Lei	ad Er	12/15/20	2.146	WW	2	6	X	X									Time	11:	5.5
4	Effluent VSF	0-4	12/15/20	51130	WW	5	6	X	X	X								Time	113	0
3	TB-1215	20		_	W	2	-			X										
																			-	
Relinquish	ned By: (1)	Date	Time	Received By	//			Requ X 5-[One TAT p 3-Day		C) !-Day	ce Pre	esent:	Des	S	TB:3.	102	
Relinquish		12/15/20 Date	1422 Time	Received By	Mh	_			xt Day		Emergeno	у 🔲 С	Other					Enter:		
Nonniquisi	16d By. (2)	Date	Time	Tieceived by					D		PA UV		~	Shippi	ng Car	rier:	the	emp: 1.2	-1.4	~
Relinquish	ned By: (3)	Date	Time	Received By	N., 1			СОМІ	PLIANC		Special MC+a	15=	tions:	(, F	٠, F	р _,	N;	, Zr	1	
Relinquish	ned By: (4)	Date	Time	Received By				EDD FO	ORMAT T	YPE	Diss	عالاق	d met at ti	015	5	am	ple	s f	ielo	1

This chain of custody is a legal document. The client (PSS Client), by signing, or having client's agent sign, this "Chain of Custody Form", agrees to pay for the above requested services per the latest version of the Service Brochure of PSS-provided quotationage and all attorney's or others reasonable fees if collection becomes necessary.

Client Name

Sulfide

Sample Receipt Checklist

Received By

Thomas Wingate

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

WSP USA - Herndon

Disposal Date 01/19/2021 **Date Received** 12/15/2020 02:22:00 PM **Delivered By** Client Not Applicable **Tracking No** Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 1.9 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 5 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 13 **Preservation Total Metals** (pH<2)Yes Dissolved Metals, filtered within 15 minutes of collection (pH<2)Yes Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:	Time Winder	Date: 12/15/2020	
•	Thomas Wingate		_

PM Review and Approval: July 7 longer

TOC, DOC (field filtered), COD, Phenols

VOC, BTEX (VOA Vials Rcvd Preserved)

624 VOC (Rcvd at least one unpreserved VOA vial)

Do VOA vials have zero headspace?

524 VOC (Rcvd with trip blanks)

TOX, TKN, NH3, Total Phos

Amber Confer Page 16 of 16 Date: 12/15/2020

(pH>9)

(pH<2)

(pH<2)

(pH<2)

(pH<2)

Version 1.000

N/A

N/A

N/A

Yes

Yes

N/A

N/A

APPENDIX

RESIN CLEANING AND FOULANT ANALYSIS DOCUMENTATION

RESIN CLEANING EVALUATION

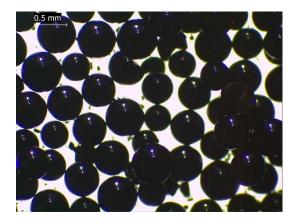

Emerging Compounds Treatment Technologies T1100 Resin Report

Introduction

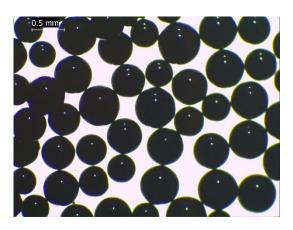
Recirculation Technologies, LLC (RTI) has analyzed the **T1100** resin sample from Emerging Compounds Treatment Technologies (ECT2) in Rochester, New York: the before and after cleaning resin from a customer location in Baltimore, MD. The resin is Dow Ambersorb 560, a carbonaceous adsorbent used to remove selective organics from water solutions.

Analysis

Total Organic Carbon (TOC) analysis, in ppm, shows organic material present in the before cleaning resin sample. The cleaning process performed was a series of four (4) subsequent rounds of fresh 10% NaOH solution, each one hour long, in the presence of 140F heat with frequent mixing. This method was successful in removing organic material from the resin.


Resin Sample	VCS Color Scale ¹	Total Organic Carbon, ppm
T1100 Before Cleaning	15	414
T1100 After Cleaning	7	107
New Resin	3	34

¹ VCS is Varnish Color Scale, a qualitative method used to evaluate varnish. It has been co-opted to characterize natural organics present in solutions since many natural organics are highly colored. The scale extends from 0, which is water-white, to 18, which is opaque black.


This represents a **74%** removal of organic material from before cleaning to after cleaning. This large fraction of the organic material was removed efficiently during the cleaning. The TOC

solutions eluted from the before and after resin samples showed a dark solution before (15 on the 0-18 scale) and a light solution after (7 on the same 0-18 scale), corresponding to significant organics present before and much less organics present after cleaning.

The before cleaning resin is surrounded by particulates and some resin fines. The particulates were removed during cleaning by RTI. This opens the flow of process solution through the entire resin bed, allowing for better treatment.

T1100 Before Cleaning Resin Sample

T1100 After Cleaning Resin Sample

Conclusion

The cleaning of the T1100 resin with a 10% NaOH solution removed a significant portion of the organic fouling contained in the resin. This method lowered the organic fouling, removed all particulate fouling, and will allow the resin to function optimally going forward.

For RTI,
Joel Shulman
Laboratory Manager
jshulman@rtiservices.com
215-682-7099 Ext. 09

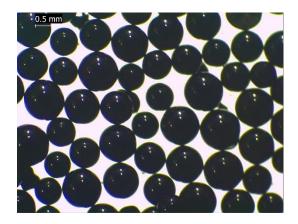
Emerging Compounds Treatment Technologies T1200 Resin Report

Introduction

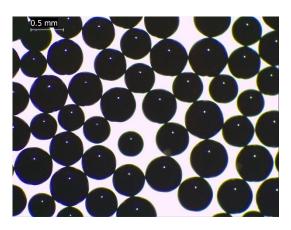
Recirculation Technologies, LLC (RTI) has analyzed the **T1200** resin sample from Emerging Compounds Treatment Technologies (ECT2) in Rochester, New York: the before and after cleaning resin from a customer location in Baltimore, MD. The resin is Dow Ambersorb 560, a carbonaceous adsorbent used to remove selective organics from water solutions.

Analysis

Total Organic Carbon (TOC) analysis, in ppm, shows organic material present in the as received resin sample. The cleaning process performed was a series of four (4) subsequent rounds of fresh 10% NaOH solution, each one hour long, in the presence of 140F heat with frequent mixing. This method was successful in removing organic material from the resin.


Resin Sample	VCS Color Scale ¹	Total Organic Carbon, ppm
Resin As Received	14	378
Resin After Cleaning	8	100
New Resin	3	34

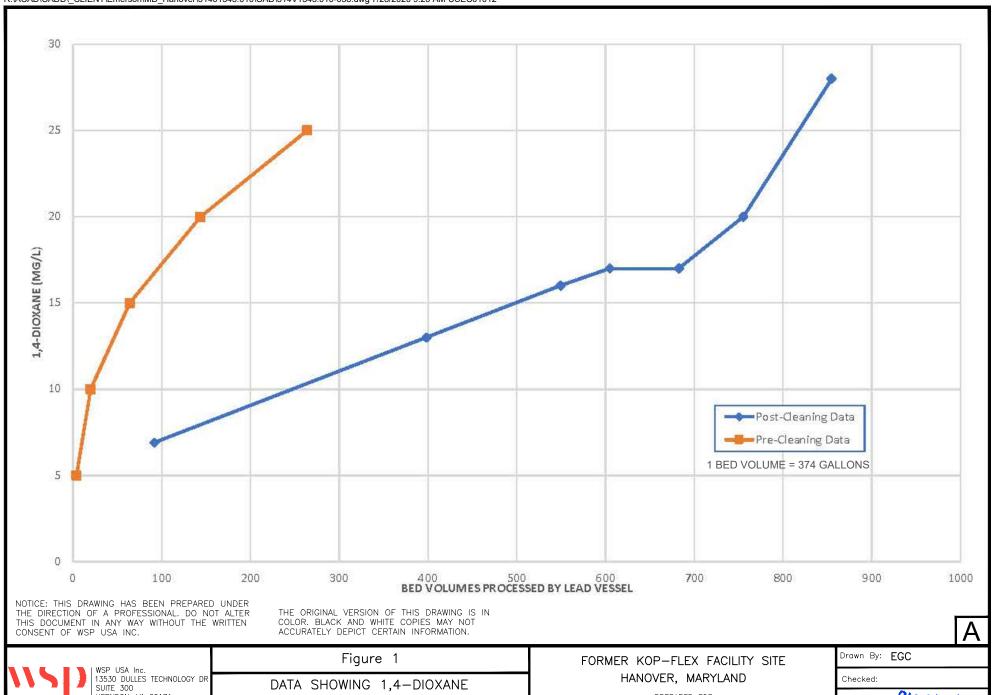
¹ VCS is Varnish Color Scale, a qualitative method used to evaluate varnish. It has been co-opted to characterize natural organics present in solutions since many natural organics are highly colored. The scale extends from 0, which is water-white, to 18, which is opaque black.


This represents a **73.6%** removal of organic material from before cleaning to after cleaning. This large fraction of the organic material was removed efficiently during the cleaning. The TOC

solutions eluted from the before and after resin samples showed a dark solution before (14 on the 0-18 scale) and a light solution after (8 on the same 0-18 scale), corresponding to significant organics present before and much less organics present after cleaning.

The before cleaning resin is surrounded by some particulates. The particulates were removed during cleaning by RTI. This opens the flow of process solution through the entire resin bed, allowing for better treatment.

T1200 Before Cleaning Resin Sample


T1200 After Cleaning Resin Sample

Conclusion

The cleaning of the T1200 resin with a 10% NaOH solution removed a significant portion of the organic fouling contained in the resin. This method lowered the organic fouling, removed all particulate fouling, and will allow the resin to function optimally going forward.

For RTI,
Joel Shulman
Laboratory Manager
jshulman@rtiservices.com
215-682-7099 Ext. 09

WASTE DISPOSAL MANIFEST AND BILLS OF LADING

HERNDON, VA 20171 TEL: +1 703.709.6500

BREAKTHROUGH OF TREATMENT RESIN

PREPARED FOR

EMERSUB 16 LLC ST. LOUIS, MISSOURI Approved:

DWG Name314V1545.010-058

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20050113

May 15, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20050113

Project Location: Hanove

Project Location: Hanover, MD Project ID.: 31401545.010/.4

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 20050113.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on June 5, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal

Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20050113

Project ID: 31401545.010/.4

The following samples were received under chain of custody by Phase Separation Science (PSS) on 05/01/2020 at 01:00 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected
20050113-001	T-1100 Lead Effluent-1	WASTE WATER	04/27/20 15:00
20050113-002	T-1100 Lead Effluent-2	WASTE WATER	04/28/20 17:00
20050113-003	T-1100 Lead Effluent-3	WASTE WATER	04/29/20 06:00
20050113-004	T-1100 Lead Effluent-4	WASTE WATER	04/29/20 11:00
20050113-005	Trip Blank	WATER	05/01/20 13:00

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory

LDBE MWAA LD1997-0041-2015

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20050113

·							
Sample ID: T-1100 Lead Effluent-1			Sampled:			•	e ID: 20050113-001
Matrix: WASTE WATER	A 1 (L 5000D
1,4-Dioxane by GC/MS - SIM	Analytic	cal Method: S	SW-846 8260	B-Mod	ified	Preparation Meth	iod: 5030B
	Result	Units	RL	Flag	Dil	Prepared	Analyzed Analyst
1,4-Dioxane (P-Dioxane)	6.9	ug/L	1.0		1	05/11/20	05/11/20 17:18 1045
Surrogate(s)	Recovery	,	Limits				
Toluene-D8	88	%	80-120		1	05/11/20	05/11/20 17:18 1045
Sample ID: T-1100 Lead Effluent-2		Date/Time	Sampled:	04/28	/2020 17:0	nn DSS Sample	e ID: 20050113-002
Matrix: WASTE WATER			Received:			<u>-</u>	; ID. 20030113-002
1,4-Dioxane by GC/MS - SIM	Analytic		SW-846 8260			Preparation Meth	and: 5030B
1,4-bloxarie by Go/Mio - Gilvi	Analytic	ai Metriou. V	377-040 0200	D-IVIOU	illeu	Freparation wet	ю. 5050Б
						_	
	Result		RL	Flag	Dil	Prepared	Analyzed Analyst
1,4-Dioxane (P-Dioxane)	13	ug/L	1.0		1	05/11/20	05/11/20 17:40 1045
Surrogate(s)	Recovery	•	Limits				
Toluene-D8	88	%	80-120		1	05/11/20	05/11/20 17:40 1045
Sample ID. T 4400 Load Efficient 2		Data/Time	Compled	04/20	/2020 06./	no DSS Samula	ID. 20050442 002
Sample ID: T-1100 Lead Effluent-3 Matrix: WASTE WATER			Sampled: Received:			•	e ID: 20050113-003
1,4-Dioxane by GC/MS - SIM	Apalytic		SW-846 8260			Preparation Meth	and: 5020B
1,4-blokalie by GG/MG - Silvi	Analytic	ai Melilou. V	377-040 0200	D-IVIOU	illeu	Freparation Meti	10u. 3030B
	Result		RL .	Flag	Dil	Prepared	Analyzed Analyst
1,4-Dioxane (P-Dioxane)	16	ug/L	1.0		1	05/11/20	05/11/20 18:03 1045
Surrogate(s)	Recovery	,	Limits				
Toluene-D8	88	%	80-120		1	05/11/20	05/11/20 18:03 1045
Sample ID: T-1100 Lead Effluent-4		Date/Time	Sampled:	04/29	/2020 11:0	00 PSS Sample	e ID: 20050113-004
Matrix: WASTE WATER			Received:				
1,4-Dioxane by GC/MS - SIM	Analytic		SW-846 8260			Preparation Meth	nod: 5030B
•	•					•	
	Result	Units	RL	Flag	Dil	Prepared	Analyzed Analyst
1,4-Dioxane (P-Dioxane)	17	ug/L	1.0		1	05/11/20	05/11/20 18:25 1045
Surrogate(s)	Recovery	,	Limits				
Toluene-D8	85	%	80-120		1	05/11/20	05/11/20 18:25 1045

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20050113

Sample ID: Trip Blank Date/Time Sampled: 05/01/2020 13:00 PSS Sample ID: 20050113-005

Matrix: WATER Date/Time Received: 05/01/2020 13:00

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	05/11/20	05/11/20 18:47	7 1045
Surrogate(s)	Recovery		Limits				
Toluene-D8	88	%	80-120	1	05/11/20	05/11/20 18:4	7 1045

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20050113

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

Received Trip Blanks that were not on the COC. Logged in for 1,4 dioxane by method 8260.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex
PSS Project No.: 20050113

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical B	atch Prepared	Analyzed
SW-846 8260 B-	T-1100 Lead Effluent-	Initial	20050113-001	W	81467	174294	05/11/2020 12:50	05/11/2020 17:18
Modified	1	.	20050112 002	***	01465	15.420.4	05/11/2020 12 50	05/11/2020 15 40
	T-1100 Lead Effluent-	Initial	20050113-002	W	81467	174294	05/11/2020 12:50	05/11/2020 17:40
	T-1100 Lead Effluent-	Initial	20050113-003	W	81467	174294	05/11/2020 12:50	05/11/2020 18:03
	3							
	T-1100 Lead Effluent-	Initial	20050113-004	W	81467	174294	05/11/2020 12:50	05/11/2020 18:25
	Trip Blank	Initial	20050113-005	W	81467	174294	05/11/2020 12:50	05/11/2020 18:47
	81467-1-BKS	BKS	81467-1-BKS	W	81467	174294	05/11/2020 12:50	05/11/2020 14:42
	81467-1-BLK	BLK	81467-1-BLK	W	81467	174294	05/11/2020 12:50	05/11/2020 16:56
	81467-1-BSD	BSD	81467-1-BSD	W	81467	174294	05/11/2020 12:50	05/11/2020 15:04

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop Flex
PSS Project No.: 20050113

Analytical Method: SW-846 8260 B-ModifiedPrep Method:SW5030BSeq Number:174294Matrix: WaterDate Prep:05/11/20

MB Sample Id: 81467-1-BLK LCS Sample Id: 81467-1-BKS LCSD Sample Id: 81467-1-BSD

LCS RPD **Spike** LCS %RPD Units MB **LCSD** LCSD Limits **Parameter** Flag Limit Result Amount Result %Rec %Rec Result 1,4-Dioxane (P-Dioxane) <1.000 30.00 25.15 84 25.57 85 50-150 1 20 ug/L

MB MB LCS LCS **LCSD** Limits Units LCSD Surrogate %Rec Flag Result Flag Result Flag 89 90 Toluene-D8 89 80-120 %

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

PSS CLIENT: WSP OFFIC	E LOCATION:	Herndo	n, VA	PSS Wor	k Order	#: 20	XX 57	3113	3						PAG	GE _	1	OF	1_
BILL TO (if different): PHON	#: 703~	-709-1	0500	Matrix Co SW=Surfa	odes:					ound Wate	er W W	/=Waste V	Vater	0 =0il	S =Soi	SOL	=Solid	A =Air	WI=Wipe
CONTACT: ENC JOHNSON EMAIL	eric.johi	nson @ 1	vsp.com		88		vatives Codes	HCI											Preservative Codes
PROJECT NAME: KOP FLEX	PROJECT #	3140154	5,010/04	σ S	G=GRAB	Analys Method		4		7	7	7	7	7	7	/	7		1 - HCL 2 - H ₂ SO ₄
SITE LOCATION: Hanover, MD	P.O. #	100		AINER	PE:	Require 3	Kelo Xane	Z				//	/	/ '	/			/	3 - HNO ₃ 4 - NaOH 5 - E624KIT
SAMPLER(S): Shannon Burke	DW CERT #			JONT	LE TY MPOS	4	50	/	/ /				/	/	/	/	/		6 - ICE 7 - Sodium
PSS ID SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes	# OF CONTAINERS	SAMPLE TYPE: C=COMPOSITE	(F)	7	/	/	/		//	/				/		Thiosulfate 8 - Ascorbic Acid 9 - TerraCore Kit
1 T-1100 Lead Effluent			WW	3	G	X													Torracoro tat
2 T-1100 Lead Esfluent-2		_	WW	3	G	X													
3 T-1100 Lead Effluent -3	-		MM	3	6	X													
4 T-1100 Lead Effluent-4			nn	3	0	X						4-							
T-1100 Lead Estauent 5	4/29/20		ww	3	6	X		SL	B	-									
T-1100 Lead Effluent-6			MM	3	6	X		SL	B										
														+					
																		-	
			0			4)													
Relinquished By: (1) Date S 1 20	Time	Received By	11/1/1	1		5-0	Day		3-Day		2-Da	у 📙		esent:					
Relinquished By: (2)	Time	Received By	THY		- 60	STATE		JLTS F	REPOR	ency X);			dy Sea lers: [emp:	1,2 %	2.2.6
16M 5120	1300	64	Wh	/		OM O		DE 🔲	PA 🗆	VA [1 MA	-		ng Car					
Relinquished By: (3) Date	Time	Received By					PLIANO			ial Instri		ed 1	0-	- de	311	7	AT	•	
Relinquished By: (4) Date	Time	Received By	:			EDD FO	ORMAT 1	TYPE) -VI (, 000	J. (3, -	J	-	, ,		
					1														

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop Flex PSS Project No.: 20050113

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 06/05/2020 Date Received 05/01/2020 01:00:00 PM **Delivered By** Trans Time Express **Tracking No** Not Applicable Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? N/A Temp (deg C) 2.3 Seal(s) Signed / Dated? N/A Temp Blank Present Yes Sampler Name **Documentation** Shannon Burke COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** 5 All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 14 **Preservation Total Metals** (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2) N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) N/A 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Received Trib Blanks that were not on the COC. Lodded in for 1.4 dioxane by method 82	not on the COC. Logged in for 1,4 dioxane by method 8260
---	--

Samples Inspected/Checklist Completed By:	Time Windle	Date: 05/01/2020
	Thomas Wingate	
PM Review and Approval:	The Winds	Date: 05/01/2020
	Thomas Wingate	Version 1.000

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20051204

May 27, 2020

Eric Johnson WSP USA - Herndon 13530 Dulles Technology Dr, Ste 300 Herndon, VA 20171

Reference: PSS Project No: 20051204

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) 20051204.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on June 16, 2020, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20051204

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 05/12/2020 at 10:35 am

PSS Sample ID	Sample ID	Matrix	Date/Time Collected
20051204-001	T-1100 Lead Effluent-5	WASTE WATER	05/11/20 14:30
20051204-002	T-1100 Lead Effluent-6	WASTE WATER	05/11/20 21:00
20051204-003	T-1100 Lead Effluent-7	WASTE WATER	05/12/20 07:00
20051204-004	TB-051120	WATER	05/11/20 00:00

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes:

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268 NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

Certificate of Analysis

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20051204

Sample ID: T-1100 Lead Effluent-5 Matrix: WASTE WATER			Sampled: Received:			·	e ID: 2005120	14-001	
1,4-Dioxane by GC/MS - SIM	Analytic	al Method: \$	SW-846 8260	B-Mod	ified	Preparation Meth	nod: 5030B		
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
1,4-Dioxane (P-Dioxane)	17	ug/L	1.0		1	05/20/20	05/20/20 16:5	3 1011	
Surrogate(s)	Recovery		Limits						
Toluene-D8	101	%	80-120		1	05/20/20	05/20/20 16:5	53 1011	
Sample ID: T-1100 Lead Effluent-6		Date/Time	Sampled:	05/11/	/2020 21:00	PSS Sample	e ID: 2005120	4-002	
Matrix: WASTE WATER		Date/Time	Received:	05/12/	/2020 10:35				
1,4-Dioxane by GC/MS - SIM	Analytic	al Method: \$	SW-846 8260	ified	Preparation Method: 5030B				
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
1,4-Dioxane (P-Dioxane)	20	ug/L	1.0		1	05/20/20	05/20/20 16:3		
Surrogate(s)	Recovery		Limits						
Toluene-D8	93	%	80-120		1	05/20/20	05/20/20 16:3	30 1011	
Sample ID: T-1100 Lead Effluent-7			Sampled:			·	e ID: 2005120	4-003	
Matrix: WASTE WATER		Date/Time	Received:	05/12/	/2020 10:35				
1,4-Dioxane by GC/MS - SIM	Analytic	al Method: \$	SW-846 8260	B-Mod	ified	Preparation Meth	nod: 5030B		
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
1,4-Dioxane (P-Dioxane)	28	ug/L	1.0		1	05/20/20	05/20/20 16:0	8 1011	
Surrogate(s)	Recovery		Limits						
Toluene-D8	97	%	80-120		1	05/20/20	05/20/20 16:0	08 1011	
Sample ID: TB-051120			Sampled:			•	e ID: 2005120	4-004	
Matrix: WATER			Received:						
1,4-Dioxane by GC/MS - SIM	Analytic	al Method: S	SW-846 8260	B-Mod	ified	Preparation Meth	nod: 5030B		
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0		1	05/20/20	05/20/20 15:4	6 1011	
Surrogate(s)	Recovery		Limits						
Toluene-D8	97	%	80-120		1	05/20/20	05/20/20 15:4	16 1011	

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20051204

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20051204

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical B	atch Prepared	Analyzed
CW 047 0470 D	T 1100 I LECT .	T ''' 1	20051204 001	337	01/20	174615	05/20/2020 10 16	05/00/0000 17 52
SW-846 8260 B- Modified	T-1100 Lead Effluent- 5	Initial	20051204-001	W	81620	174615	05/20/2020 10:16	05/20/2020 16:53
Widdiffed	T-1100 Lead Effluent-	Initial	20051204-002	W	81620	174615	05/20/2020 10:16	05/20/2020 16:30
	T-1100 Lead Effluent-	Initial	20051204-003	W	81620	174615	05/20/2020 10:16	05/20/2020 16:08
	TB-051120	Initial	20051204-004	W	81620	174615	05/20/2020 10:16	05/20/2020 15:46
	81620-1-BKS	BKS	81620-1-BKS	W	81620	174615	05/20/2020 10:16	05/20/2020 13:54
	81620-1-BLK	BLK	81620-1-BLK	W	81620	174615	05/20/2020 10:16	05/20/2020 15:23
	81620-1-BSD	BSD	81620-1-BSD	W	81620	174615	05/20/2020 10:16	05/20/2020 14:17

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20051204

Analytical Method: SW-846 8260 B-ModifiedPrep Method: SW5030BSeq Number:174615Matrix: WaterDate Prep: 05/20/20MB Sample Id:81620-1-BLKLCS Sample Id: 81620-1-BKSLCSD Sample Id: 81620-1-BSD

LCS RPD **Spike** LCS %RPD Units MB **LCSD** LCSD Limits **Parameter** Flag Result Amount Result %Rec Limit Result %Rec

1,4-Dioxane (P-Dioxane) <1.000 30.00 30.22 101 32.57 109 50-150 8 20 ug/L

MB MB LCS LCS **LCSD** Limits Units LCSD Surrogate %Rec Flag Result Flag Result Flag 99 Toluene-D8 93 98 80-120 %

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria

H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

SAMPLE CHAIN OF CUSTODY/AGREEMENT FORM

PHASE SEPARATION SCIENCE, INC.

www.phaseonline.com email: info@phaseonline.com

$\mathfrak{D}_{*_{CLIENT}}$	WSP	*OFF	ICE LOC.	ernda	NVA	PSS V	Vork Orde	er#: 20	U513	204					PAGE	- 1	OF _	1
*PROJEC	CT MGR: Eric John					Matrix (SW=Su				=Ground '	Wtr WV	V =Waste	Wtr 0 =0	Oil S =So	il L =Liqi	uid SO	L=Solid A =/	Air WI =Wipe
						No. C	SAMPLE	Preservatives Used	HCI									
*PPO IE	ctrane: Kop Fle	1	PPO	IFOT NO	010/04	O N	TYPE	Analysis/	1	/	/	/	/ /	/	/	/	//	
FROSE	Hanne Hanne	11.0	rno	JECT NO		T A	C = COMP	Required 3	The state of the s	//	/ /	/ /	/	/	/	/	/ /	
	cation: Hanover		P.O. I	NO.:	_	I N	G =	* 3	3/	/ /	/	/	/	/ /	/ /	/ /	/ /	
SAMPLER 2	a(s): Shannan Bu	arke	DW CERT N	A		E R	GRAB	150	/	/	/	/	/ /		/	/	/	
LAB NO.	*SAMPLE IDENTIFIC	CATION	*DATE (SAMPLED)	*TIME (SAMPLED)	MATRIX (See Codes)	S		157								/	REM	MARKS
	T-1100 Lead Efflu	ient-5	5/11/20	1430	WW	3	G	X						1				
2	T-1100 Lead Effl	uent b	5/11/20	2100	MM	3	G	X										
3	T-1100 Lead Efflu	ent-7	5/12/20	0700	WW	3	6	X										
4	TB-051120		5/11/20	-	W	2	-	X									Trip.	blank
			100	1612					-	\sqcup							No.	-115501-
									-		_	1	_	+				
	C WAR								-			4						
									-			-						
						-			+		-		-					
5	- I D (4)	15.	-		. , 1			***		1717 (0			00)	# 05 00	olora			
A0~	ed By: (1) Bull	Date 5/12/20	Time	Received	1//			5-Day	v I	TAT (O	V	1 2-	Day	Custoo	v Seal	1	TB:1.	1°C
Relinguish		Date	1035 Time	Received I	W2	V	_	Data De	Day	Emer	gency iired:	X 01	her	Ice Pre	sent:	Costs	Temp:	u+
								Data De	CSUM			OTH	ER	Shippir	ng Carr	rier:	The).9-1.1-6
Relinquish	ed By: (3)	Date	Time	Received I	By:			Special	Instruct	ions: S	trin	dam	1 1/	7- (1ai	7	AT	
								оросна		.0.10.	uri	UOIPE	<i>a</i> 1() — (iviy	,	MI	
Relinquish	ed By: (4)	Date	Time	Received I	Ву:			DW COM YES		CE? ED	D FOR	RMAT T	YPE	MD D				RTED TO: OTHER

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20051204

WSP USA - Herndon **Client Name** Received By Thomas Wingate **Disposal Date** 06/16/2020 Date Received 05/12/2020 10:35:00 AM **Delivered By** Client Not Applicable **Tracking No** Thomas Wingate Logged In By Shipping Container(s) No. of Coolers Present Ice Custody Seal(s) Intact? Yes Temp (deg C) 1.1 Temp Blank Present Yes Seal(s) Signed / Dated? Yes Sampler Name Shannon Burke Documentation COC agrees with sample labels? MD DW Cert. No. Yes N/A Chain of Custody Yes Sample Container Custody Seal(s) Intact? Not Applicable Appropriate for Specified Analysis? Yes Seal(s) Signed / Dated Not Applicable Intact? Yes Labeled and Labels Legible? Yes Total No. of Samples Received **Holding Time** All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 11 **Preservation Total Metals** (pH<2)N/A Dissolved Metals, filtered within 15 minutes of collection (pH<2)N/A Orthophosphorus, filtered within 15 minutes of collection N/A Cyanides (pH>12)N/A Sulfide (pH>9)N/A TOC, DOC (field filtered), COD, Phenols N/A (pH<2)TOX, TKN, NH3, Total Phos N/A (pH<2)VOC, BTEX (VOA Vials Rcvd Preserved) (pH<2)Yes Do VOA vials have zero headspace? Yes 624 VOC (Rcvd at least one unpreserved VOA vial) N/A 524 VOC (Rcvd with trip blanks) (pH<2)N/A

Comments: (Any "No" response must be detailed in the comments section below.)

For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:	Time light	Date: 05/12/2020	
	Thomas Wingate		

PM Review and Approval:

Amber Confer

Date: 05/12/2020

Version 1.000

POST-CLEANING 1,4-DIOXANE BREAKTHROUGH SAMPLING

ANALYTICAL REPORT

Eurofins Lancaster Laboratories Env, LLC 2425 New Holland Pike Lancaster, PA 17601 Tel: (717)656-2300

Laboratory Job ID: 410-2314-1

Client Project/Site: Former Kop-Flex Facility Site

For:

eurofins 🔅

WSP USA Corp.

Attn: Environmental Accounts Payable

13530 Dulles Technology Drive

Suite 300

Herndon, Virginia 20171

Attn: Eric Johnson

Haml L. Gth

Authorized for release by: 6/17/2020 1:55:53 PM

Hannah Cottman, Operations Support Specialist

(717)556-7383

hannahcottman@eurofinsus.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Project/Site: Former Kop-Flex Facility Site

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Test results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, WXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANACASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Hannah Cottman

Operations Support Specialist

6/17/2020 1:55:53 PM

Haml L. Gtt

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	17
Certification Summary	20
Method Summary	21
Sample Summary	22
Subcontract Data	23
Chain of Custody	55
Receipt Checklists	56

4

6

8

10

11

13

4 5

Definitions/Glossary

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
1C	Result is from the primary column on a dual-column method.
2C	Result is from the confirmation column on a dual-column method.
CFL	Contains Free Liquid

CFU Colony Forming Unit

CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

5

6

9

10

12

14

15

Case Narrative

Client: WSP USA Corp.

Job ID: 410-2314-1 Project/Site: Former Kop-Flex Facility Site

Job ID: 410-2314-1

Laboratory: Eurofins Lancaster Laboratories Env, LLC

Narrative

Job Narrative 410-2314-1

Receipt

The samples were received on 5/14/2020 5:30 PM; the samples arrived in good condition, properly preserved, and where required, on ice. The temperatures of the 5 coolers at receipt time were 0.5°C, 0.7°C, 0.9°C, 1.4°C and 1.7°C

SUBCONTRACTING

The following analysis was subcontracted to ALS Environmental: Subcontracted Analysis - Total Organic Carbon

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: WSP USA Corp. Project/Site: Former Kop-Flex Facility Site	Job ID: 410-2314-1
Client Sample ID: MW-01	Lab Sample ID: 410-2314-1
Sample Analysis Not Complete.	
Client Sample ID: MW-27D	Lab Sample ID: 410-2314-2
Sample Analysis Not Complete.	
Client Sample ID: VSP-1D	Lab Sample ID: 410-2314-3
Sample Analysis Not Complete.	
Client Sample ID: VSP-1S	Lab Sample ID: 410-2314-4
Sample Analysis Not Complete.	
Client Sample ID: VSP-4	Lab Sample ID: 410-2314-5
Sample Analysis Not Complete.	
Client Sample ID: T-1100	Lab Sample ID: 410-2314-6
Sample Analysis Not Complete.	
Client Sample ID: VSP-100	Lab Sample ID: 410-2314-7
Sample Analysis Not Complete.	
Client Sample ID: MW-100	Lab Sample ID: 410-2314-8
Sample Analysis Not Complete.	
Client Sample ID: EB-051320	Lab Sample ID: 410-2314-9
Sample Analysis Not Complete.	

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

Lab Sample ID: 410-2314-1 Client Sample ID: MW-01

Date Collected: 05/14/20 10:18 **Matrix: Water** Date Received: 05/14/20 17:30

Method: 8015C	Nonhalogenated Organics using GC/FID	-Modifie	ed (Diesel Rang	je Orga	anics)
Δnalvte	Result Qualifier	RI	MDI Unit	ח	Prenared

, ,					, ,	
DRO (C10-C28) (1C)	<100	100	ug/L	05/20/20 08:54	05/20/20 21:30	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
o- terphenyl (Surr) (1C)	87	50 - 150		05/20/20 08:54	05/20/20 21:30	1

Method: 8015C - Nonhalogenated Organics using GC/FID-Modified (DRO) Silica Gel Treatment

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C28) (1C)	<100		100		ug/L		05/20/20 08:54	05/26/20 22:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Capric Acid (Surr) (1C)	0.00005		0 - 1				05/20/20 08:54	05/26/20 22:36	1
o- terphenyl (Surr) (1C)	64		50 - 150				05/20/20 08:54	05/26/20 22:36	1

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	<5.2		5.2		mg/L			05/18/20 16:16	1
SGT-HEM (TPH)	<5.2		5.2		mg/L			05/18/20 16:16	1

Lab Sample ID: 410-2314-2 Client Sample ID: MW-27D **Matrix: Water**

Date Collected: 05/13/20 14:55 Date Received: 05/14/20 17:30

Method: 8015C - Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Analyte	Result	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
DRO (C10-C28) (1C)	120		100		ug/L	 _	05/20/20 08:54	05/20/20 21:52	1

Prepared Surrogate %Recovery Qualifier Limits Analyzed Dil Fac o- terphenyl (Surr) (1C) 88 50 - 150 05/20/20 08:54 05/20/20 21:52

Method: 8015C - Nonhalogenated Organics using GC/FID-Modified (DRO) Silica Gel Treatment

DRO (C10-C28) (1C)	Result <100	Qualifier	100 -	MDL	ug/L	_ D	Prepared 05/20/20 08:54	Analyzed 05/26/20 22:59	Dil Fac	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Capric Acid (Surr) (1C)	0.0002		0 - 1				05/20/20 08:54	05/26/20 22:59	1	
o- terphenyl (Surr) (1C)	65		50 - 150				05/20/20 08:54	05/26/20 22:59	1	

General Chemistry

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	<5.2		5.2		mg/L			05/18/20 16:16	1
SGT-HEM (TPH)	<5.2		5.2		mg/L			05/18/20 16:16	1

Client Sample ID: VSP-1D Lab Sample ID: 410-2314-3 **Matrix: Water**

Date Collected: 05/14/20 10:00 Date Received: 05/14/20 17:30

Method: 8015C - Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
DRO (C10-C28) (1C)	<100	100	ug/L	05/20/20 08:54	05/20/20 22:15	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
o- terphenyl (Surr) (1C)		50 - 150		05/20/20 08:54	05/20/20 22:15	

Eurofins Lancaster Laboratories Env, LLC

Dil Fac

Analyzed

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

Client Sample ID: VSP-1D Lab Sample ID: 410-2314-3

Date Collected: 05/14/20 10:00 **Matrix: Water** Date Received: 05/14/20 17:30

Method: 8015C - Nonhalogenated	Organice using	. GC/FID-Modified (DRO) Silica Gol Treatment
Method, 00130 - Normalogenated	Organics using	Och ib-Mounted (Divo, Silica Ger Freatilient

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C28) (1C)	<100	100	ug/L		05/20/20 08:54	05/26/20 23:21	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Capric Acid (Surr) (1C)	0.003	0 - 1			05/20/20 08:54	05/26/20 23:21	1
o- terphenyl (Surr) (1C)	64	50 ₋ 150			05/20/20 08:54	05/26/20 23:21	1

General Chemistry	
Amalusta	- п

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	<5.4		5.4		mg/L				05/18/20 16:16	1
SGT-HEM (TPH)	<5.4		5.4		mg/L				05/18/20 16:16	1

Client Sample ID: VSP-1S Lab Sample ID: 410-2314-4 Date Collected: 05/14/20 10:25 **Matrix: Water**

Date Received: 05/14/20 17:30

Method: 8015C - Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

moundar of recommand going	a e. ga						Jan			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
DRO (C10-C28) (1C)	<100		100		ug/L		05/20/20 08:54	05/20/20 22:38	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
o- terphenyl (Surr) (1C)	83		50 - 150				05/20/20 08:54	05/20/20 22:38	1	

Method: 8015C - Nonhalogenated Organics using GC/FID-Modified (DRO) Silica Gel Treatment

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C28) (1C)	<100		100		ug/L		05/20/20 08:54	05/26/20 23:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
•	•								
Capric Acid (Surr) (1C)	0.0002		0 - 1				05/20/20 08:54	05/26/20 23:44	1

General Chemistry

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	<5.4	5.4	mg/L			05/18/20 16:16	1
SGT-HEM (TPH)	<5.4	5.4	mg/L			05/18/20 16:16	1

Client Sample ID: VSP-4

Date Collected: 05/14/20 09:10 Date Received: 05/14/20 17:30

Method: 8015C	- Nonhalogenated	Organice using (GC/FID -Modifie	d (Diesel Range Organics)

				(3 ;	, ,		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C28) (1C)	<100	-	100		ug/L		05/20/20 08:54	05/20/20 23:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o- terphenyl (Surr) (1C)	82		50 - 150				05/20/20 08:54	05/20/20 23:00	1

Method: 8015C - Nonhalogenated Organics using GC/FID-Modified (DRO) Silica Gel Treatment

Analyte	Result Qua	alifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
DRO (C10-C28) (1C)	<100	100	ug/L	05/20/20 08:54	05/27/20 00:07	1
Surrogate	%Recovery Qua	alifier Limits		Prepared	Analyzed	Dil Fac
Capric Acid (Surr) (1C)	0.0001	0 - 1		05/20/20 08:54	05/27/20 00:07	1
o- terphenyl (Surr) (1C)	63	50 - 150		05/20/20 08:54	05/27/20 00:07	1

Eurofins Lancaster Laboratories Env, LLC

Lab Sample ID: 410-2314-5 **Matrix: Water**

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

Client Sample ID: VSP-4 Lab Sample ID: 410-2314-5

Date Collected: 05/14/20 09:10

Matrix: Water

Date Received: 05/14/20 17:30

General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	<5.2	5.2	mg/L			05/18/20 16:16	1
SGT-HEM (TPH)	<5.2	5.2	mg/L			05/18/20 16:16	1

Client Sample ID: T-1100

Date Collected: 05/14/20 09:35

Lab Sample ID: 410-2314-6

Matrix: Water

Date Collected: 05/14/20 09:35 Date Received: 05/14/20 17:30

Method: 8015C - Nonhalog	genated Organic	s using G	C/FID -Modif	ied (Die	sel Ran	ge Org	ganics)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C28) (1C)	<100		100		ug/L		05/20/20 08:54	05/20/20 23:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o- terphenyl (Surr) (1C)	81		50 - 150				05/20/20 08:54	05/20/20 23:23	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C28) (1C)	<100		100		ug/L		05/20/20 08:54	05/27/20 00:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Capric Acid (Surr) (1C)	0.001		0 - 1				05/20/20 08:54	05/27/20 00:29	1
o- terphenyl (Surr) (1C)	63		50 ₋ 150				05/20/20 08:54	05/27/20 00:29	1

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	<5.4		5.4		mg/L			05/18/20 16:16	1
SGT-HEM (TPH)	<5.4		5.4		mg/L			05/18/20 16:16	1

Client Sample ID: VSP-100

Date Collected: 05/14/20 08:00

Matrix: Water

Date Received: 05/14/20 17:30

Method: 8015C - Nonhaloge	enated Organic	s using G	C/FID -Modif	ied (Die	sel Ran	ge Org	janics)		
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C28) (1C)	<100		100		ug/L		05/20/20 08:54	05/20/20 23:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o- terphenyl (Surr) (1C)	83		50 - 150				05/20/20 08:54	05/20/20 23:46	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
DRO (C10-C28) (1C)	<100		100		ug/L		05/20/20 08:54	05/27/20 00:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Capric Acid (Surr) (1C)	0.003		0 - 1				05/20/20 08:54	05/27/20 00:52	1
o- terphenyl (Surr) (1C)	67		50 - 150				05/20/20 08:54	05/27/20 00:52	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HEM (Oil & Grease)	<5.3		5.3		mg/L			05/21/20 18:53	1
SGT-HEM (TPH)	<5.3		5.3		mg/L			05/21/20 18:53	1

Client Sample Results

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

Client Sample ID: MW-100 Lab Sample ID: 410-2314-8

Date Collected: 05/13/20 08:00 Matrix: Water Date Received: 05/14/20 17:30

Method: 8015C - Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Analyte Result Qualifier RL MDL Unit D Prepared

05/20/20 08:54 05/21/20 00:08 DRO (C10-C28) (1C) 100 ug/L 110 Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed o- terphenyl (Surr) (1C) 82 50 - 150 05/20/20 08:54 05/21/20 00:08

Method: 8015C - Nonhalogenated Organics using GC/FID-Modified (DRO) Silica Gel Treatment

Result Qualifier MDL Unit Dil Fac Analyte RL Prepared Analyzed 05/20/20 08:54 05/27/20 01:15 DRO (C10-C28) (1C) <100 100 ug/L %Recovery Qualifier Prepared Dil Fac Surrogate Limits Analyzed Capric Acid (Surr) (1C) 0.003 05/20/20 08:54 05/27/20 01:15 0 - 1 05/20/20 08:54 05/27/20 01:15 o- terphenyl (Surr) (1C) 67 50 - 150

General Chemistry Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac HEM (Oil & Grease) <5.2 5.2 mg/L 05/18/20 16:16 SGT-HEM (TPH) <5.2 5.2 mg/L 05/18/20 16:16

Client Sample ID: EB-051320

Date Collected: 05/13/20 16:45

Lab Sample ID: 410-2314-9

Matrix: Water

Date Collected: 05/13/20 16:45 Date Received: 05/14/20 17:30

Method: 8015C - Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 DRO (C10-C28) (1C)
 <100</td>
 100
 ug/L
 05/20/20 08:54
 05/21/20 00:31
 1

 Surrogate
 %Recovery o-terphenyl (Surr) (1C)
 Qualifier
 Limits
 Prepared
 Analyzed o-Dil Fac o-150
 Dil Fac o-150

Method: 8015C - Nonhalogenated Organics using GC/FID-Modified (DRO) Silica Gel Treatment

MDL Unit Analyte Result Qualifier RL **Prepared** Analyzed Dil Fac DRO (C10-C28) (1C) <100 100 05/20/20 08:54 05/27/20 01:37 ug/L Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Capric Acid (Surr) (1C) 0.003 0 - 1 05/20/20 08:54 05/27/20 01:37 05/20/20 08:54 05/27/20 01:37 o- terphenyl (Surr) (1C) 72 50 - 150

General Chemistry

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac <5.6 5.6 HEM (Oil & Grease) mg/L 05/21/20 18:53 SGT-HEM (TPH) <5.6 5.6 05/21/20 18:53 mg/L

6/17/2020

Analyzed

Dil Fac

Surrogate Summary

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

Method: 8015C - Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics) Prep Type: Total/NA **Matrix: Water**

			Percent Surrogate Recovery (Acceptance Limits)
		OTP1	
Lab Sample ID	Client Sample ID	(50-150)	
410-2314-1	MW-01	87	
410-2314-2	MW-27D	88	
410-2314-3	VSP-1D	88	
410-2314-4	VSP-1S	83	
410-2314-5	VSP-4	82	
410-2314-6	T-1100	81	
410-2314-7	VSP-100	83	
410-2314-8	MW-100	82	
410-2314-9	EB-051320	84	
LCS 410-8859/3-A	Lab Control Sample	88	
LCSD 410-8859/6-A	Lab Control Sample Dup	81	
MB 410-8859/1-A	Method Blank	83	
Surrogate Legend			

Method: 8015C - Nonhalogenated Organics using GC/FID-Modified (DRO) Silica Gel Treatment **Matrix: Water** Prep Type: Total/NA

			Percent Surrogate Recovery (A	Acceptance Limits)
		NDA1	OTP1	
Lab Sample ID	Client Sample ID	(0-1)	50-150)	
410-2314-1	MW-01	0.00005	64	
410-2314-2	MW-27D	0.0002	65	
410-2314-3	VSP-1D	0.003	64	
410-2314-4	VSP-1S	0.0002	62	
410-2314-5	VSP-4	0.0001	63	
410-2314-6	T-1100	0.001	63	
410-2314-7	VSP-100	0.003	67	
410-2314-8	MW-100	0.003	67	
410-2314-9	EB-051320	0.003	72	
LCS 410-8859/3-B	Lab Control Sample	0.2	64	
LCSD 410-8859/6-B	Lab Control Sample Dup	0.2	77	
MB 410-8859/1-B	Method Blank	0.002	64	

NDA = Capric Acid (Surr) (1C)

OTP = o- terphenyl (Surr) (1C)

Eurofins Lancaster Laboratories Env, LLC

Page 11 of 56

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

Method: 8015C - Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Lab Sample ID: MB 410-8859/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 9047

MB MB RL **MDL** Unit Analyzed Dil Fac Analyte Result Qualifier Prepared DRO (C10-C28) (1C) 100 05/20/20 08:54 05/20/20 20:22 <100 ug/L

MB MB

Qualifier Surrogate %Recovery Limits Prepared Analyzed Dil Fac o- terphenyl (Surr) (1C) 83 50 - 150 05/20/20 08:54 05/20/20 20:22

Lab Sample ID: LCS 410-8859/3-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 9047

Spike

LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits DRO (C10-C28) (1C) 600 392 ug/L 20 - 118

LCS LCS

Surrogate %Recovery Qualifier Limits o- terphenyl (Surr) (1C) 88 50 - 150

Lab Sample ID: LCSD 410-8859/6-A

Matrix: Water

Analysis Batch: 9047

Prep Batch: 8859 Spike LCSD LCSD %Rec. **RPD** Analyte Added Limits RPD Limit Result Qualifier Unit D %Rec DRO (C10-C28) (1C) 600 367 ug/L 61 20 - 118

LCSD LCSD

Surrogate %Recovery Qualifier Limits o- terphenyl (Surr) (1C) 81 50 - 150

Method: 8015C - Nonhalogenated Organics using GC/FID-Modified (DRO) Silica Gel Treatment

Lab Sample ID: MB 410-8859/1-B Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 9278

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac DRO (C10-C28) (1C) 100 <100 ug/L 05/20/20 08:54 05/26/20 21:28

MB MB

Qualifier Surrogate %Recovery Limits Prepared Analyzed Dil Fac Capric Acid (Surr) (1C) 0.002 05/20/20 08:54 05/26/20 21:28 0 - 1 o- terphenyl (Surr) (1C) 64 50 - 150 05/20/20 08:54 05/26/20 21:28

Lab Sample ID: LCS 410-8859/3-B

Matrix: Water

Analysis Batch: 9278 Prep Batch: 8859 Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec DRO (C10-C28) (1C) 600 289 ug/L 48 12 _ 115

LCS LCS

Surrogate %Recovery Qualifier Limits Capric Acid (Surr) (1C) 0.2 0 - 1

Eurofins Lancaster Laboratories Env, LLC

Client Sample ID: Lab Control Sample

Prep Batch: 8859

Prep Batch: 8859

Prep Type: Total/NA

Prep Batch: 8859

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

Method: 8015C - Nonhalogenated Organics using GC/FID-Modified (DRO) Silica Gel Treatment (Continued)

Lab Sample ID: LCS 410-8859/3-B

Lab Sample ID: LCSD 410-8859/6-B

Matrix: Water

Surrogate

Surrogate

Analysis Batch: 9278

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 8859

LCS LCS

o- terphenyl (Surr) (1C)

%Recovery Qualifier 64

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 9278

Spike LCSD LCSD

Prep Batch: 8859 **RPD**

Analyte

Added 600

Limits

50 - 150

Result Qualifier

Unit %Rec %Rec.

Prep Type: Total/NA

DRO (C10-C28) (1C)

Capric Acid (Surr) (1C)

349

ug/L

Limits 12 - 115

RPD

Limit 19

LCSD LCSD

Limits

%Recovery Qualifier 0.2 0 - 1

o- terphenyl (Surr) (1C) 77 50 - 150

Method: 1664B - HEM and SGT-HEM

Lab Sample ID: MB 410-8681/1

Matrix: Water

Analysis Batch: 8681

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte HEM (Oil & Grease)

SGT-HEM (TPH)

Result Qualifier <5.0 <5.0

MB MB

RL 5.0 5.0 **MDL** Unit D mg/L

mg/L

Analyzed Dil Fac 05/18/20 16:16

05/18/20 16:16

Lab Sample ID: LCS 410-8681/2

Matrix: Water

Analysis Batch: 8681

Client Sample ID: Lab Control Sample

78

Prepared

Prep Type: Total/NA

SGT-HEM (TPH)

Added 40.0

Spike

20.0

LCS LCS Result Qualifier

%Rec Unit D

%Rec.

HEM (Oil & Grease)

Analyte

36.2 15.5 mg/L mg/L 91

Limits 78 - 114

64 - 132

%Rec.

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 8681

Lab Sample ID: LCSD 410-8681/3

LCSD LCSD

33.9

14.7

17.2

Prep Type: Total/NA

RPD

13

Analyte HEM (Oil & Grease) SGT-HEM (TPH)

40.0 20.0

Spike Added

Spike

21.7

Result Qualifier Unit mg/L

mg/L

%Rec 85 78 - 114

74

79

I imits RPD Limit 64 - 132

Lab Sample ID: 410-2314-6 MS

Matrix: Water

HEM (Oil & Grease)

SGT-HEM (TPH)

Client Sample ID: T-1100

Prep Type: Total/NA

Analysis Batch: 8681

Analyte

Sample Sample Result Qualifier

<5.4

<5.4

Added 43.5

MS MS Result Qualifier Unit 37.7 ma/L

mg/L

%Rec. %Rec Limits 87

78 ₋ 114

64 - 132

Eurofins Lancaster Laboratories Env, LLC

QC Sample Results

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

Method: 1664B - HEM and SGT-HEM (Continued)

Lab Sample ID: MB 410-9067/1

Matrix: Water

Analysis Batch: 9067

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac HEM (Oil & Grease) 5.0 mg/L 05/21/20 18:53 <5.0 SGT-HEM (TPH) 05/21/20 18:53 <5.0 5.0 mg/L

Lab Sample ID: LCS 410-9067/2 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 9067

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits HEM (Oil & Grease) 40.0 40.0 100 78 - 114 mg/L SGT-HEM (TPH) 20.0 16.8 mg/L 84 64 - 132

Lab Sample ID: LCSD 410-9067/3 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 9067

	Spi	ce LCSD	LCSD				%Rec.		RPD
Analyte	Add	ed Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
HEM (Oil & Grease)	40	.0 38.9		mg/L		97	78 - 114	3	13
SGT-HEM (TPH)	20	.0 18.3		mg/L		92	64 - 132	9	23

Lab Sample ID: 410-2314-9 MS Client Sample ID: EB-051320 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 9067

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
HEM (Oil & Grease)	<5.6		44.4	41.7		mg/L		94	78 - 114	
SGT-HEM (TPH)	<5.6		22.2	19.2		mg/L		87	64 - 132	

Eurofins Lancaster Laboratories Env, LLC

QC Association Summary

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

GC Semi VOA

Prep Batch: 8859

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
410-2314-1	MW-01	Total/NA	Water	3510C	
410-2314-1	MW-01	Total/NA	Water	3510C	
410-2314-2	MW-27D	Total/NA	Water	3510C	
410-2314-2	MW-27D	Total/NA	Water	3510C	
410-2314-3	VSP-1D	Total/NA	Water	3510C	
410-2314-3	VSP-1D	Total/NA	Water	3510C	
410-2314-4	VSP-1S	Total/NA	Water	3510C	
410-2314-4	VSP-1S	Total/NA	Water	3510C	
410-2314-5	VSP-4	Total/NA	Water	3510C	
410-2314-5	VSP-4	Total/NA	Water	3510C	
410-2314-6	T-1100	Total/NA	Water	3510C	
410-2314-6	T-1100	Total/NA	Water	3510C	
410-2314-7	VSP-100	Total/NA	Water	3510C	
410-2314-7	VSP-100	Total/NA	Water	3510C	
410-2314-8	MW-100	Total/NA	Water	3510C	
410-2314-8	MW-100	Total/NA	Water	3510C	
410-2314-9	EB-051320	Total/NA	Water	3510C	
410-2314-9	EB-051320	Total/NA	Water	3510C	
MB 410-8859/1-A	Method Blank	Total/NA	Water	3510C	
MB 410-8859/1-B	Method Blank	Total/NA	Water	3510C	
LCS 410-8859/3-A	Lab Control Sample	Total/NA	Water	3510C	
LCS 410-8859/3-B	Lab Control Sample	Total/NA	Water	3510C	
LCSD 410-8859/6-A	Lab Control Sample Dup	Total/NA	Water	3510C	
LCSD 410-8859/6-B	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 9047

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-2314-1	MW-01	Total/NA	Water	8015C	8859
410-2314-2	MW-27D	Total/NA	Water	8015C	8859
410-2314-3	VSP-1D	Total/NA	Water	8015C	8859
410-2314-4	VSP-1S	Total/NA	Water	8015C	8859
410-2314-5	VSP-4	Total/NA	Water	8015C	8859
410-2314-6	T-1100	Total/NA	Water	8015C	8859
410-2314-7	VSP-100	Total/NA	Water	8015C	8859
410-2314-8	MW-100	Total/NA	Water	8015C	8859
410-2314-9	EB-051320	Total/NA	Water	8015C	8859
MB 410-8859/1-A	Method Blank	Total/NA	Water	8015C	8859
LCS 410-8859/3-A	Lab Control Sample	Total/NA	Water	8015C	8859
LCSD 410-8859/6-A	Lab Control Sample Dup	Total/NA	Water	8015C	8859

Cleanup Batch: 9095

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-2314-1	MW-01	Total/NA	Water	3630C	8859
410-2314-2	MW-27D	Total/NA	Water	3630C	8859
410-2314-3	VSP-1D	Total/NA	Water	3630C	8859
410-2314-4	VSP-1S	Total/NA	Water	3630C	8859
410-2314-5	VSP-4	Total/NA	Water	3630C	8859
410-2314-6	T-1100	Total/NA	Water	3630C	8859
410-2314-7	VSP-100	Total/NA	Water	3630C	8859
410-2314-8	MW-100	Total/NA	Water	3630C	8859
410-2314-9	EB-051320	Total/NA	Water	3630C	8859

QC Association Summary

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

GC Semi VOA (Continued)

Cleanup Batch: 9095 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 410-8859/1-B	Method Blank	Total/NA	Water	3630C	8859
LCS 410-8859/3-B	Lab Control Sample	Total/NA	Water	3630C	8859
LCSD 410-8859/6-B	Lab Control Sample Dup	Total/NA	Water	3630C	8859

Analysis Batch: 9278

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-2314-1	MW-01	Total/NA	Water	8015C	9095
410-2314-2	MW-27D	Total/NA	Water	8015C	9095
410-2314-3	VSP-1D	Total/NA	Water	8015C	9095
410-2314-4	VSP-1S	Total/NA	Water	8015C	9095
410-2314-5	VSP-4	Total/NA	Water	8015C	9095
410-2314-6	T-1100	Total/NA	Water	8015C	9095
410-2314-7	VSP-100	Total/NA	Water	8015C	9095
410-2314-8	MW-100	Total/NA	Water	8015C	9095
410-2314-9	EB-051320	Total/NA	Water	8015C	9095
MB 410-8859/1-B	Method Blank	Total/NA	Water	8015C	9095
LCS 410-8859/3-B	Lab Control Sample	Total/NA	Water	8015C	9095
LCSD 410-8859/6-B	Lab Control Sample Dup	Total/NA	Water	8015C	9095

General Chemistry

Analysis Batch: 8681

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-2314-1	MW-01	Total/NA	Water	1664B	
410-2314-2	MW-27D	Total/NA	Water	1664B	
410-2314-3	VSP-1D	Total/NA	Water	1664B	
410-2314-4	VSP-1S	Total/NA	Water	1664B	
410-2314-5	VSP-4	Total/NA	Water	1664B	
410-2314-6	T-1100	Total/NA	Water	1664B	
410-2314-8	MW-100	Total/NA	Water	1664B	
MB 410-8681/1	Method Blank	Total/NA	Water	1664B	
LCS 410-8681/2	Lab Control Sample	Total/NA	Water	1664B	
LCSD 410-8681/3	Lab Control Sample Dup	Total/NA	Water	1664B	
410-2314-6 MS	T-1100	Total/NA	Water	1664B	

Analysis Batch: 9067

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-2314-7	VSP-100	Total/NA	Water	1664B	
410-2314-9	EB-051320	Total/NA	Water	1664B	
MB 410-9067/1	Method Blank	Total/NA	Water	1664B	
LCS 410-9067/2	Lab Control Sample	Total/NA	Water	1664B	
LCSD 410-9067/3	Lab Control Sample Dup	Total/NA	Water	1664B	
410-2314-9 MS	EB-051320	Total/NA	Water	1664B	

Lab Chronicle

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

Client Sample ID: MW-01

Date Collected: 05/14/20 10:18 Date Received: 05/14/20 17:30

Lab Sample ID: 410-2314-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Analysis	8015C		1	9047	05/20/20 21:30	IUSB	ELLE
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Cleanup	3630C			9095	05/22/20 05:34	UKQ8	ELLE
Total/NA	Analysis	8015C		1	9278	05/26/20 22:36	KP5X	ELLE
Total/NA	Analysis	1664B		1	8681	05/18/20 16:16	QT6L	ELLE

Client Sample ID: MW-27D

Date Collected: 05/13/20 14:55 Date Received: 05/14/20 17:30

Lab Sample ID: 410-2314-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Analysis	8015C		1	9047	05/20/20 21:52	IUSB	ELLE
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Cleanup	3630C			9095	05/22/20 05:34	UKQ8	ELLE
Total/NA	Analysis	8015C		1	9278	05/26/20 22:59	KP5X	ELLE
Total/NA	Analysis	1664B		1	8681	05/18/20 16:16	QT6L	ELLE

Client Sample ID: VSP-1D

Date Collected: 05/14/20 10:00

Date Received: 05/14/20 17:30

Lab Sample ID: 410-2314-3

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Analysis	8015C		1	9047	05/20/20 22:15	IUSB	ELLE
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Cleanup	3630C			9095	05/22/20 05:34	UKQ8	ELLE
Total/NA	Analysis	8015C		1	9278	05/26/20 23:21	KP5X	ELLE
Total/NA	Analysis	1664B		1	8681	05/18/20 16:16	QT6L	ELLE

Client Sample ID: VSP-1S

Date Collected: 05/14/20 10:25

Date Received: 05/14/20 17:30

Lab	Sample	ID: 410-2314-4

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Analysis	8015C		1	9047	05/20/20 22:38	IUSB	ELLE
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Cleanup	3630C			9095	05/22/20 05:34	UKQ8	ELLE
Total/NA	Analysis	8015C		1	9278	05/26/20 23:44	KP5X	ELLE
Total/NA	Analysis	1664B		1	8681	05/18/20 16:16	QT6L	ELLE

Page 17 of 56

Lab Chronicle

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

Client Sample ID: VSP-4

Date Collected: 05/14/20 09:10 Date Received: 05/14/20 17:30

Lab Sample ID: 410-2314-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Analysis	8015C		1	9047	05/20/20 23:00	IUSB	ELLE
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Cleanup	3630C			9095	05/22/20 05:34	UKQ8	ELLE
Total/NA	Analysis	8015C		1	9278	05/27/20 00:07	KP5X	ELLE
Total/NA	Analysis	1664B		1	8681	05/18/20 16:16	QT6L	ELLE

Client Sample ID: T-1100

Date Collected: 05/14/20 09:35 Date Received: 05/14/20 17:30

Lab Sample ID: 410-2314-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Analysis	8015C		1	9047	05/20/20 23:23	IUSB	ELLE
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Cleanup	3630C			9095	05/22/20 05:34	UKQ8	ELLE
Total/NA	Analysis	8015C		1	9278	05/27/20 00:29	KP5X	ELLE
Total/NA	Analysis	1664B		1	8681	05/18/20 16:16	QT6L	ELLE

Client Sample ID: VSP-100

Date Collected: 05/14/20 08:00

Date Received: 05/14/20 17:30

Lab Sample ID: 410-2314-7

Lab Sample ID: 410-2314-8

Matrix: Water

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Analysis	8015C		1	9047	05/20/20 23:46	IUSB	ELLE
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Cleanup	3630C			9095	05/22/20 05:34	UKQ8	ELLE
Total/NA	Analysis	8015C		1	9278	05/27/20 00:52	KP5X	ELLE
Total/NA	Analysis	1664B		1	9067	05/21/20 18:53	QT6L	ELLE

Client Sample ID: MW-100

Date Collected: 05/13/20 08:00

Date Received: 05/14/20 17:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Analysis	8015C		1	9047	05/21/20 00:08	IUSB	ELLE
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Cleanup	3630C			9095	05/22/20 05:34	UKQ8	ELLE
Total/NA	Analysis	8015C		1	9278	05/27/20 01:15	KP5X	ELLE
Total/NA	Analysis	1664B		1	8681	05/18/20 16:16	QT6L	ELLE

Page 18 of 56

Lab Chronicle

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

Client Sample ID: EB-051320

Lab Sample ID: 410-2314-9 Date Collected: 05/13/20 16:45

Matrix: Water

Date Received: 05/14/20 17:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Analysis	8015C		1	9047	05/21/20 00:31	IUSB	ELLE
Total/NA	Prep	3510C			8859	05/20/20 08:54	I5BW	ELLE
Total/NA	Cleanup	3630C			9095	05/22/20 05:34	UKQ8	ELLE
Total/NA	Analysis	8015C		1	9278	05/27/20 01:37	KP5X	ELLE
Total/NA	Analysis	1664B		1	9067	05/21/20 18:53	QT6L	ELLE

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Accreditation/Certification Summary

Client: WSP USA Corp. Job ID: 410-2314-1

Project/Site: Former Kop-Flex Facility Site

Laboratory: Eurofins Lancaster Laboratories Env, LLC

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Maryland	State	100	06-30-20

3

Λ

5

9

11

12

14

15

Method Summary

Client: WSP USA Corp.

Project/Site: Former Kop-Flex Facility Site

Method	Method Description	Protocol	Laboratory
8015C	Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)	SW846	ELLE
8015C	Nonhalogenated Organics using GC/FID-Modified (DRO) Silica Gel Treatment	EPA	ELLE
1664B	HEM and SGT-HEM	1664B	ELLE
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	ELLE
3630C	Silica Gel Cleanup	SW846	ELLE

Protocol References:

1664B = EPA-821-98-002

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Job ID: 410-2314-1

3

4

0

10

11

40

14

Sample Summary

Client: WSP USA Corp.

Project/Site: Former Kop-Flex Facility Site

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
410-2314-1	MW-01	Water	05/14/20 10:18	05/14/20 17:30
410-2314-2	MW-27D	Water	05/13/20 14:55	05/14/20 17:30
410-2314-3	VSP-1D	Water	05/14/20 10:00	05/14/20 17:30
410-2314-4	VSP-1S	Water	05/14/20 10:25	05/14/20 17:30
410-2314-5	VSP-4	Water	05/14/20 09:10	05/14/20 17:30
410-2314-6	T-1100	Water	05/14/20 09:35	05/14/20 17:30
410-2314-7	VSP-100	Water	05/14/20 08:00	05/14/20 17:30
410-2314-8	MW-100	Water	05/13/20 08:00	05/14/20 17:30
410-2314-9	EB-051320	Water	05/13/20 16:45	05/14/20 17:30

Job ID: 410-2314-1

3

4

5

7

8

4.6

11

14

14

15

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113, WA C999, MD 128, VA 460157, WV DW 9961-C, WV 343

June 16, 2020

ENV Subcontracting Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17601

Certificate of Analysis

2020-TOC IN WATER Project Name: Workorder: 3105359 Purchase Order: Workorder ID: 31401545.01

Dear ENV Subcontracting:

Enclosed are the analytical results for samples received by the laboratory on Tuesday, May 26, 2020.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact Ms. Sarah S Leung (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Environmental.

ALS Spring City: 10 Riverside Drive, Spring City, PA 19475 610-948-4903

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 1 of 32

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3105359 31401545.01

Lab ID	Sample ID	Matrix	Date Collected	Date Received	Collected By
3105359001	MW-01 GW	Water	5/21/2020 13:00	5/26/2020 09:15	Collected by Client
3105359002	MW-01 FA	Water	5/21/2020 13:10	5/26/2020 09:15	Collected by Client
3105359003	MW-01 HA	Water	5/21/2020 13:20	5/26/2020 09:15	Collected by Client
3105359004	MW-27D GW	Water	5/21/2020 13:30	5/26/2020 09:15	Collected by Client
3105359005	MW-27D FA	Water	5/21/2020 13:40	5/26/2020 09:15	Collected by Client
3105359006	MW-27D HA	Water	5/21/2020 13:50	5/26/2020 09:15	Collected by Client
3105359007	VSP-1D GW	Water	5/21/2020 14:00	5/26/2020 09:15	Collected by Client
3105359008	VSP-1D FA	Water	5/21/2020 14:10	5/26/2020 09:15	Collected by Client
3105359009	VSP-1D HA	Water	5/21/2020 14:20	5/26/2020 09:15	Collected by Client
3105359010	VSP-4 GW	Water	5/21/2020 15:00	5/26/2020 09:15	Collected by Client
3105359011	VSP-4 FA	Water	5/21/2020 15:10	5/26/2020 09:15	Collected by Client
3105359012	VSP-4 HA	Water	5/21/2020 15:20	5/26/2020 09:15	Collected by Client
3105359013	VSP-1S GW	Water	5/21/2020 14:30	5/26/2020 09:15	Collected by Client
3105359014	VSP-1S FA	Water	5/21/2020 14:40	5/26/2020 09:15	Collected by Client
3105359015	VSP-1S HA	Water	5/21/2020 14:50	5/26/2020 09:15	Collected by Client
3105359016	T-1100 GW	Water	5/21/2020 15:30	5/26/2020 09:15	Collected by Client
3105359017	T-1100 FA	Water	5/21/2020 15:40	5/26/2020 09:15	Collected by Client
3105359018	T-1100 HA	Water	5/21/2020 15:50	5/26/2020 09:15	Collected by Client
3105359019	MW100 HA	Water	5/21/2020 16:50	5/26/2020 09:15	Collected by Client
3105359020	MW100 GW	Water	5/21/2020 16:30	5/26/2020 09:15	Collected by Client
3105359021	MW100 FA	Water	5/21/2020 16:40	5/26/2020 09:15	Collected by Client
3105359022	VSP-100 GW	Water	5/21/2020 16:10	5/26/2020 09:15	Collected by Client
3105359023	VSP-100 HA	Water	5/21/2020 16:20	5/26/2020 09:15	Collected by Client
3105359024	VSP-100 FA	Water	5/21/2020 16:10	5/26/2020 09:15	Collected by Client

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010 . NY 11759 . PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

SAMPLE SUMMARY

Workorder: 3105359 31401545.01

Notes

- -- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 -Field Services Sampling Plan).
- -- All Waste Water analyses comply with methodology requirements of 40 CFR Part 136.
- -- All Drinking Water analyses comply with methodology requirements of 40 CFR Part 141.
- -- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.
- -- The Chain of Custody document is included as part of this report.
- -- All Library Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- -- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- -- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97) refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- -- For microbiological analyses, the "Prepared" value is the date/time into the incubator and the "Analyzed" value is the date/time out the incubator.
- -- An Analysis-Prep Method Cross Reference Table is included after Analytical Results & Qualifiers section in this report.

Standard Acronyms/Flags

- Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte J
- U Indicates that the analyte was Not Detected (ND)
- Ν Indicates presumptive evidence of the presence of a compound
- MDL Method Detection Limit **PQL Practical Quantitation Limit**
- RDL Reporting Detection Limit
- ND Not Detected - indicates that the analyte was Not Detected at the RDL
- Cntr Analysis was performed using this container
- RegLmt Regulatory Limit
- LCS Laboratory Control Sample
- MS Matrix Spike
- MSD Matrix Spike Duplicate
- DUP Sample Duplicate
- %Rec Percent Recovery
- RPD Relative Percent Difference
- LOD DoD Limit of Detection
- LOQ DoD Limit of Quantitation
- DL DoD Detection Limit
- Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL) 1
- (S) Surrogate Compound
- NC Not Calculated
- Result outside of QC limits

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 13:00 Water Lab ID: 3105359001 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: MW-01 GW

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	0.91		mg/L	0.50	0.18	SM5310B-2011		6/10/20 23:10	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 4 of 32 Page 26 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 13:10 Matrix: Water Lab ID: 3105359002

Date Received: 5/26/2020 09:15 Sample ID: MW-01 FA

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY										
Total Organic Carbon (TOC)	1.7		mg/L	0.50	0.18	SM5310B-2011		6/10/20 23:10	PAG	Α

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 5 of 32 Page 27 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 13:20 Water Lab ID: 3105359003 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: MW-01 HA

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY		_								
Total Organic Carbon (TOC)	0.23J	J	mg/L	0.50	0.18	SM5310B-2011		6/10/20 23:10	PAG	Α

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 6 of 32 Page 28 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 13:30 Water Lab ID: 3105359004 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: MW-27D GW

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	0.83		mg/L	0.50	0.18	SM5310B-2011		6/11/20 04:09	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 7 of 32 Page 29 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 13:40 Water Lab ID: 3105359005 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: MW-27D FA

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	1.7		mg/L	0.50	0.18	SM5310B-2011		6/11/20 04:09	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 13:50 Water Lab ID: 3105359006 Matrix:

Sample ID: **MW-27D HA** Date Received: 5/26/2020 09:15

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY										
Total Organic Carbon (TOC)	0.79		mg/L	0.50	0.18	SM5310B-2011		6/11/20 04:09	PAG	Α

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 14:00 Water Lab ID: 3105359007 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: **VSP-1D GW**

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	0.61		mg/L	0.50	0.18	SM5310B-2011		6/11/20 04:09	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 10 of 32 Page 32 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 14:10 Matrix: Water Lab ID: 3105359008

Date Received: 5/26/2020 09:15 Sample ID: **VSP-1D FA**

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	2.0		mg/L	0.50	0.18	SM5310B-2011		6/11/20 04:09	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 11 of 32 Page 33 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 14:20 Water Lab ID: 3105359009 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: VSP-1D HA

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	0.66		mg/L	0.50	0.18	SM5310B-2011		6/11/20 04:09	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 12 of 32 Page 34 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 15:00 Water Lab ID: 3105359010 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: **VSP-4 GW**

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY										
Total Organic Carbon (TOC)	6.6		mg/L	0.50	0.18	SM5310B-2011		6/11/20 04:09	PAG	Α

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 13 of 32 Page 35 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 15:10 Matrix: Water Lab ID: 3105359011

Date Received: 5/26/2020 09:15 Sample ID: VSP-4 FA

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	0.88		mg/L	0.50	0.18	SM5310B-2011		6/11/20 04:09	PAG	Α

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 14 of 32 Page 36 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 15:20 Water Lab ID: 3105359012 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: VSP-4 HA

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	8.7		mg/L	1.0	0.37	SM5310B-2011		6/15/20 21:16	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 15 of 32 Page 37 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 14:30 Water Lab ID: 3105359013 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: **VSP-1S GW**

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	1.3		mg/L	0.50	0.18	SM5310B-2011		6/10/20 23:10	PAG	Α

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 16 of 32 Page 38 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 14:40 Matrix: Water Lab ID: 3105359014

Date Received: 5/26/2020 09:15 Sample ID: VSP-1S FA

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	2.2		mg/L	0.50	0.18	SM5310B-2011		6/11/20 09:01	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 17 of 32 Page 39 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 14:50 Water Lab ID: 3105359015 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: **VSP-1S HA**

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	0.66		mg/L	0.50	0.18	SM5310B-2011		6/11/20 09:01	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 18 of 32 Page 40 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 15:30 Water Lab ID: 3105359016 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: T-1100 GW

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY										
Total Organic Carbon (TOC)	0.24J	J	mg/L	0.50	0.18	SM5310B-2011		6/11/20 09:01	PAG	Α

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 19 of 32 Page 41 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 15:40 Matrix: Water Lab ID: 3105359017

Date Received: 5/26/2020 09:15 Sample ID: T-1100 FA

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	1.6		mg/L	0.50	0.18	SM5310B-2011		6/11/20 09:01	PAG	

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 20 of 32 Page 42 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 15:50 Water Lab ID: 3105359018 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: T-1100 HA

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	0.33J		mg/L	0.50	0.18	SM5310B-2011		6/11/20 09:01	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 21 of 32 Page 43 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 16:50 Water Lab ID: 3105359019 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: MW100 HA

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	0.20J	J	mg/L	0.50	0.18	SM5310B-2011		6/11/20 09:01	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 22 of 32 Page 44 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 16:30 Water Lab ID: 3105359020 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: MW100 GW

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	1.3		mg/L	0.50	0.18	SM5310B-2011		6/11/20 09:01	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 23 of 32 Page 45 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 16:40 Water Lab ID: 3105359021 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: MW100 FA

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	1.8		mg/L	0.50	0.18	SM5310B-2011		6/11/20 09:01	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 24 of 32 Page 46 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 16:10 Matrix: Water Lab ID: 3105359022

Date Received: 5/26/2020 09:15 Sample ID: **VSP-100 GW**

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	0.50		mg/L	0.50	0.18	SM5310B-2011		6/11/20 09:01	PAG	A

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 25 of 32 Page 47 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 16:20 Water Lab ID: 3105359023 Matrix:

Date Received: 5/26/2020 09:15 Sample ID: **VSP-100 HA**

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY										
Total Organic Carbon (TOC)	0.33J	J	mg/L	0.50	0.18	SM5310B-2011		6/11/20 13:28	PAG	Α

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 26 of 32 Page 48 of 56

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYTICAL RESULTS

Workorder: 3105359 31401545.01

Date Collected: 5/21/2020 16:10 Matrix: Water Lab ID: 3105359024

Date Received: 5/26/2020 09:15 Sample ID: **VSP-100 FA**

Parameters	Results	Flag	Units	RDL	MDL	Method	Prepared By	Analyzed	Ву	Cntr
WET CHEMISTRY Total Organic Carbon (TOC)	1.5		mg/L	0.50	0.18	SM5310B-2011		6/11/20 13:28	PAG	Α

Ms. Sarah S Leung **Project Coordinator**

ALS Environmental Laboratory Locations Across North America

 $\textbf{Canada: Burlington} \cdot \textbf{Calgary} \cdot \textbf{Centre of Excellence} \cdot \textbf{Edmonton} \cdot \textbf{Fort McMurray} \cdot \textbf{Fort St. John} \cdot \textbf{Grande Prairie} \cdot \textbf{London} \cdot \textbf{Mississauga} \cdot \textbf{Richmond Hill} \cdot \textbf{Saskatoon} \cdot \textbf{Thunder Bay}$ Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 27 of 32 Page 49 of 56

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

ANALYSIS - PREP METHOD CROSS REFERENCE TABLE

Workorder: 3105359 31401545.01

	103339 31401343.01		D 11 4 1	
Lab ID	Sample ID	Analysis Method	Prep Method	Leachate Method
3105359001	MW-01 GW	SM5310B-2011		
3105359002	MW-01 FA	SM5310B-2011		
3105359003	MW-01 HA	SM5310B-2011		
3105359004	MW-27D GW	SM5310B-2011		
3105359005	MW-27D FA	SM5310B-2011		
3105359006	MW-27D HA	SM5310B-2011		
3105359007	VSP-1D GW	SM5310B-2011		
3105359008	VSP-1D FA	SM5310B-2011		
3105359009	VSP-1D HA	SM5310B-2011		
3105359010	VSP-4 GW	SM5310B-2011		
3105359011	VSP-4 FA	SM5310B-2011		
3105359012	VSP-4 HA	SM5310B-2011		
3105359013	VSP-1S GW	SM5310B-2011		
3105359014	VSP-1S FA	SM5310B-2011		
3105359015	VSP-1S HA	SM5310B-2011		
3105359016	T-1100 GW	SM5310B-2011		
3105359017	T-1100 FA	SM5310B-2011		
3105359018	T-1100 HA	SM5310B-2011		
3105359019	MW100 HA	SM5310B-2011		
3105359020	MW100 GW	SM5310B-2011		
3105359021	MW100 FA	SM5310B-2011		
3105359022	VSP-100 GW	SM5310B-2011		
3105359023	VSP-100 HA	SM5310B-2011		
3105359024	VSP-100 FA	SM5310B-2011		

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 3105359 - 6/16/2020 Page 28 of 32

State Samples Collected In Initial ₹ 일 PA A \vec{z} S Sample/COC Comments O Therm ID: aszi ma/ra/s Special Processing Sample Disposal 8 USACE Navy Special Headspace/Volatibes? Custody Seals Present? (if present) Seals Intact? Received on Ice? COC/Labels Complete/Accurate? Cont. in Good Cond.? Correct Containers? Correct Sample Volumes? Correct Preservation? Receipt Information (comp Courier/Tracking #: no pres Dres 26/20 09 808: Format Type-id: 9.=Sludge: SO=Soil, WP=Wipe: WW=Wastewater No. of Coolers: No Pres Cooler Temp: 0 Reportable to PADEP? ALSI Quot x Standard CLP-like USACE COC #: Exce Yes # QISMd Deliverables Data SHII GELES Generaled by ALSI Enter Number of Containers Per Sample or Field Results Below Time ALL SHADED AREAS MUST BE COMPLETED BY THE CLIENT / Date ANALYSES/METHOD REQUESTED SAMPLER, INSTRUCTIONS ON THE BACK ر ا ا ا REQUEST FOR ANALYSIS ere CHAIN OF CUSTODY/ Received By / Company Name 624 5 9125 李 X 3 2 Del 10001 MM 33.2 that Light clif 10-37-34.34 iding REVIEWED BY(signature): 4 Preservative .OGGED BY(signature): хільМ. # Time < \$30 G or C 14.20 5/1/10 8 35 14.10 13.30 15.00 13,20 Date Time Rush-Subject to ALS approval and surcharges. x Normal-Standard TAT is 10-12 business days. Middletown, PA 17057 Client Name: Eurofins Lancasier Laboratories Environmental X -Y ELLE Subocuntracting@EurofinsUS.com 301 Fulling Mill Road श्याप Approved By: 5/11/20 3 2 7 5 245 27 Shin 2/17/2 ten hokas Date P. 717-944-5541 F.717-944-1430 S Project Comments: Please provide .xls and .pdf report Relinquished By / Company Name a beed tewar given sach Sample Description/Location (as it will appear on the lab report) ormats. Send PETA to Environmental Address: 2425 New Holland Pike 200 Lancaster, PA 17601 Project Name/#: 31401545.01 MW - 27 DHA -10 GW NW-27) GW MW-27) FA USP-10 HA Hannah Cottman 4 150 -10 FA 717-556-7383 2 himsombled No.: ō 10-MM O-WIN Date Required: Sаше

Phone#: Contact:

Bill To:

TAT

Email? ax? N.W

State Samples Receipt Information (completed by Receiving Lab) Initial 40 M ≷ ž 2 2 A S Section O Sample/COC Comments 51052009 Special Processing Sample Disposal æ USACE Special Navy Headspace/Volatiles? (if present) Seals Intact? Correct Sample Volumes? Correct Preservation? Custody Seals Present? Received on Ice? COCIL abels Complete/Accurate? Cont. in Good Cond.? Corroct Containers? 282 Courier/Tracking #: NO Pres NO ON 3 No. of Coolers: Cooler Temp: ALSI Quote #: 202 200 Reportable to PADEP? x Standard CLP-like USACE EDDS: Format Type-COC #: Exce # QISMd ×8 Deliverables Data Generated by ALSI Enter Number of Containers Per Sample or Field Results Below 5h11 16/10/5 Time ALL SHADED AREAS MUST BE COMPLETED BY THE CLIENT Date ANALYSES/METHOD REQUESTED SAMPLER, INSTRUCTIONS ON THE BACK undwater: Ol=Oil; OL=Other REQUEST FOR ANALYSIS CHAIN OF CUSTODY/ Received By / Company Name 5-37-6 :350 王 X Z Air i i 701 10001 MM Ī REVIEWED BY(signature): .OGGED BY(signature): 16.33 Time Programme *Matrix 300 O 10 9. Reic remotes that flat 5-37-300 long ? B. T 1530 15.58 613 5.40 500 17.3 Date Time Rush-Subject to ALS approval and surcharges, Middletown, PA 17057 P. 717-944-5541 F.717-944-1430 x Normal-Standard TAT is 10-12 business days. X -Y ELLE Subscontractor @ Furafinal IS.com Client Name: Eurofins Lancaster Laboratories Environmental 301 Fulling Mill Road 02 17/5 Shilw 5/2/20 ्याय ५ Slubs 5/2/2 Sample Muchallo Cee Terra Instern Date Project Comments: Please provide xls and .pdf report formats. Sever 1 70 Jul 1512 on the tenentans, net Relinquished By / Company Name Sample Description/Location (as it will appear on the lab report) Environmental Address: 2425 New Holland Pike Cancaster, PA 17601 Project Name/#: 31401545.01 Contact: Hannah Cottman 15P-15 HA WA 0011-かいいと -1130 FA 五001-Phone#: 717-556-7383 7 TA A Y No.: 3 VSP-15 4-d5 0 4- 05/1 Date Required: 4- ON Bill To: Same TAT Email? Fax?

301 Fulling Mill Road Middletown, PA 17057 P: (717) 944-5541 F: (717) 944-1430

Condition of Sample Receipt Form

Client: Exofine Work Order #: 3105359 Initials: \$ 27	Date:		
Were airbills / tracking numbers present and recorded?	NONE	YES	NO
Tracking number:			
2. Are Custody Seals on shipping containers intact?	NONE	YES	NO
3. Are Custody Seals on sample containers intact?	NONE	YES	NO
4. Is there a COC (Chain-of-Custody) present?		YES	NO
5. Are the COC and bottle labels complete, legible and in agreement?		YES	NO
5a. Does the COC contain sample locations?		YES	NO
5b. Does the COC contain date and time of sample collection for all samples?		YES	NO
5c. Does the COC contain sample collectors name?		YES	NO
5d. Does the COC note:the type(s) of preservation for all bottles?		YES	NO
Se. Does the COC note the number of bottles submitted for each sample?		YES	NO
Sf. Does the COC note the type of sample, composite or grab?		YES	NO
Sg. Does the COC note the matrix of the sample(s)?		YES	NO
6. Are all aqueous samples requiring preservation preserved correctly?1	N/A	YES	МО
7. Were all samples placed in the proper containers for the requested analyses, with sufficient volume?		YES	NO
8. Are all samples within holding times for the requested analyses?		YES .	NO
9. Were all sample containers received intact and headspace free when required? (not broken, leaking, frozen, etc.)		YES	NO
10. Did we receive trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)?	N/A	YES	NO.
11. Were the samples received on ice?		YES	NO
12. Were sample temperatures measured at 0.0-6.0℃		YES	NO
13. Are the samples DW matrix ? If YES, fill out Reportable Drinking Water questions below		YES	NO
:13a. Are the samples required for SDWA compliance reporting?	N/A	YES	NO
13b. Did the client provide a SDWA PWS ID#?	N/A	YES	NO
13c. Are all aqueous unpreserved SDWA samples pH 5-9?	N/A	YES	NO
13d. Did the client provide the SDWA sample location ID/Description?	N/A	YES	NO
13e. Did the client provide the SDWA sample type (D, E, R, C, P, S)?	N/A	YES	NO
Cooler #:		355	
Temperature (°C): 6	3 333,747		
Thermometer ID: 573			. 1
	200		
Radiological (μCi):			
COMMENTS (Required for all NO responses above and any sample non-conform	ance):		
2) MW-100 Ha 5/21/20 165=			
2) MW-100 Ha 5/21/20 1680 2) MW-100 GW 5/11/200 1630 TOC'S			
- CIVITOR 1690			

¹Final determination of correct preservation for analysis such as volatiles, microbiology, and oil and grease is made in the analytical department at the time of or following the analysis

Rev 1/20/2020

301 Fulling Mill Road Middletown, PA 17057

P: (717) 944-5541 F: (717) 944-1430

Condition of Sample Receipt Form

Client: Work Order #	2000		
The state of the s	Date: 5/	27/20	20
			
Were airbills / tracking numbers present and recorded? Tracking number:		YES	NO
· · · · · · · · · · · · · · · · · · ·			- 1
2. Are Custody Seals on shipping containers intact?		YES	NO
3. Are Custody Seals on sample containers intact?		YES	NO
4. Is there a COC (Chain-of-Custody) present?			NO
5. Are the COC and bottle labels complete, legible and in agreement?		_	(Mo)
Sa. Does the COC contain sample locations?		KES	NO
5b. Does the COC contain date and time of sample collection for all samples?			NO
5c. Does the COC contain sample collectors name?			₩O
5d. Does the COC note the type(s) of preservation for all bottles?			(B)
Se. Does the COC note the number of bottles submitted for each sample?		()	NO
Sf. Does the COC note the type of sample, composite or grab?			NO
5g. Does the COC note the matrix of the sample(s)?		YES	600
6. Are all aqueous samples requiring preservation preserved correctly?		25	ИО
7. Were all samples placed in the proper containers for the requested analyses, with sufficient volume			NO
8. Are all samples within holding times for the requested analyses?			NO
9. Were all sample containers received intact and headspace free when required? (not broken, leaking	, frozen, etc.)		NO
10. Did we receive trip blanks (applies only for methods EPA 504, EPA 524.2 and 1631E (LL Hg)?		YES	NO
11. Were the samples received on ice?			NO
12. Were sample temperatures measured at 0.0-6.0°C			NO !
13. Are the samples DW matrix ? If YES, fill out Reportable Drinking Water questions below		YES	@
13a. Are the samples required for SDWA compliance reporting?		YES	NO
13b. Did the client provide a SDWA PWS ID#?		YES .	NO
13c. Are all aqueous unpreserved SDWA samples pH 5-9?		YES	NO
		YES	NO
13e. Did the client provide the SDWA sample type (D, E, R, C, P, S)?	N/A	YES	МО
Cooler #:	. 8	10	
Cooler #:			- 1
Temperature (°C):			
Thermometer ID: 523		6.5	
			- 1
Radiological (μCi):			
COMMENTS (Required for all NO responses above and any sample no	n conformació		=
commercial (required for all NO responses above and any sample no	n-comormance):		- 1

¹Final determination of correct preservation for analysis such as volatiles, microbiology, and oil and grease is made in the analytical department at the time of or following the analysis

Rev 1/20/2020

Page 32 of 32

				CHAIN-O	F-CL	ISTO	DY F		And China							Page .	of _
WSP USA Office Address									uested	Analys	es & Prese	vatives	_	No O	10019	115	1)
13530 Dulles Technology	Drs	tr. 300 Her	rden,	VA 201	TI		2			Tecs							1
							108			52		1 1	1	Laboratory	Name & Location	n	
Kop-Flex Project Location	WSPL	Eric John	1200			00	P8015C			treatment 1664B				Eur	ofins La	neaster	
	6	Fic. John	500	@wsp	.com	3 16	LLem			1+				Laboratory	Project Manager		
Hanover, MD Project Number & Task		JSA Contact Phone	30,1		Г	10	3		3	30				And	1500	DeCola	
31401545.010/4	7	03 709 65	500		40	100	36	8015C	GHB9	is							`
Sampler(s) Name(s)	Sampl	er(s) Signature(s)			of Containers	Method	Silic gel	0	=					(X	Standard	24 HR	
Mollylong	1	ul II			Cont	٤	1.5	100		3					48 HR	72 HR	
Elliot Martynkicwicz	(ll	M/1/2			erof	U	3	I	HEM	EM			1		ня		
Sample Identification	Matrix	Collection Starts Date Time	Collect -Date-	Time	Number	70C	EPH	EPH	3	HE				Samula Ca			
And the same of th	۸۵	5/14/2020				_		_	V	V				Sample Co	omments		E STATE OF
MW-01	AQ			18	8	X	X	X	V	X				不			
MW-27D	AQ	5/13/20	14	55	8	X	X	X	X	X							
VSP-ID	GA	5/14/2020	10	00	8	X	V	X	X	V					When		
V5P-15	P.A	5/14/2020		25	8	X	1	X	X	X							
VSP-4	AQ			Ь	8	X		X	X	X							
T-1100	AIQ	5/14/2020		35	8	X	X	X	X	X							
VSP-100	RA	5/14/2020	08	00	8	X	X	X	X	X					Mile:		
MW-100	A:Q	5/13/2020	03	00	8	X	X	X	X	X							
EB-051320	AR	5/13/2020	16	45	8	X	X	X	X	X							
* A VOA for TO	ic c	sus broken.	We	to We	+	511-	ed	uD	0	0	Mass	or	nber	Nor	half f	he 115	th
								1 /	1	1	P 1	L	- 1	9			
Sumple witer. T	11/3	Ja 12	ost	eser o	Ca												
			1970		N-			410	U-2314	+ Chair	of Custoo	iy		-			
Relinquished By (Signature)	ate	Time Received	By (Signature)		Da	to		Time		Shipment Me	thod		Tracking N	lumber(s)	and the	
	5/14/10	**		do.		2 4	4/20)		30	76	1110			**		
71.10	ate		By (Signature	2		Day			Time	٥٧	Number of P		_	Custody S	eal Number(s)		
du 5	Tithe	17:10	IN	And	N	5/1	4/2	20	17	30							
*Use stop fime/date for composite and/or air samples; t	use only sta	rt time/date for all other sam	oles.		2000	/	1				AQ = Aqueou	s, S = Soll	SE = Sedi	ment, A = Air, V	V = Wipe, B = Bulk	, O = Other (detail	in comments)
				F	rage	၁၁ (of 56										6/17/

Login Sample Receipt Checklist

Client: WSP USA Corp. Job Number: 410-2314-1

Login Number: 2314 List Source: Eurofins Lancaster Laboratories Env

List Number: 1

Creator: Metzger, Katherine A

oreator. metzger, nathernie A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified.	N/A	
Residual Chlorine Checked.	N/A	
Sample custody seals are intact.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins Lancaster Laboratories Env, LLC 2425 New Holland Pike Lancaster, PA 17601 Tel: (717)656-2300

Laboratory Job ID: 410-9251-1

Client Project/Site: Former Kop-Flex Facility Site

Revision: 1

For:

WSP USA Corp.

Attn: Environmental Accounts Payable

13530 Dulles Technology Drive

Suite 300

Herndon, Virginia 20171

Attn: Eric Johnson

Haml L. Goth

Authorized for release by: 9/7/2020 3:30:32 PM

Hannah Cottman, Operations Support Specialist (717)556-7383

hannahcottman@eurofinsus.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- * QC recoveries that exceed the upper limits and are associated with non-detect samples are qualified but no further narration is needed since the bias is high and does not change a non-detect result.
- * Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD is performed, unless otherwise specified in the method.
- * Surrogate recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Measurement uncertainty values, as applicable, are available upon request.

Test results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" and tested in the laboratory are not performed within 15 minutes of collection.

This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

Hannah Cottman

Operations Support Specialist

9/7/2020 3:30:32 PM

Haml L. 6th

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
QC Sample Results	13
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Chacklists	21

4

8

10

11

13

Definitions/Glossary

Client: WSP USA Corp. Job ID: 410-9251-1

Project/Site: Former Kop-Flex Facility Site

Qualifiers

General Chemistry

Qualifier **Qualifier Description**

F5 Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.								
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis								
%R	Percent Recovery								
1C	Result is from the primary column on a dual-column method.								
2C	Result is from the confirmation column on a dual-column method.								
CFL	Contains Free Liquid								
CFU	Colony Forming Unit								
CNF	Contains No Free Liquid								
DER	Duplicate Error Ratio (normalized absolute difference)								

Dil Fac Dilution Factor

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent Positive / Present POS

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TFQ

TNTC Too Numerous To Count

Page 4 of 21

Case Narrative

Client: WSP USA Corp. Job ID: 410-9251-1

Project/Site: Former Kop-Flex Facility Site

Job ID: 410-9251-1

Laboratory: Eurofins Lancaster Laboratories Env, LLC

Narrative

Job Narrative 410-9251-1

Comments

No additional comments.

Revision

The report being provided is a revision of the original report sent on 8/11/2020. The report (revision 1) is being revised due to: Client needs MDL reporting for DOC and TOC..

Receipt

The samples were received on 7/31/2020 11:27 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.0° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

,

J

4

O

6

9

10

. .

13

Detection Summary

Client: WSP USA Corp. Job ID: 410-9251-1

Project/Site: Former Kop-Flex Facility Site

Dissolved Organic Carbon

Client Sample ID: VSP-1	S					Lab	S	ample ID:	410-9251-1
Analyte	Result	Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Total Organic Carbon	0.86	J	1.0	0.50	mg/L	1	_	5310C-2011	Total/NA
Dissolved Organic Carbon	1.3		1.0	0.50	mg/L	1		415.1	Dissolved
Client Sample ID: VSP-1	D					Lab	S	ample ID:	410-9251-2
Analyte	Result	Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Dissolved Organic Carbon	0.92	J	1.0	0.50	mg/L	1	_	415.1	Dissolved
Client Sample ID: VSP-4	,					Lab	S	ample ID:	410-9251-3
Analyte	Result	Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Dissolved Organic Carbon	0.53	J	1.0	0.50	mg/L	1	_	415.1	Dissolved
Client Sample ID: VSP-1	200					Lab	S	ample ID:	410-9251-4
Analyte	Result	Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Dissolved Organic Carbon	0.53	J	1.0	0.50	mg/L	1	_	415.1	Dissolved
Client Sample ID: VSP-1	00					Lab	S	ample ID:	410-9251-5
Analyte	Result	Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Dissolved Organic Carbon	0.51	J	1.0	0.50	mg/L	1	_	415.1	Dissolved
Client Sample ID: Conde	ensate					Lab	S	ample ID:	410-9251-6
Analyte	Result	Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Total Organic Carbon	9.2		1.0	0.50	mg/L		_	5310C-2011	Total/NA

1.0

0.50 mg/L

9.0

This Detection Summary does not include radiochemical test results.

9/7/2020 (Rev. 1)

415.1

Dissolved

Client: WSP USA Corp. Job ID: 410-9251-1

Project/Site: Former Kop-Flex Facility Site

Client Sample ID: VSP-1S Lab Sample ID: 410-9251-1

Date Collected: 07/30/20 10:15

Date Received: 07/31/20 11:27

Matrix: Water

General Chemistry Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	0.86	J	1.0	0.50	mg/L			08/08/20 21:43	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	1.3		1.0	0.50	mg/L			08/07/20 21:56	1

4

7

ŏ

10

13

Client: WSP USA Corp. Job ID: 410-9251-1

Project/Site: Former Kop-Flex Facility Site

Client Sample ID: VSP-1D Lab Sample ID: 410-9251-2

Date Collected: 07/30/20 10:20 Matrix: Water

Date Received: 07/31/20 11:27

General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	<0.50		1.0	0.50	mg/L			08/08/20 22:29	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	0.92	J	1.0	0.50	mg/L			08/07/20 23:13	1

5

7

8

10

12

13

Client: WSP USA Corp. Job ID: 410-9251-1

Project/Site: Former Kop-Flex Facility Site

Client Sample ID: VSP-4 Lab Sample ID: 410-9251-3

Date Collected: 07/30/20 10:25 Matrix: Water

Date Received: 07/31/20 11:27

General Chemistry Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	<0.50		1.0	0.50	mg/L		<u> </u>	08/08/20 22:45	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	0.53	J	1.0	0.50	mg/L			08/07/20 23:28	1

5

10

111

13

Client: WSP USA Corp. Job ID: 410-9251-1

Project/Site: Former Kop-Flex Facility Site

Client Sample ID: VSP-1200 Lab Sample ID: 410-9251-4

Date Collected: 07/30/20 10:30 Matrix: Water

Date Received: 07/31/20 11:27

General Chemistry Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	<0.50		1.0	0.50	mg/L			08/08/20 23:00	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	0.53	T. T.	1.0	0.50	ma/l			08/07/20 23:44	

_

Δ

5

9

11

12

Client: WSP USA Corp. Job ID: 410-9251-1

Project/Site: Former Kop-Flex Facility Site

Client Sample ID: VSP-100 Lab Sample ID: 410-9251-5 Date Collected: 07/30/20 10:35

Matrix: Water

Date Received: 07/31/20 11:27

General Chemistry Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analvzed	Dil Fac
Total Organic Carbon	<0.50		1.0	0.50	mg/L	= .		08/08/20 23:15	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	0.51	J	1.0	0.50	mg/L			08/07/20 23:59	1

Client: WSP USA Corp. Job ID: 410-9251-1

Project/Site: Former Kop-Flex Facility Site

Client Sample ID: Condensate Lab Sample ID: 410-9251-6

Date Collected: 07/30/20 10:40 East Sample 15: 410-3251-6

Date Collected: 07/30/20 10:40 Matrix: Water Date Received: 07/31/20 11:27

General Chemistry Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	9.2		1.0	0.50	mg/L			08/08/20 23:31	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon	9.0		1.0	0.50	ma/l			08/08/20 00:15	

_

6

9

10

Client: WSP USA Corp.

Project/Site: Former Kop-Flex Facility Site

Job ID: 410-9251-1

Prep Type: Dissolved

Prep Type: Dissolved

Client Sample ID: VSP-1S

Client Sample ID: VSP-1S

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Dissolved

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: VSP-1S

Prep Type: Dissolved

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Method: 415.1 - DOC

Lab Sample ID: MB 410-31003/33

Matrix: Water

Analysis Batch: 31003

MB MB

Result Qualifier RL Unit Analyzed Dil Fac Analyte Prepared 1.0 08/07/20 21:41 **Dissolved Organic Carbon** < 0.50 0.50 mg/L

Lab Sample ID: LCS 410-31003/32

Matrix: Water

Analysis Batch: 31003

Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits 25.0 25.2 86 - 114 Dissolved Organic Carbon mg/L 101

Lab Sample ID: 410-9251-1 MS

Matrix: Water

Analysis Batch: 31003

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec Dissolved Organic Carbon 1.3 10.0 86 - 114 11.7 mg/L

Lab Sample ID: 410-9251-1 DU

Matrix: Water

Analysis Batch: 31003

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit 1.55 F5 Dissolved Organic Carbon 1.3 mg/L

Method: 5310C-2011 - Total Organic Carbon/Persulfate - Ultrav

Lab Sample ID: MB 410-31768/37

Matrix: Water

Analysis Batch: 31768

MB MB

Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Total Organic Carbon <0.50 1.0 0.50 mg/L 08/08/20 21:28

Lab Sample ID: LCS 410-31768/36

Matrix: Water

Analysis Batch: 31768

LCS LCS Spike %Rec. Added Result Qualifier Analyte Unit %Rec Limits Total Organic Carbon 25.0 26.0 104 91 - 113 mg/L

Lab Sample ID: 410-9251-1 MS

Matrix: Water

Analysis Batch: 31768

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit %Rec Limits Total Organic Carbon 0.86 J 10.0 11.4 mg/L 105 91 - 113

Eurofins Lancaster Laboratories Env, LLC

QC Sample Results

Client: WSP USA Corp. Job ID: 410-9251-1

Project/Site: Former Kop-Flex Facility Site

Method: 5310C-2011 - Total Organic Carbon/Persulfate - Ultrav (Continued)

Lab Sample ID: 410-9251-1 DU **Client Sample ID: VSP-1S Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 31768

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Total Organic Carbon	0.86	J	0.836	J	mg/L			3	3

QC Association Summary

Client: WSP USA Corp. Job ID: 410-9251-1

Project/Site: Former Kop-Flex Facility Site

General Chemistry

Analysis Batch: 31003

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-9251-1	VSP-1S	Dissolved	Water	415.1	
410-9251-2	VSP-1D	Dissolved	Water	415.1	
410-9251-3	VSP-4	Dissolved	Water	415.1	
410-9251-4	VSP-1200	Dissolved	Water	415.1	
410-9251-5	VSP-100	Dissolved	Water	415.1	
410-9251-6	Condensate	Dissolved	Water	415.1	
MB 410-31003/33	Method Blank	Dissolved	Water	415.1	
LCS 410-31003/32	Lab Control Sample	Dissolved	Water	415.1	
410-9251-1 MS	VSP-1S	Dissolved	Water	415.1	
410-9251-1 DU	VSP-1S	Dissolved	Water	415.1	

Analysis Batch: 31768

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
410-9251-1	VSP-1S	Total/NA	Water	5310C-2011	
410-9251-2	VSP-1D	Total/NA	Water	5310C-2011	
410-9251-3	VSP-4	Total/NA	Water	5310C-2011	
410-9251-4	VSP-1200	Total/NA	Water	5310C-2011	
410-9251-5	VSP-100	Total/NA	Water	5310C-2011	
410-9251-6	Condensate	Total/NA	Water	5310C-2011	
MB 410-31768/37	Method Blank	Total/NA	Water	5310C-2011	
LCS 410-31768/36	Lab Control Sample	Total/NA	Water	5310C-2011	
410-9251-1 MS	VSP-1S	Total/NA	Water	5310C-2011	
410-9251-1 DU	VSP-1S	Total/NA	Water	5310C-2011	

Project/Site: Former Kop-Flex Facility Site

Client Sample ID: VSP-1S

Date Collected: 07/30/20 10:15 Date Received: 07/31/20 11:27 Lab Sample ID: 410-9251-1

Matrix: Water

Job ID: 410-9251-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	415.1		1	31003	08/07/20 21:56	KGQ6	ELLE
Total/NA	Analysis	5310C-2011		1	31768	08/08/20 21:43	KGQ6	ELLE

Client Sample ID: VSP-1D

Date Collected: 07/30/20 10:20 Date Received: 07/31/20 11:27 Lab Sample ID: 410-9251-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	415.1			31003	08/07/20 23:13	KGQ6	ELLE
Total/NA	Analysis	5310C-2011		1	31768	08/08/20 22:29	KGQ6	ELLE

Client Sample ID: VSP-4

Date Collected: 07/30/20 10:25

Date Received: 07/31/20 11:27

Lab Sample ID: 410-9251-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	415.1			31003	08/07/20 23:28	KGQ6	ELLE
Total/NA	Analysis	5310C-2011		1	31768	08/08/20 22:45	KGQ6	ELLE

Client Sample ID: VSP-1200

Date Collected: 07/30/20 10:30

Date Received: 07/31/20 11:27

Lab Sample ID: 410-9251-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	415.1		1	31003	08/07/20 23:44	KGQ6	ELLE
Total/NA	Analysis	5310C-2011		1	31768	08/08/20 23:00	KGQ6	ELLE

Client Sample ID: VSP-100

Date Collected: 07/30/20 10:35

Date Received: 07/31/20 11:27

Lab Sample ID: 410-9251-5
Matrix: Water

Watin. Wate

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	415.1		1	31003	08/07/20 23:59	KGQ6	ELLE
Total/NA	Analysis	5310C-2011		1	31768	08/08/20 23:15	KGQ6	ELLE

Client Sample ID: Condensate

Date Collected: 07/30/20 10:40

Date Received: 07/31/20 11:27

Lab Sample ID: 410-9251-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	415.1			31003	08/08/20 00:15	KGQ6	ELLE
Total/NA	Analysis	5310C-2011		1	31768	08/08/20 23:31	KGQ6	ELLE

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Accreditation/Certification Summary

Client: WSP USA Corp. Job ID: 410-9251-1

Project/Site: Former Kop-Flex Facility Site

Laboratory: Eurofins Lancaster Laboratories Env, LLC

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	P	rogram	Identification Number	Expiration Date
Maryland	St	tate	100	09-30-20
The following analyte the agency does not		ort, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
, widiyolo Michilod				
415.1	<u></u>	Water	Dissolved Organic Carbon	

5

4

6

10

11

16

Method Summary

Client: WSP USA Corp.

Project/Site: Former Kop-Flex Facility Site

MethodMethod DescriptionProtocolLaboratory415.1DOCMCAWWELLE5310C-2011Total Organic Carbon/Persulfate - UltravSMELLE

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Env, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Job ID: 410-9251-1

3

4

7

9

11

Sample Summary

Client: WSP USA Corp.

Project/Site: Former Kop-Flex Facility Site

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
410-9251-1	VSP-1S	Water	07/30/20 10:15	07/31/20 11:27	
410-9251-2	VSP-1D	Water	07/30/20 10:20	07/31/20 11:27	
410-9251-3	VSP-4	Water	07/30/20 10:25	07/31/20 11:27	
410-9251-4	VSP-1200	Water	07/30/20 10:30	07/31/20 11:27	
410-9251-5	VSP-100	Water	07/30/20 10:35	07/31/20 11:27	
410-9251-6	Condensate	Water	07/30/20 10:40	07/31/20 11:27	

Job ID: 410-9251-1

2

Λ

5

0

8

9

10

12

13

410-9251	Chain of Custody

*Use stop time/date for composite and/or air samples; use only start time/date for all other samples.

Carlotte Committee			
CHAIN	OF CHE	TODVE	COODD
CHAIN-	OF-CUST	ODYF	KEGURD

0-9251 Chain of Custody					CHAIN-C	77-00	1910	DIK						Page of
12570 0 11 1	-1	^	#20	0 110	-nda	1/0	-		Reque	sted Analy	ses & Pre	servatives		No.004563 WSP PARSONS BRUNCKERHO
13530 Dulles Technologic Name	01097	J Dr	TT SO	U ITC	rnach,	VH	4	13					1 1	Laboratory Name & Location
Kno- Flox	F	ric J	ohns					COLHON						Eurofns Lancaster
Kop-Flex Project Location	WSP	Parsons Brinc	kerhoff Contac	t E-mail			9	ery					1 1	Laboratories Environmenta
Hanover, MD	er	icijo	hnso	n	@wsp grou	p.com	Corrbon	225						Laboratory Project Manager
Project Number & Task	WSP	Parsons Brinc	kerhoff Conta	ct Phone			25	30	-					
31401545,010 /04	1	03-7 ler(s) Signature	109-	450	0	2	57	500						Requested Turn-Around-Time
ampler(s) Name(s) Shanhan Bunke	Samp	ler(s) Signature	(s)	11-1	e.	Number of Containers	39	30						Standard 24 HR
	15	000	11			Co	9	3						48 HR 72 HR
Lauren Johnson						bero	25	550	1		1 1		1 1	HR
ample Identification	Matrix	Date	on Start*	Date	tion Stop*	Num	12/	(DOC) no president						Sample Comments
VSP-15	GW	7/30/20	1015	-	-	4	X	X						
VSP-ID		7/30/20		_		4	X	X						
VSP-4		7/30/20		-		4	X	X						
VSP-1200	MM	7/30/20	1030		_	4	X	X						
V8P-100		7/30/20				4	X	X						
condensate		7/30/20				4	X	X						
					A DESCRIPTION OF THE PERSON OF		1000							
AND THE RESERVE OF THE PARTY OF							EGR	100000						
				Bu dis					Ra			No les		
						3 3250		1000						
						H 1000	888							
							D. C. C.							
The Street Control of the Control								100				24 52		
elinquished By (Signature)	Date	Time	Received	By (Signature	1)		Da	te	7	Time	Party Constitution	t Method		Tracking Number(s)
Den Bulle		10 1200										dEX		8/48 7295 2700
Relinquished By (Signature)	Date	Time	Received	By (Signature	i Cu	ess	Da -	7/31/2	90	// 277	Number	of Packages		Custody Seal Number(s)

Client: WSP USA Corp. Job Number: 410-9251-1

Login Number: 9251 List Source: Eurofins Lancaster Laboratories Env

List Number: 1

Creator: Rivera, Tatiana

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
NV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
MV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	N/A	
s the Field Sampler's name present on COC?	True	
Sample Preservation Verified.	N/A	
Residual Chlorine Checked.	N/A	
Sample custody seals are intact.	N/A	

CHARACTERIZATION OF ORGANIC CONSTITUENT FOULANTS

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material.

Form Approved, OMB No. 2050-0039 Please print or type. 4. Manifest Tracking Number UNIFORM HAZARDOUS 1. Generator ID Number 2. Page 1 of 3. Emergency Response Phone 014230846 (800) 483-3718 MDD043373935 1 WASTE MANIFEST Generator's Name and Mailing Address Generator's Site Address (if different than mailing address 13530 Dulles Technology DR STE# 300 ా ా 655 Harmans Road Herndon, VA 20171 Hanover,MD 21076 **ATTN:Eric Johnson** Generator's Phone: (703) 709-6500 6. Transporter 1 Company Name U.S. EPA ID Numbe Clean Harbors Environmental Services, Inc. MAD039322250 7. Transporter 2 Company Name U.S. EPA ID Number 70,5 fr 8. Designated Facility Name and Site Address U.S. EPA ID Number Clean Harbors of Daniel 1910 Russell Street
Baltimore, MD 21230
(410) 244-8200 MDD980555189 Facility's Phone: 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, 10. Containers 11. Total 12. Unit 13. Waste Codes and Packing Group (if any)) No. Type UN1824, WASTE SODIUM HYDROXIDE SOLUTION, 8, PG II D002 X 4946 GENERAT 14. Special Handling Instructions and Additional Information Contract retained by generator confers agency sufficiently on initial transporter to add or substitute additional transporters on generators behalf for purposes of transportation emplement, convenience, or safety. 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true Signature / Generator's/Offeror's Printed/Typed Name Month Day Hoth on behelf of Emerson 1C1 30% Import to U.S. Export from U.S. Port of entry/exit: Transporter signature (for exports only): Date leaving U.S 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name

CL4De

Transporter 2 Printed/Typed Name Day Year 3/20 *KNIGHT* Signature 18. Discrepancy 18a. Discrepancy Indication Space Туре Full Rejection Quantity Partial Rejection Residue Manifest Reference Number 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone 旦 18c. Signature of Alternate Facility (or Generator) Month Day Year DESIGNA 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) چينون دنو. ۱ ۲۰۱۵ (۲۰۱۶) H070 11077 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a

EPA Form 8700-22 (Rev. 12-17) Previous editions are obsolete.

DESIGNATED FACILITY TO EPA'S 6-MANIFEST SYSTEM

Clean Harbors has the appropriate permits for and will accept the waste the generator is shipping.

BT 2001086829-002

Month

103103

Day

PP₩

Land Disposal Restriction Notification Form

Page: 1 of 1

Printed Date :Mar 4, 2020

MANIFEST INFO	RMATION		=======================================		======================================	.2		
Generator	: Kop-Flex Inc		Manifest Tracking Info.					
Address: 7565 Harmans Road Hanover,MD 21076					014230846FLE			
EPA ID #:		373935		Sal	es Order No: 200108682	9-002		
LINE ITEM INFO			7 7.2 00		1			
Line Item:	age No:	Profile No:	Treatability Group):	LDR Disposal Category			
1.		СН1991797В	NON-WASTEWA	ATER 2 (This is subject to L		.)		
EPA Waste Code	 9			EPA Waste SubCategory				
D002				:	Characteristic			
		Applies to Manifest Line Items						
Pursuant to 40 CFR 268.7(a), I hereby notify that this shipment contains waste restricted under 40 CFR Part 268.								
Waste analysis data, where available, is attached. Signature: Print Name Elliott Martynkewicz Title: Environmental Scientist Date: 03/04/2000								

Site Address :

7565 Harmans Road Hanover,MD 21076

in a second seco

					4.1 4	PW 12/9/200 WORK (8 DRDER N∯-2	NA4 AGEGTA 4
DOCUMENT N	o. 03;	2754	4	STRAIGHT BIL	L OF LADING		DI \$	^~*^*
TRANSPORTE	R1	Ciasa U			. Inc	VEUICI E ID	<u>.</u> 30	90
EPA ID#				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	รถ 40 ซึ่งสมาราก การ			
		MADO	3932221	3.0	A PROPERTY OF THE PROPERTY OF	_ TRANS. 1 PI	HONE (781)	792-5000
TRANSPORTE	R 2					VEHICLE ID	#	
EPA ID #						_ TRANS. 2 Pł	IONE	
					A Company of the Comp	_ I NANG, 2 PF	10NE	
DESIGNATED					SHIPPER	ATTS: F.:	<u> </u>	
Clean H FACILITY EPA	arbors of B	altimore	Ine		Kop-Flex Inc	ATTN:Eric Ja	nnson	
	שוו # 805551	89			SHIPPER EPA MDD 0433			
ADDRESS	ısseli Stree				ADDRESS			<u></u>
CITY	1234H OR 46	<u> </u>	STATE	ZIP	13530 Dulles	····	STATE	710
Baltimor	re.		MD	21230	Herndon		YA STATE	ZIP 20171
CONTAINERS NO. & SIZE	TYPE	нм		DESCRIPTIO	N OF MATERIALS		TOTAL QUANTITY	UNIT WT/VOL
1	TT	X	A. NON D.O	T. REGULATED	uthydrade Solution	- a. II		WITVOL
			B.	wash rough	nthichade Solution,	8, PO-SL	4946	5
				<u> </u>				
			C.		A PAN S			
			D.		A CARLES		· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·		E.					<u> </u>
				·				
			F.		No.			
			G.					
			Н.					
DECIAL LICE					製作者。 現代者と 10 万・養養者・44 位			
SPECIAL HAND A.CH19692768		TRUCTI	ONS EMER	RGENCY PHONE A	/: (900) 483-3718	GENERATOR:	Kop-Flex Inc	1
				· · · · · · · · · · · · · · · · · · ·				

described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

PRINT	SIGN 10 Of 0	DATE
SHIPPER(X) Shannon Burke on behalf of EMERS	Va Dean Pulle	3/3/20
PRINT	SIGN	DATE
TRANSPORTER 1 (LYD M KNIGH)		2/2/20
PRINT	SIGN	DATE
TRANSPORTER 2		DATE '
PRINT AND AND AND AND AND AND AND AND AND AND	SIGN	DATE ;
RECEIVED BY		3/3/20
		7,700

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material.

CHI 107

Site Address:

7565 Harmans Road Hanover,MD 21076

SCPPW 12/9/2008

	000	א <i>ייו</i> ליינ	0		et.	WORK ORDER NO.	2001086829-0 0
DOCUMENT NO). U34	1704	- 2	STRAIGHT BIL	L OF LADING		
TRANSPORTER	R1	Clean H a	irbors Envi	rotunental Services	s, Inc.	VEHICLE ID #	10154
EPA ID#		MADO	39322 2	50		TRANS. 1 PHONE _ (78 :	1) 792-8000
TRANSPORTER	₹2						-
EPA ID#				4/4/13		TRANS. 2 PHONE	
DESIGNATED			1	re girls	SHIPPER Kop-Flex inc	ATTN:Eric Johnson	
FACILITY EPA MDD9	erbors of B: ID # 805551		inc .		SHIPPER EP MDD043	A ID#	
ADDRESS 1910Ru	ssell Stree	t a e			ADDRESS 13530 Dulle	es Technology DR: STE# 300	
CITY Baltimor	*		STATE MD	ZIP 21230	CITY Herndon	STATE YA	ZIP 20171
CONTAINERS NO. & SIZE	TYPE	нм		DESCRIPTIO	N OF MATERIAL	TOTAL LS QUANTIT	UNIT Y WT/VOL
00/	π		A. NON D	.O.T. REGULATED		1240	G
			В.				
			C.				
			D.				
			E.				
			F.	Mark Commence			
			G.				
:	×		H.				
SPECIAL HANI ACH19692768	-	TRUCT	IONS EN	MERGENCY PHONE	#: (800) 483-371	8 GENERATOR: Kop-Flex In	C

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

PRINT SHIPPER Shannan Burke on behalf of Emersub 16, LC	Sign Bulle	DATE 3-16-20
TRANSPORTER 1 DOV C RC. CE	SIGN	DATE 3-16-20
PRINT TRANSPORTER 2	SIGN	DATE
RECEIVED BY PRINT VOLETIE SOLITION	sign Valine Daliba	DATE 16/20

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material.

CHI 107

SETE (\$7565 HOLD.	سر وج	5.3
وس بعدد-سوا	. 9 .co. € . 4 .co. €	OCO TO

801006	1878-05
YORK ORDER NO	

DOCUMENT NO	. 032	760	4	STRAIGHT BILL	OF LADING		á	_1,
TRANSPORTER	1 CLES.	_ /24.	mus E	ar service	5 T-U	_ VEHICLE ID	# 400	
EPA ID#	6-8	· ~	<u>~⊅</u> ⊘3	59322250		TRANS. 1 PI	HONE רייפר א	92-5-00
TRANSPORTER	2				·	VEHICLE ID	#	
EPA ID #						TRANS. 2 Pł	HONE	
v					***			
DESIGNATED I	FACILITY	۰ ۲	アーノナ	. anc		RA ER	·	•
FACILITY EPA	ID#	5515	P 8		SHIPPER EP			. •
ADDRESS	~ 55e}>	· 5	٢		ADDRESS	mer Der	< 57kH	300
CITY		~~	STATE	ZIP	CITY	_	SIAIE	ZIP
CONTAINERS NO. & SIZE	TYPE	нм		DESCRIPTION			TOTAL QUANTITY	UNIT WT/VOL
001	77		A. ~~	7 3.6.7. 7	reur 1 nt en	•	2800	6
			B.				-	
			C.					
			D.					
			E.					
			F.					•
			G.		·	a,		· · · · · · · · · · · · · · · · · · ·
			H.					
SPECIAL HAND			IONS	English C	the 800	483.371° Kop.FI	8 6+ T_C	•

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

SHIPPER Sho	PRINT Annon Burke on bel	naif of Emersub 16 14	sign	Bulee	DATE
TRANSPORTER 1	PRINT RUL	LE STATE	SIGN	Pi	DATE
TRANSPORTER 2	PRINT	EN TOWARDS	SIGN	3	DATE
	PRINT	Salba	SIGN ₁	11111 101.	DATE ///
RECEIVED BY	Villerie	2 Sampa		MINU MILL	XIL STUTAL
		ng speri Ventua	,		

CHI 107

				5 014 (1)	leger Mark	WORK O	RDER NO			
DOCUMENT NO.				TRAIGHT BILL						
TRANSPORTER 1	06	احرار س	cons	Lu SER	مدروع کرسار	VEHICLE ID #	5529	12		
EPA ID#	00	D 0	<u> ያ</u> ዲንቃን	250		TRANS. 1 PH	<u>ر رهجر</u> ONE	125000		
TRANSPORTER 2	2					VEHICLE ID #	<u> </u>			
EPA ID#	TRANS 2 PHONE									
5								***		
DESIGNATED F	ACILITY	(B~12	×, ~~	.	K00. 518	1 Tue	e Enie Joh			
FACILITY EPA II				r re	SHIPPER EPA					
ADDRESS	vssel	5	۲ :		ADDRESS		34 DU 5	re \$ 300		
CITY	7	~~	STATE	ZIP,			STATE	ラッシ/ SIb		
CONTAINERS NO. & SIZE	TYPE	нм	. 4.	DESCRIPTIO			TOTAL QUANTITY	UNIT WT/VOL		
110. 4 012.	, , , , ,		A		5 7 7		a car)			

SPECIAL HANDLING INSTRUCTIONS

A.C. 1969 27 B

Common Very Fig.

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

912 12.

SHIPPER Shannon Burke on behalf of Emosbul 14	SIGN Dea Brille	3-14-20
TRANSPORTER 1	SIGN	DATE 3.16.20
PRINT	SIGN	DATE
RECEIVED BY PRINT Valene Saliba	SIGNY De La La La La La La La La La La La La La	3/10/80

CHI 107

77

В.

C.

D.

E.

F.

G.

Н.

APPENDIX

METALS FOULANT EVALUATION

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

December 22, 2020

Eric Johnson WSP USA - Herndon13530 Dulles Technology Dr, Ste 300
Herndon, VA 20171

Reference: PSS Project No: 20121516

Project Name: Kop-Flex

Project Location: Hanover, MD Project ID.: 31401545.010/04

Dear Eric Johnson:

This report includes the analytical results from the analyses performed on the samples received under the project name referenced above and identified with the Phase Separation Science (PSS) Project number(s) **20121516**.

All work reported herein has been performed in accordance with current NELAP standards, referenced methodologies, PSS Standard Operating Procedures and the PSS Quality Assurance Manual unless otherwise noted in the Case Narrative Summary. PSS is limited in liability to the actual cost of the sample analysis done.

PSS reserves the right to return any unused samples, extracts or related solutions. Otherwise, the samples are scheduled for disposal, without any further notice, on January 19, 2021, with the exception of air canisters which are cleaned immediately following analysis. This includes any samples that were received with a request to be held but lacked a specific hold period. It is your responsibility to provide a written request defining a specific disposal date if additional storage is required. Upon receipt, the request will be acknowledged by PSS, thus extending the storage period.

This report shall not be reproduced except in full, without the written approval of an authorized PSS representative. A copy of this report will be retained by PSS for at least 5 years, after which time it will be disposed of without further notice, unless prior arrangements have been made.

We thank you for selecting Phase Separation Science, Inc. to serve your analytical needs. If you have any questions concerning this report, do not hesitate to contact us at 410-747-8770 or info@phaseonline.com.

Sincerely,

Dan Prucnal
Laboratory Manager

TNI FBORATORI

Explanation of Qualifiers

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

Project ID: 31401545.010/04

The following samples were received under chain of custody by Phase Separation Science (PSS) on 12/15/2020 at 02:22 pm

PSS Sample ID	Sample ID	Matrix	Date/Time Collected	
20121516-001	VSP-2	WASTE WATER	12/15/20 11:40	
20121516-002	VSP-3	WASTE WATER	12/15/20 11:50	
20121516-003	T-1200 Lead EF	WASTE WATER	12/15/20 11:55	
20121516-004	Effluent VSP-4	WASTE WATER	12/15/20 11:30	
20121516-005	TB-121520	WATER	12/15/20 14:22	

Please reference the Chain of Custody and Sample Receipt Checklist for specific container counts and preservatives. Any sample conditions not in compliance with sample acceptance criteria are described in Case Narrative Summary.

Notes

- 1. The presence of a common laboratory contaminant such as methylene chloride may be considered a possible laboratory artifact. Where observed, appropriate consideration of data should be taken.
- 2. Unless otherwise noted in the case narrative, results are reported on a dry weight basis with the exception of pH, flashpoint, moisture, and paint filter test.
- 3. Drinking water samples collected for the purpose of compliance with SDWA may not be suitable for their intended use unless collected by a certified sampler [COMAR 26.08.05.07.C.2].
- 4. The analyses of 1,2-dibromo-3-chloropropane (DBCP) and 1,2-dibromoethane (EDB) by EPA 524.2 and calcium, magnesium, sodium and iron by EPA 200.8 are not currently promulgated for use in testing to meet the Safe Drinking Water Act and as such cannot be used for compliance purposes. The listings of the current promulgated methods for testing in compliance with the Safe Drinking Water Act can be found in the 40 CFR part 141.1, for the primary drinking water contaminates, and part 141.3, for the secondary drinking water contaminates.
- 5. Sample prepared under EPA 3550C with concentrations greater than 20 mg/Kg should employ the microtip extraction procedure if required to meet data quality objectives.
- 6. The analysis of acrolein by EPA 624 must be analyzed within three days of sampling unless pH is adjusted to 4-5 units [40 CFR part 136.3(e)].
- 7. Method 180.1, The Determination of Turbidity by Nephelometry, recommends samples over 40 NTU be diluted until the turbidity falls below 40 units. Routine samples over 40 NTU may not be diluted as long as the data quality objectives are not affected.
- 8. Alkalinity results analyzed by EPA 310.2 that are reported by dilution are estimated and are not in compliance with method requirements.

Standard Flags/Abbreviations:

- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- C Results Pending Final Confirmation.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- Fail The result exceeds the regulatory level for Toxicity Characteristic (TCLP) as cited in 40 CFR 261.24 Table 1.
- J The target analyte was positively identified below the reporting limit but greater than the MDL.
- MDL This is the Laboratory Method Detection Limit which is equivalent to the Limit of Detection (LOD). The LOD is an estimate of the minimum amount of a substance that an analytical process can reliably detect. This value will remain constant across multiple similar instrumentation and among different analysts. An LOD is analyte and matrix specific.
- ND Not Detected at or above the reporting limit.
- RL PSS Reporting Limit.
- U Not detected.

Certifications:

NELAP Certifications: PA 68-03330, VA 460156 State Certifications: MD 179, WV 303 Regulated Soil Permit: P330-12-00268

NSWC USCG Accepted Laboratory LDBE MWAA LD1997-0041-2015

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

Sample ID: VSP-2 Date/Time Sampled: 12/15/2020 11:40 PSS Sample ID: 20121516-001

Matrix: WASTE WATER Date/Time Received: 12/15/2020 14:22

Dissolved Metals (6) Analytical Method: EPA 200.8 Preparation Method: 200.8

	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Aluminum	129	ug/L	100	1	12/17/20	12/17/20 16:18	3 1051
Copper	4.8	ug/L	1.0	1	12/17/20	12/17/20 16:18	1051
Iron	ND	ug/L	100	1	12/17/20	12/17/20 16:18	1051
Lead	ND	ug/L	1.0	1	12/17/20	12/17/20 16:18	1051
Nickel	14.5	ug/L	1.00	1	12/17/20	12/17/20 16:18	1051
Zinc	25.8	ug/L	20.0	1	12/17/20	12/17/20 16:18	1051

Total Metals (6) Analytical Method: EPA 200.8 Preparation Method: 200.8

<u>_</u>	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Aluminum	135	ug/L	100	1	12/17/20	12/17/20 18:35	1051
Copper	5.5	ug/L	1.0	1	12/17/20	12/17/20 18:35	1051
Iron	ND	ug/L	100	1	12/17/20	12/17/20 18:35	1051
Lead	ND	ug/L	1.0	1	12/17/20	12/17/20 18:35	1051
Nickel	15.0	ug/L	1.00	1	12/17/20	12/17/20 18:35	1051
Zinc	40.1	ug/L	20.0	1	12/17/20	12/17/20 18:35	1051

Hardness, Total by Calculation Analytical Method: SM 2340B Preparation Method: 200.8

	Result	Units	RL Flag D	Dil	Prepared	Analyzed	Analyst
Hardness (Ca & Mg)	7.8	mg/L	0.66	1	12/17/20	12/17/20 18:3	5 1051

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

Sample ID: VSP-3 Date/Time Sampled: 12/15/2020 11:50 PSS Sample ID: 20121516-002

Matrix: WASTE WATER Date/Time Received: 12/15/2020 14:22

Dissolved Metals (6) Analytical Method: EPA 200.8 Preparation Method: 200.8

	Result	Units	RL Fla	g Dil	Prepared	Analyzed	Analyst
Aluminum	120	ug/L	100	1	12/17/20	12/17/20 16:22	2 1051
Copper	4.8	ug/L	1.0	1	12/17/20	12/17/20 16:22	2 1051
Iron	ND	ug/L	100	1	12/17/20	12/17/20 16:22	2 1051
Lead	ND	ug/L	1.0	1	12/17/20	12/17/20 16:22	2 1051
Nickel	14.5	ug/L	1.00	1	12/17/20	12/17/20 16:22	2 1051
Zinc	26.2	ug/L	20.0	1	12/17/20	12/17/20 16:22	2 1051

Total Metals (6) Analytical Method: EPA 200.8 Preparation Method: 200.8

_	Result	Units	RL Flag	Dil	Prepared	Analyzed	Analyst
Aluminum	126	ug/L	100	1	12/17/20	12/17/20 18:49	1051
Copper	5.6	ug/L	1.0	1	12/17/20	12/17/20 18:49	1051
Iron	ND	ug/L	100	1	12/17/20	12/17/20 18:49	1051
Lead	ND	ug/L	1.0	1	12/17/20	12/17/20 18:49	1051
Nickel	14.8	ug/L	1.00	1	12/17/20	12/17/20 18:49	1051
Zinc	24.5	ug/L	20.0	1	12/17/20	12/17/20 18:49	1051

Hardness, Total by Calculation Analytical Method: SM 2340B Preparation Method: 200.8

	Result	Units	RL Flag D	il	Prepared	Analyzed	Analyst
Hardness (Ca & Mg)	7.8	mg/L	0.66	1	12/17/20	12/17/20 18:49	9 1051

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

Hardness (Ca & Mg)

Sample ID: T-1200 Lead EF Matrix: WASTE WATER			Sampled: Received:			PSS Sample	e ID: 2012151	6-003	
Dissolved Metals (6)	Analytica	al Method: I	EPA 200.8	F		Preparation Method: 200.8			
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
Aluminum	185	ug/L	100		1	12/17/20	12/17/20 16:2	6 1051	
Copper	11.7	ug/L	1.00		1	12/17/20	12/17/20 16:2	6 1051	
Iron	ND	ug/L	100		1	12/17/20	12/17/20 16:2	6 1051	
Lead	ND	ug/L	1.0		1	12/17/20	12/17/20 16:2	6 1051	
Nickel	14.8	ug/L	1.00		1	12/17/20	12/17/20 16:2	6 1051	
Zinc	41.1	ug/L	20.0		1	12/17/20	12/17/20 16:2	6 1051	
Total Metals (6)	Analytica	al Method: I	EPA 200.8		I	Preparation Method: 200.8			
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	
Aluminum	182	ug/L	100		1	12/17/20	12/17/20 18:5	3 1051	
Copper	16.4	ug/L	1.00		1	12/17/20	12/17/20 18:5	3 1051	
Iron	ND	ug/L	100		1	12/17/20	12/17/20 18:5	3 1051	
Lead	ND	ug/L	1.0		1	12/17/20	12/17/20 18:5	3 1051	
Nickel	14.8	ug/L	1.00		1	12/17/20	12/17/20 18:5	3 1051	
Zinc	59.5	ug/L	20.0		1	12/17/20	12/17/20 18:5	3 1051	
Hardness, Total by Calculation	Analytica	al Method: \$	SM 2340B		1	Preparation Meth	nod: 200.8		
	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst	

0.66

7.7

mg/L

1

12/17/20 12/17/20 18:53 1051

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

Sample ID: Effluent VSP-4			Sampled:			•	e ID: 2012151	6-004
Matrix: WASTE WATER			Received:	12/15/	2020 14:22			
Dissolved Metals (6)	Analytica	al Method: E	EPA 200.8			Preparation Meth	nod: 200.8	
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
Aluminum	ND	ug/L	100		1	12/17/20	12/17/20 16:3	0 1051
Copper	2.2	ug/L	1.0		1	12/17/20	12/17/20 16:3	0 1051
Iron	ND	ug/L	100		1	12/17/20	12/17/20 16:3	0 1051
Lead	ND	ug/L	1.0		1	12/17/20	12/17/20 16:3	0 1051
Nickel	17.5	ug/L	1.00		1	12/17/20	12/17/20 16:3	0 1051
Zinc	25.1	ug/L	20.0		1	12/17/20	12/17/20 16:3	0 1051
Total Metals (6)	Analytica	al Method: E	EPA 200.8			Preparation Meth	nod: 200.8	
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
Aluminum	ND	ug/L	100		1	12/17/20	12/17/20 18:5	8 1051
Copper	3.7	ug/L	1.0		1	12/17/20	12/17/20 18:5	8 1051
Iron	ND	ug/L	100		1	12/17/20	12/17/20 18:5	8 1051
Lead	ND	ug/L	1.0		1	12/17/20	12/17/20 18:5	8 1051
Nickel	17.0	ug/L	1.00		1	12/17/20	12/17/20 18:5	8 1051
Zinc	26.3	ug/L	20.0		1	12/17/20	12/17/20 18:5	8 1051
Hardness, Total by Calculation	Analytica	al Method: S	SM 2340B			Preparation Meth	nod: 200.8	
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
Hardness (Ca & Mg)	8.0	mg/L	0.66		1	12/17/20	12/17/20 18:5	8 1051
1,4-Dioxane by GC/MS - SIM	Analytica	al Method: S	SW-846 8260	B-Modi	ified	Preparation Meth	nod: 5030B	
_	Result	Units	RL	Flag	Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	2.2	ug/L	1.0		1	12/22/20	12/22/20 11:3	5 1011
Surrogate(s)	Recovery		Limits					
Toluene-D8	98	%	80-120		1	12/22/20	12/22/20 11:3	5 1011

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

Sample ID: TB-121520 Date/Time Sampled: 12/15/2020 14:22 PSS Sample ID: 20121516-005

Matrix: WATER Date/Time Received: 12/15/2020 14:22

1,4-Dioxane by GC/MS - SIM Analytical Method: SW-846 8260 B-Modified Preparation Method: 5030B

	Result	Units	RL	Flag Dil	Prepared	Analyzed	Analyst
1,4-Dioxane (P-Dioxane)	ND	ug/L	1.0	1	12/22/20	12/22/20 13:4	6 1011
Surrogate(s)	Recovery		Limits				
Toluene-D8	100	%	80-120	1	12/22/20	12/22/20 13:4	6 1011

Case Narrative

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex
PSS Project No.: 20121516

Any holding time exceedances, deviations from the method specifications, regulatory requirements or variations to the procedures outlined in the PSS Quality Assurance Manual are outlined below.

Matrix spike and matrix spike duplicate analyses may not be performed due to insufficient sample quantity. In these instances, a laboratory control sample and laboratory control sample duplicate are analyzed unless otherwise noted or specified in the method.

Sample Receipt:

All sample receipt conditions were acceptable.

NELAP accreditation was held for all analyses performed unless noted below. See www.phaseonline.com for complete PSS scope of accreditation.

SW-846 8260 B-Modified: 1,4-Dioxane

Lab Chronology

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

Method	Client Sample ID	Analysis Type	PSS Sample ID	Mtx	Prep Batch	Analytical Bat	ch Prepared	Analyzed
EPA 200.8	VSP-2	Initial	20121516-001	W	84260	180502	12/17/2020 10:49	12/17/2020 18:35
	VSP-3	Initial	20121516-002	W	84260	180502	12/17/2020 10:49	12/17/2020 18:49
	T-1200 Lead EF	Initial	20121516-003	W	84260	180502	12/17/2020 10:49	12/17/2020 18:53
	Effluent VSP-4	Initial	20121516-004	W	84260	180502	12/17/2020 10:49	12/17/2020 18:58
	84260-1-BKS	BKS	84260-1-BKS	W	84260	180502	12/17/2020 10:49	12/17/2020 18:30
	84260-1-BLK	BLK	84260-1-BLK	W	84260	180502	12/17/2020 10:49	12/17/2020 18:25
	VSP-2 S	MS	20121516-001 S	W	84260	180502	12/17/2020 10:49	12/17/2020 18:39
	VSP-2 SD	MSD	20121516-001 S	W	84260	180502	12/17/2020 10:49	12/17/2020 18:44
EPA 200.8	VSP-2	Initial	20121516-001	W	84264	180497	12/17/2020 12:37	12/17/2020 16:18
	VSP-3	Initial	20121516-002	W	84264	180497	12/17/2020 12:37	12/17/2020 16:22
	T-1200 Lead EF	Initial	20121516-003	W	84264	180497	12/17/2020 12:37	12/17/2020 16:26
	Effluent VSP-4	Initial	20121516-004	W	84264	180497	12/17/2020 12:37	12/17/2020 16:30
	84264-1-BKS	BKS	84264-1-BKS	W	84264	180497	12/17/2020 12:37	12/17/2020 16:01
	84264-1-BLK	BLK	84264-1-BLK	W	84264	180497	12/17/2020 12:37	12/17/2020 15:56
	Millville 001 S	MS	20121506-001 S	W	84264	180497	12/17/2020 12:37	12/17/2020 16:10
	Millville 001 SD	MSD	20121506-001 S	W	84264	180497	12/17/2020 12:37	12/17/2020 16:14
SM 2340B	VSP-2	Initial	20121516-001	W	84260	180503	12/18/2020 12:59	12/17/2020 18:35
	VSP-3	Initial	20121516-002	W	84260	180503	12/18/2020 12:59	12/17/2020 18:49
	T-1200 Lead EF	Initial	20121516-003	W	84260	180503	12/18/2020 12:59	12/17/2020 18:53
	Effluent VSP-4	Initial	20121516-004	W	84260	180503	12/18/2020 12:59	12/17/2020 18:58
SW-846 8260 B-	Effluent VSP-4	Initial	20121516-004	W	84342	180587	12/22/2020 08:48	12/22/2020 11:35
Modified	TB-121520	Initial	20121516-005	W	84342	180587	12/22/2020 08:48	12/22/2020 13:46
	84342-1-BKS	BKS	84342-1-BKS	W	84342	180587	12/22/2020 08:48	12/22/2020 09:43
	84342-1-BLK	BLK	84342-1-BLK	W	84342	180587	12/22/2020 08:48	12/22/2020 11:12
	84342-1-BSD	BSD	84342-1-BSD	W	84342	180587	12/22/2020 08:48	12/22/2020 10:05

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20121516

Analytical Method: EPA 200.8 Prep Method: E200.8_PREP Seq Number: 180502 Matrix: Water Date Prep: 12/17/20

MB Sample Id: 84260-1-BLK LCS Sample Id: 84260-1-BKS

			•				
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Aluminum	<100	200	196.2	98	85-115	ug/L	
Copper	<1.000	40.00	39.45	99	85-115	ug/L	
Iron	<100	400	372.8	93	85-115	ug/L	
Lead	<1.000	40.00	39.24	98	85-115	ug/L	
Nickel	<1.000	40.00	37.32	93	85-115	ug/L	
Zinc	<20.00	200	191.3	96	85-115	ug/L	

Analytical Method: EPA 200.8
Seq Number: 180497 Matrix: Water Prep Method: E200.8_PREP Date Prep: 12/17/20

MB Sample Id: 84264-1-BLK LCS Sample Id: 84264-1-BKS

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	Limits	Units	Flag
Aluminum	<100	200	197.4	99	85-115	ug/L	
Copper	<1.000	40.00	37.84	95	85-115	ug/L	
Iron	<100	400	422.9	106	85-115	ug/L	
Lead	<1.000	40.00	38.04	95	85-115	ug/L	
Nickel	<1.000	40.00	37.07	93	85-115	ug/L	
Zinc	<20.00	200	192.4	96	85-115	ug/L	

Analytical Method: EPA 200.8
Seq Number: 180502 Matrix: Waste Water Prep Method: E200.8_PREP
Date Prep: 12/17/20

Parent Sample Id: 20121516-001 MS Sample Id: 20121516-001 S MSD Sample Id: 20121516-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
Aluminum	134.7	200	306.8	86	307.9	87	70-130	1	25	ug/L	
Copper	5.488	40.00	44.20	97	47.31	105	70-130	8	25	ug/L	
Iron	<100	400	411.6	103	420.2	105	70-130	2	25	ug/L	
Lead	<1.000	40.00	38.27	96	38.63	97	70-130	1	25	ug/L	
Nickel	15.02	40.00	52.21	93	55.63	102	70-130	9	25	ug/L	
Zinc	40.14	200	218.7	89	247	103	70-130	15	25	ug/L	

Analytical Method: SW-846 8260 B-Modified

Seq Number: 180587 Matrix: Water Date Prep: 12/22/20

MB Sample Id: 84342-1-BLK LCS Sample Id: 84342-1-BKS LCSD Sample Id: 84342-1-BSD

MD Sample Id.	04342-1-DLN		-00 Campic	, Iu. 040	72 1 0110		LO	ob Campi	, iu. 040	72 1 000	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Flag
1,4-Dioxane (P-Dioxa	ane) <1.000	30.00	31.20	104	31.83	106	50-150	2	20	ug/L	
Surrogate	MB %Red	MB ; Flag	LCS Result	LCS Flag		CSD esult	LCSD Flag	Limits	Units		
Toluene-D8	99		103			102		80-120	%		

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20121516

F = RPD exceeded the laboratory control limits

X = Recovery of MS, MSD or both outside of QC Criteria
H= Recovery of BS,BSD or both exceeded the laboratory control limits

L = Recovery of BS,BSD or both below the laboratory control limits

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20121516

Analytical Method: EPA 200.8

Seq Number: 180497 Matrix: Water

CCV Sample Id: CCV 3 Analyzed Date: 12/17/20 15:37

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Aluminum	200	211.3	106	85-115	ug/L	
Copper	40.00	39.48	99	85-115	ug/L	
Iron	400	389	97	85-115	ug/L	
Lead	40.00	42.18	105	85-115	ug/L	
Nickel	40.00	38.40	96	85-115	ug/L	
Zinc	200	197.2	99	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180497 Matrix: Water

CCV Sample Id: CCV 4 Analyzed Date: 12/17/20 16:46

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Aluminum	200	202.3	101	85-115	ug/L	
Copper	40.00	39.88	100	85-115	ug/L	
Iron	400	380.9	95	85-115	ug/L	
Lead	40.00	39.66	99	85-115	ug/L	
Nickel	40.00	38.36	96	85-115	ug/L	
Zinc	200	198.1	99	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180497 Matrix: Water

CCV Sample Id: CCV 6 Analyzed Date: 12/17/20 18:11

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Aluminum	200	209.5	105	85-115	ug/L	
Copper	40.00	39.29	98	85-115	ug/L	
Iron	400	377.6	94	85-115	ug/L	
Lead	40.00	41.66	104	85-115	ug/L	
Nickel	40.00	38.10	95	85-115	ug/L	
Zinc	200	194.9	97	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180502 Matrix: Water

CCV Sample Id: CCV 6 Analyzed Date: 12/17/20 18:11

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units Fla	g
Aluminum	200	209.5	105	85-115	ug/L	
Copper	40.00	39.29	98	85-115	ug/L	
Iron	400	377.6	94	85-115	ug/L	
Lead	40.00	41.66	104	85-115	ug/L	
Nickel	40.00	38.10	95	85-115	ug/L	
Zinc	200	194.9	97	85-115	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name Kop-Flex PSS Project No.: 20121516

Analytical Method: EPA 200.8

Seq Number: 180502 Matrix: Water

CCV Sample Id: CCV 8 Analyzed Date: 12/17/20 19:24

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Aluminum	200	202.3	101	85-115	ug/L	
Copper	40.00	39.40	99	85-115	ug/L	
Iron	400	378.3	95	85-115	ug/L	
Lead	40.00	40.31	101	85-115	ug/L	
Nickel	40.00	38.13	95	85-115	ug/L	
Zinc	200	194.9	97	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180502 Matrix: Water

CCV Sample Id: CCV 9 Analyzed Date: 12/17/20 20:39

Parameter	Spike Amount	CCV Result	CCV %Rec	Limits	Units	Flag
Aluminum	200	201.7	101	85-115	ug/L	
Copper	40.00	38.98	97	85-115	ug/L	
Iron	400	378.5	95	85-115	ug/L	
Lead	40.00	39.26	98	85-115	ug/L	
Nickel	40.00	37.92	95	85-115	ug/L	
Zinc	200	193.2	97	85-115	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180497 Matrix: Water

Parent Sample Id: ICV 1 ICV Sample Id: ICV 1 Analyzed Date: 12/17/20 11:50

Parameter	Spike Amount	ICV Result	ICV %Rec	Limits	Units	Flag
Aluminum	200	203.2	102	90-110	ug/L	
Copper	40.00	39.93	100	90-110	ug/L	
Iron	400	397	99	90-110	ug/L	
Lead	40.00	40.29	101	90-110	ug/L	
Nickel	40.00	38.99	97	90-110	ug/L	
Zinc	200	198.7	99	90-110	ug/L	

Analytical Method: EPA 200.8

Seq Number: 180502 Matrix: Water

Parent Sample Id: ICV 1 ICV Sample Id: ICV 1 Analyzed Date: 12/17/20 11:50

Parameter	Spike Amount	ICV Result	ICV %Rec	Limits	Units	Flag
Aluminum	200	203.2	102	90-110	ug/L	
Copper	40.00	39.93	100	90-110	ug/L	
Iron	400	397	99	90-110	ug/L	
Lead	40.00	40.29	101	90-110	ug/L	
Nickel	40.00	38.99	97	90-110	ug/L	
Zinc	200	198.7	99	90-110	ug/L	

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Flag

Flag

Flag

Units

Analyzed Date: 06/11/20 11:36

Project Name Kop-Flex PSS Project No.: 20121516

CCV Sample Id:

Surrogate

Analytical Method: SW-846 8260 B-Modified

Seq Number: 175110

Matrix: Water CCV-01

Amount

CCV CCV Limits Units **Spike Parameter** Flag

1,4-Dioxane (P-Dioxane) 30.00 30.40 101 80-120 ug/L

CCV Limits Units Flag Surrogate Result

%Rec

99 Toluene-D8 80-120 %

Result

Analytical Method: SW-846 8260 B-Modified

Seq Number: 180587 Matrix: Water

Analyzed Date: 12/22/20 09:21 CCV Sample Id: CCV-01

Spike CCV CCV Limits Units **Parameter**

Amount Result %Rec 1,4-Dioxane (P-Dioxane) 30.00 29.03 97 80-120 ug/L

CCV Limits **Units**

Result 104 80-120 % Toluene-D8

Analytical Method: SW-846 8260 B-Modified

Seq Number: 175110 Matrix: Water

ICV Sample Id: ICV-01 Analyzed Date: 06/11/20 11:14 Parent Sample Id: ICV-01

Spike Limits **Parameter** Amount Result %Rec 30.00 31.22 104 70-130 1,4-Dioxane (P-Dioxane) ug/L

ICV Limits Units

Flag Surrogate Result

ICV

Toluene-D8 99 80-120 %

ICV

X = Recovery outside of QC Criteria

PHASE SEPARATION SCIENCE

CHAIN OF CUSTODY FORM

All fields must be completed accurately. Shaded sections for lab use only.

www.phaseonline.com ~ info@phaseonline.com

6630 Baltimore National Pike • Suite 103-A • Baltimore, Maryland 21228 • (410) 747-8770 • (800) 932-9047

PSS CLIENT: WSP USA 0	FICE LOCATION:	Herndo	n, VA	PSS Wo	rk Order	#:20	121	51	6				PAG	E_	OF	
	HONE #: 703-	-709-6	500	Matrix C SW=Surfa		DW =Drir	nking Wa	ater (GW =Ground Wa	iter WW =	-Waste Water	0 =0il	S=Soll	SOL=	Solid A=A	lr W I=Wipe
CONTACT: Eric Johnson	MAIL: eric.jo	nnson@	uspcom		AB AB	Preserv Use Co		3	31							Preservative Codes
PROJECT NAME: KOP-Flex	PROJECT	#:3140.54S	010/04	σ	G=GRAB	Analysis Method	/	80	8 2		//		7	/	/	71 - HCL 2 - H ₂ SO ₄
SITE LOCATION: Hanover, MD	P.O.	#:		AINER		Require 3	hesols	73	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	//	//	/	/	/	//	3 - HNO ₃ 4 - NaOH 5 - E624KIT
SAMPLER(S): Shannon Burke	DW CERT	#:		# OF CONTAINERS	TE T	1	2 3	54	0.3	//	//	//	//	/	/	6 - ICE 7 - Sodium
PSS ID SAMPLE IDENTIFICATION	DATE SAMPLED	TIME SAMPLED	MATRIX Use Codes	# OF (SAMPLE TYPE: C=COMPOSITE	18 ×	000	3/2	3/	//	//	/	/	/		Thiosulfate 8 - Ascorbic Acid 9 - TerraCore Kit
1 VSP-2	12/15/20	21140	WW	2	6	X	X								Time	
2 VSP-3	12/15/20	21150	WW	2	G	X	X								Time	
3 T-1200 Lead Ex	12/15/20	2 1140	WW	2	6	X	X							-	Time	1155
4 Effluent VSP-4	12/15/20	5130	WW	5	6	X	X	X							Time 1	130
of TB-121520		-	W	2	-			X								
A TOTAL CONTRACTOR OF THE PARTY																
															7. 1	
			7													* - d
							9									
Relinquished By: (1)	Time	Received by	1			Reque			One TAT per 3-Day	COC)					TB:3.1	
Sharm Bulle 12/15 Relinquished By: (2) Date	20 1422 Time	-	Min	_		Nex	t Day		Emergency REPORTED T	Other					intert	
Relinquished By: (2) Date	Time	Received By:					☐ Di		PA VA		Shipp	oing Ca	rrier:	Elm	omp: 1.22	1.9%
Relinquished By: (3) Date	Time	Received By:	N	100		COMP	LIANC		Special Inst						7	
Relinquished By: (4) Date	Time	Received By				EDD FOI	RMAT TY	YPE	Dissol filter	ved ,	metal	5 5	am	ple	s fie	old O

Sample Receipt Checklist

6630 Baltimore National Pike Baltimore, MD 21228 410-747-8770 800-932-9047 www.phaseonline.com

Project Name: Kop-Flex PSS Project No.: 20121516

Client Name WSP USA - Herndon Received By Thomas Wingate

Delivered By Client

Tracking No Not Applicable

Logged In By Thomas Wingate

Shipping Container(s)

No. of Coolers 1

		Ice	Present
Custody Seal(s) Intact?	Yes	Temp (deg C)	1.9
Seal(s) Signed / Dated?	Yes	Temp Blank Present	Yes

DocumentationSampler NameShannon BurkeCOC agrees with sample labels?YesMD DW Cert. No.N/A

Chain of Custody Yes

Sample Container Custody Seal(s) Intact? Not Applicable

Appropriate for Specified Analysis?

Yes

Seal(s) Signed / Dated Not Applicable
Yes

Labeled and Labels Legible? Yes

Holding Time Total No. of Samples Received 5

All Samples Received Within Holding Time(s)? Yes Total No. of Containers Received 13

Preservation

Total Metals	(pH<2)	Yes
Dissolved Metals, filtered within 15 minutes of collection	(pH<2)	Yes
Orthophosphorus, filtered within 15 minutes of collection		N/A
Cyanides	(pH>12)	N/A
Sulfide	(pH>9)	N/A
TOC, DOC (field filtered), COD, Phenols	(pH<2)	N/A
TOX, TKN, NH3, Total Phos	(pH<2)	N/A
VOC, BTEX (VOA Vials Rcvd Preserved)	(pH<2)	Yes
Do VOA vials have zero headspace?		Yes
624 VOC (Rcvd at least one unpreserved VOA vial)		N/A
524 VOC (Rcvd with trip blanks)	(pH<2)	N/A

Comments: (Any "No" response must be detailed in the comments section below.)

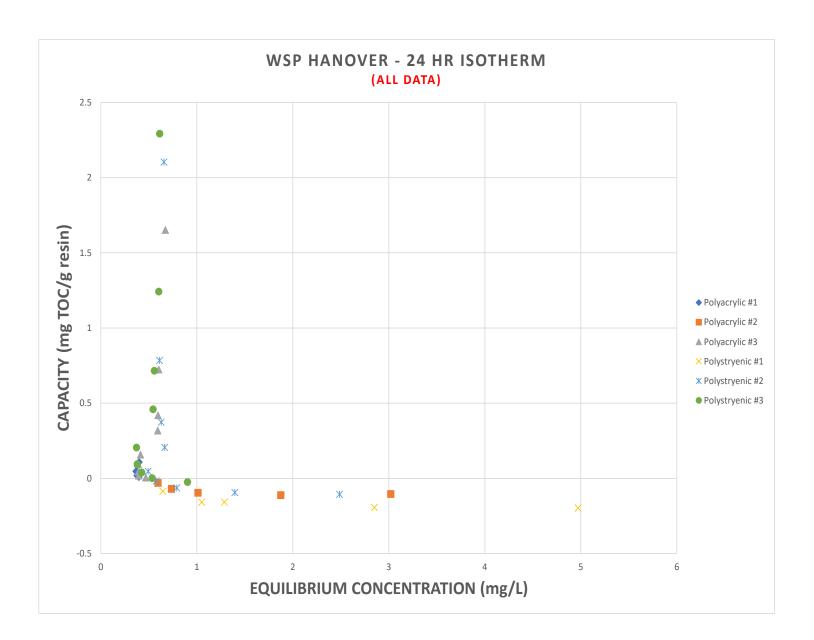
For any improper preservation conditions, list sample ID, preservative added (reagent ID number) below as well as documentation of any client notification as well as client instructions. Samples for pH, chlorine and dissolved oxygen should be analyzed as soon as possible, preferably in the field at the time of sampling. Samples which require thermal preservation shall be considered acceptable when received at a temperature above freezing to 6°C. Samples that are hand delivered on the day that they are collected may not meet these criteria but shall be considered acceptable if there is evidence that the chilling process has begun such as arrival on ice.

Samples Inspected/Checklist Completed By:	Time light	Date: 12/15/2020	
	Thomas Wingate		

PM Review and Approval: The John

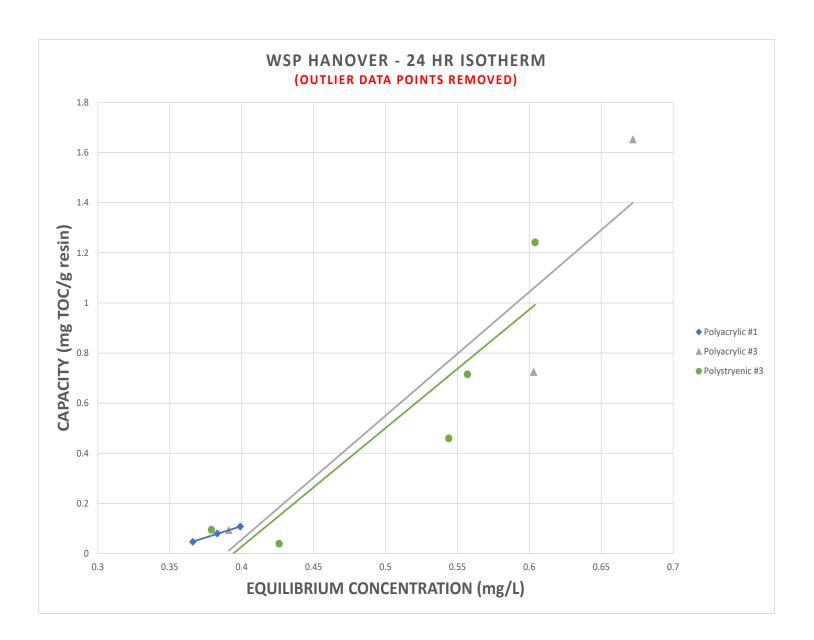
Amber Confer Page 16 of 16 Date: 12/15/2020

Version 1.000


APPENDIX

PRE-TREATMENT TECHNOLOGY EVALUATION

Isotherm Testing


- Multi point isotherm testing with (6) IX resins
 - (3) Polyacrylic
 - (3) Polystyrenic
- The nature of the TOC (NOM) and the relatively low concentration (< 1 ppm), made isotherm testing challenging.

- Figure shows all TOC data
- Negative capacity (i.e., equilibrium concentration greater than untreated concentration) indicates for some resins are adding TOC.
- Removing outlier data points →

- Figure shows all TOC data with "outlier" data points removed
- Three (3) candidate resins show promising TOC removal and (2) are recommended for column testing
 - Polyacrylic #1
 - Polystyrenic #3
- For the water tested, the estimated TOC removal capacity ranged from ~0.6 to ~1.6 mg/g

Column Testing

- Isotherm TOC capacity estimates ranged from 0.6 to 1.6 mg/g
- Dynamic capacity typically ranges from 30% (hydrophilic compounds) to 70% (hydrophobic compounds) of this isotherm capacity...dynamic capacity is estimated to be <50% of the isotherm capacity
- Recommended column size for bench testing is 1" SCH40 PVC x 36" bed height
- Test water volume is estimated at ~300 gal per-resin per week for a 1 month test (i.e., 4 x 330 gal IBC totes per resin)
- The current R&D lab location does not have the lay down area to accept 8 IBC totes
- ECT2 recommends on-site column testing.

APPENDIX

LAB REPORTS FOR GROUNDWATER MONITORING

May 28, 2020

Eric Johnson WSP USA 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: Kop-Flex onsite Pace Project No.: 92478032

Dear Eric Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on May 18, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

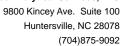
Taylor Ezell taylor.ezell@pacelabs.com (704)875-9092 Project Manager

Enclosures

cc: Molly Long, WSP

Pam Robertson, WSP USA

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092


CERTIFICATIONS

Project: Kop-Flex onsite
Pace Project No.: 92478032

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

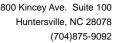
Project: Kop-Flex onsite
Pace Project No.: 92478032

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92478032001	MW-03	Water	05/12/20 11:45	05/18/20 09:12
92478032002	MW-43	Water	05/12/20 12:05	05/18/20 09:12
92478032003	MW-39	Water	05/12/20 12:25	05/18/20 09:12
92478032004	MW-42	Water	05/12/20 12:35	05/18/20 09:12
92478032005	MW-18	Water	05/12/20 12:50	05/18/20 09:12
92478032006	MW-38R	Water	05/12/20 14:05	05/18/20 09:12
92478032007	MW-40D	Water	05/12/20 14:20	05/18/20 09:12
92478032008	MW-21D	Water	05/12/20 15:15	05/18/20 09:12
92478032009	MW-5R	Water	05/12/20 16:25	05/18/20 09:12
92478032010	MW-41D	Water	05/12/20 16:40	05/18/20 09:12
92478032011	MW-1D	Water	05/12/20 17:05	05/18/20 09:12
92478032012	MW-22D	Water	05/12/20 17:20	05/18/20 09:12
92478032013	MW-04	Water	05/13/20 10:10	05/18/20 09:12
92478032014	MW-20	Water	05/13/20 10:30	05/18/20 09:12
92478032015	MW-09	Water	05/13/20 10:45	05/18/20 09:12
92478032016	MW-23D	Water	05/13/20 11:00	05/18/20 09:12
92478032017	MW-27D	Water	05/13/20 13:10	05/18/20 09:12
92478032018	Trip Blank A	Water	05/13/20 00:00	05/18/20 09:12
92478032019	Trip Blank B	Water	05/13/20 00:00	05/18/20 09:12
92478032020	MW-44	Water	05/13/20 17:30	05/18/20 09:12
92478032021	MW-16D	Water	05/13/20 17:50	05/18/20 09:12
92478032022	Dup-051320	Water	05/13/20 09:00	05/18/20 09:12
92478032023	MW-16	Water	05/13/20 18:00	05/18/20 09:12
92478032024	MW-01	Water	05/14/20 10:18	05/18/20 09:12
92478032025	Trip Blank C	Water	05/14/20 00:00	05/18/20 09:12

SAMPLE ANALYTE COUNT

Project: Kop-Flex onsite
Pace Project No.: 92478032

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92478032001	MW-03	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032002	MW-43	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032003	MW-39	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032004	MW-42	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032005	MW-18	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032006	MW-38R	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032007	MW-40D	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032008	MW-21D	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032009	MW-5R	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032010	MW-41D	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032011	MW-1D	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032012	MW-22D	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032013	MW-04	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032014	MW-20	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032015	MW-09	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032016	MW-23D	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032017	MW-27D	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032018	Trip Blank A	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032019	Trip Blank B	EPA 8260D	CL	63	PASI-C



SAMPLE ANALYTE COUNT

Project: Kop-Flex onsite
Pace Project No.: 92478032

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8260D Mod.	LMB	3	PASI-C
92478032020	MW-44	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032021	MW-16D	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032022	Dup-051320	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032023	MW-16	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032024	MW-01	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478032025	Trip Blank C	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C

PASI-C = Pace Analytical Services - Charlotte

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM


Sample: MW-03	Lab ID: 924	78032001	Collected: 05/12/2	20 11:45	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Metl	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/24/20 03:37	7 67-64-1	
Benzene	ND	ug/L	1.0	1		05/24/20 03:37	7 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/24/20 03:37	7 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/24/20 03:37	7 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/24/20 03:37	7 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/24/20 03:37	7 75-25-2	
3romomethane	ND	ug/L	2.0	1		05/24/20 03:37		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		05/24/20 03:37		
Carbon tetrachloride	ND	ug/L	1.0	1		05/24/20 03:37		
Chlorobenzene	ND	ug/L	1.0	1		05/24/20 03:37		
Chloroethane	ND	ug/L	1.0	1		05/24/20 03:37		
Chloroform	ND ND	ug/L	5.0	1		05/24/20 03:37		
Chloromethane	ND ND	•	1.0	1		05/24/20 03:37		
		ug/L						
2-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 03:37		
4-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 03:37		
I,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/24/20 03:37		
Dibromochloromethane	ND	ug/L	1.0	1		05/24/20 03:37	-	
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/24/20 03:37		
Dibromomethane	ND	ug/L	1.0	1		05/24/20 03:37		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:37	7 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:37	7 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:37	7 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/24/20 03:37	7 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		05/24/20 03:37	7 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		05/24/20 03:37	7 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		05/24/20 03:37	7 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 03:37	7 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 03:37	7 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 03:37	7 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		05/24/20 03:37	7 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 03:37	7 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		05/24/20 03:37	7 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 03:37		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 03:37		
Diisopropyl ether	ND	ug/L	1.0	1		05/24/20 03:37		
Ethylbenzene	ND	ug/L	1.0	1		05/24/20 03:37		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/24/20 03:37		
2-Hexanone	ND	ug/L	5.0	1		05/24/20 03:37		
o-Isopropyltoluene	ND ND	ug/L ug/L	1.0	1		05/24/20 03:37		
	ND ND	-	5.0	1		05/24/20 03:37		
Methylene Chloride		ug/L						
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/24/20 03:37		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/24/20 03:37		
Naphthalene	ND	ug/L	1.0	1		05/24/20 03:37		
Styrene	ND	ug/L	1.0	1		05/24/20 03:37		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 03:37		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 03:37	7 79-34-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-03	Lab ID: 924	78032001	Collected: 05/12/2	20 11:45	Received: 0	5/18/20 09:12 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/24/20 03:37	127-18-4	
Toluene	ND	ug/L	1.0	1		05/24/20 03:37	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:37	87-61-6	IH
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:37	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/24/20 03:37	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/24/20 03:37	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/24/20 03:37	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/24/20 03:37	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/24/20 03:37	96-18-4	
√inyl acetate	ND	ug/L	2.0	1		05/24/20 03:37	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		05/24/20 03:37	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/24/20 03:37	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		05/24/20 03:37	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/24/20 03:37	95-47-6	
Surrogates		_						
4-Bromofluorobenzene (S)	100	%	70-130	1		05/24/20 03:37	460-00-4	
1,2-Dichloroethane-d4 (S)	114	%	70-130	1		05/24/20 03:37	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		05/24/20 03:37	2037-26-5	
8260D MSV SIM	Analytical Meth	nod: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		05/20/20 23:48	123-91-1	
1,2-Dichloroethane-d4 (S)	109	%	50-150	1		05/20/20 23:48	17060-07-0	
Toluene-d8 (S)	105	%	50-150	1		05/20/20 23:48	2037-26-5	

Project: Kop-Flex onsite
Pace Project No: 92478032

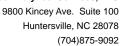
Date: 05/28/2020 02:20 PM

Sample: MW-43	Lab ID: 924	78032002	Collected: 05/12/2	20 12:05	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Metl	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/24/20 03:1	9 67-64-1	
Benzene	ND	ug/L	1.0	1		05/24/20 03:1	9 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/24/20 03:1	9 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/24/20 03:1	9 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/24/20 03:1	9 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/24/20 03:1	9 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/24/20 03:1		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		05/24/20 03:1		
Carbon tetrachloride	ND	ug/L	1.0	1		05/24/20 03:1		
Chlorobenzene	ND	ug/L	1.0	1		05/24/20 03:1		
Chloroethane	ND	ug/L	1.0	1		05/24/20 03:1		
Chloroform	ND ND	ug/L ug/L	5.0	1		05/24/20 03:1		
Chloromethane	ND ND	-	1.0	1		05/24/20 03:1		
		ug/L						
2-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 03:1		
4-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 03:1		
I,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/24/20 03:1		
Dibromochloromethane	ND	ug/L	1.0	1		05/24/20 03:1	-	
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/24/20 03:1		
Dibromomethane	ND	ug/L	1.0	1		05/24/20 03:1		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:1	9 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:1		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:1	9 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/24/20 03:1	9 75-71-8	
1,1-Dichloroethane	3.8	ug/L	1.0	1		05/24/20 03:1	9 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		05/24/20 03:1	9 107-06-2	
1,1-Dichloroethene	46.3	ug/L	1.0	1		05/24/20 03:1	9 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 03:1	9 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 03:1	9 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 03:1	9 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		05/24/20 03:1	9 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 03:1	9 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		05/24/20 03:1		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			9 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 03:1		
Diisopropyl ether	ND	ug/L	1.0	1		05/24/20 03:1		
Ethylbenzene	ND	ug/L	1.0	1		05/24/20 03:1		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/24/20 03:1		
2-Hexanone	ND	ug/L	5.0	1		05/24/20 03:1		
	ND	-	1.0	1		05/24/20 03:1		
o-Isopropyltoluene		ug/L						
Methylene Chloride	ND	ug/L	5.0	1		05/24/20 03:1		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/24/20 03:1		
Methyl-tert-butyl ether	3.4	ug/L	1.0	1		05/24/20 03:1		
Naphthalene	ND	ug/L	1.0	1		05/24/20 03:1		
Styrene	ND	ug/L	1.0	1		05/24/20 03:1		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 03:1		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 03:1	9 79-34-5	

Date: 05/28/2020 02:20 PM

ANALYTICAL RESULTS

Project: Kop-Flex onsite
Pace Project No.: 92478032


Sample: MW-43	Lab ID: 924	78032002	Collected: 05/12/2	0 12:05	Received: 0	5/18/20 09:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/24/20 03:19	127-18-4	
Toluene	ND	ug/L	1.0	1		05/24/20 03:19	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:19	87-61-6	IH
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:19	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/24/20 03:19	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/24/20 03:19	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/24/20 03:19	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/24/20 03:19	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/24/20 03:19	96-18-4	
√inyl acetate	ND	ug/L	2.0	1		05/24/20 03:19	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		05/24/20 03:19	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/24/20 03:19	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		05/24/20 03:19	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/24/20 03:19	95-47-6	
Surrogates		J						
4-Bromofluorobenzene (S)	102	%	70-130	1		05/24/20 03:19	460-00-4	
1,2-Dichloroethane-d4 (S)	114	%	70-130	1		05/24/20 03:19	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		05/24/20 03:19	2037-26-5	
8260D MSV SIM	Analytical Meth	nod: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	49.0	ug/L	2.0	1		05/21/20 00:08	123-91-1	
1,2-Dichloroethane-d4 (S)	103	%	50-150	1		05/21/20 00:08	17060-07-0	
Toluene-d8 (S)	103	%	50-150	1		05/21/20 00:08	2037-26-5	

Project: Kop-Flex onsite
Pace Project No: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-39	Lab ID: 924	78032003	Collected: 05/12/2	20 12:25	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/24/20 03:0	1 67-64-1	
Benzene	ND	ug/L	1.0	1		05/24/20 03:0	1 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/24/20 03:0	1 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/24/20 03:0	1 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/24/20 03:0	1 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/24/20 03:0°		
Bromomethane	ND	ug/L	2.0	1		05/24/20 03:0		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		05/24/20 03:0		
Carbon tetrachloride	ND	ug/L	1.0	1		05/24/20 03:0		
Chlorobenzene	ND	ug/L	1.0	1		05/24/20 03:0		
Chloroethane	ND	ug/L	1.0	1		05/24/20 03:0		
Chloroform	ND ND	ug/L ug/L	5.0	1		05/24/20 03:0		
Chloromethane	ND ND	•	1.0	1		05/24/20 03:0		
		ug/L						
2-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 03:0		
4-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 03:0		
I,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/24/20 03:0		
Dibromochloromethane	ND	ug/L	1.0	1		05/24/20 03:0		
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/24/20 03:0		
Dibromomethane	ND	ug/L	1.0	1		05/24/20 03:0		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:0	1 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:0		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:0	1 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/24/20 03:0	1 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		05/24/20 03:0	1 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		05/24/20 03:01	1 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		05/24/20 03:0	1 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 03:0	1 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 03:0	1 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 03:01	1 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		05/24/20 03:01	1 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 03:0	1 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		05/24/20 03:0		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 03:0°		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 03:0		
Diisopropyl ether	ND	ug/L	1.0	1		05/24/20 03:0		
Ethylbenzene	ND	ug/L	1.0	1		05/24/20 03:0		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/24/20 03:0		
2-Hexanone	ND	ug/L	5.0	1		05/24/20 03:0		
	ND ND	_	1.0	1		05/24/20 03:0		
o-Isopropyltoluene	ND ND	ug/L	5.0	1		05/24/20 03:0		
Methylene Chloride		ug/L						
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/24/20 03:0		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/24/20 03:0		
Naphthalene	ND	ug/L	1.0	1		05/24/20 03:0		
Styrene	ND	ug/L	1.0	1		05/24/20 03:0		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 03:0		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 03:0	1 79-34-5	

Date: 05/28/2020 02:20 PM

ANALYTICAL RESULTS

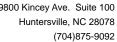
Project: Kop-Flex onsite
Pace Project No.: 92478032

Sample: MW-39	Lab ID: 924	78032003	Collected: 05/12/2	0 12:25	Received: 0	5/18/20 09:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/24/20 03:01	127-18-4	
Toluene	ND	ug/L	1.0	1		05/24/20 03:01	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:01	87-61-6	IH
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:01	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/24/20 03:01	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/24/20 03:01	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/24/20 03:01	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/24/20 03:01	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/24/20 03:01	96-18-4	
√inyl acetate	ND	ug/L	2.0	1		05/24/20 03:01	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		05/24/20 03:01	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/24/20 03:01	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		05/24/20 03:01	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/24/20 03:01	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	105	%	70-130	1		05/24/20 03:01	460-00-4	
1,2-Dichloroethane-d4 (S)	116	%	70-130	1		05/24/20 03:01	17060-07-0	
Toluene-d8 (S)	103	%	70-130	1		05/24/20 03:01	2037-26-5	
8260D MSV SIM	Analytical Meth	nod: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		05/21/20 00:27	123-91-1	
1,2-Dichloroethane-d4 (S)	97	%	50-150	1		05/21/20 00:27	17060-07-0	
Toluene-d8 (S)	103	%	50-150	1		05/21/20 00:27	2037-26-5	

Project: Kop-Flex onsite
Pace Project No: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-42	Lab ID: 924	78032004	Collected: 05/12/2	20 12:35	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Metl	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/24/20 02:42	2 67-64-1	
Benzene	ND	ug/L	1.0	1		05/24/20 02:42	2 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/24/20 02:42	2 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/24/20 02:42	2 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/24/20 02:42	2 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/24/20 02:42	2 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/24/20 02:42		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		05/24/20 02:42		
Carbon tetrachloride	ND	ug/L	1.0	1		05/24/20 02:42		
Chlorobenzene	ND	ug/L	1.0	1		05/24/20 02:42		
Chloroethane	ND	ug/L	1.0	1		05/24/20 02:42		
Chloroform	ND ND	ug/L	5.0	1		05/24/20 02:42		
Chloromethane	ND ND	•	1.0	1		05/24/20 02:42		
		ug/L						
2-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 02:42		
4-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 02:42		
I,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/24/20 02:42		
Dibromochloromethane	ND	ug/L	1.0	1		05/24/20 02:42	-	
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/24/20 02:42		
Dibromomethane	ND	ug/L	1.0	1		05/24/20 02:42		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:42		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:42	2 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:42	2 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/24/20 02:42	2 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		05/24/20 02:42	2 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		05/24/20 02:42	2 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		05/24/20 02:42	2 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 02:42	2 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 02:42	2 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 02:42	2 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		05/24/20 02:42	2 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 02:42	2 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		05/24/20 02:42	2 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 02:42	2 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 02:42		
Diisopropyl ether	ND	ug/L	1.0	1		05/24/20 02:42		
Ethylbenzene	ND	ug/L	1.0	1		05/24/20 02:42		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/24/20 02:42		
2-Hexanone	ND	ug/L	5.0	1		05/24/20 02:42		
		_		1				
o-Isopropyltoluene	ND	ug/L	1.0			05/24/20 02:42		
Methylene Chloride	ND	ug/L	5.0	1		05/24/20 02:42		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/24/20 02:42		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/24/20 02:42		
Naphthalene	ND	ug/L	1.0	1		05/24/20 02:42		
Styrene	ND	ug/L	1.0	1		05/24/20 02:42		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 02:42		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 02:42	2 79-34-5	



Date: 05/28/2020 02:20 PM

ANALYTICAL RESULTS

Project: Kop-Flex onsite
Pace Project No.: 92478032

Sample: MW-42	Lab ID: 924	78032004	Collected: 05/12/2	0 12:35	Received: 0	5/18/20 09:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/24/20 02:42	127-18-4	
Toluene	ND	ug/L	1.0	1		05/24/20 02:42	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:42	87-61-6	IH
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:42	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/24/20 02:42	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/24/20 02:42	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/24/20 02:42	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/24/20 02:42	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/24/20 02:42	96-18-4	
√inyl acetate	ND	ug/L	2.0	1		05/24/20 02:42	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		05/24/20 02:42	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/24/20 02:42	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		05/24/20 02:42	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/24/20 02:42	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	101	%	70-130	1		05/24/20 02:42	460-00-4	
1,2-Dichloroethane-d4 (S)	113	%	70-130	1		05/24/20 02:42	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		05/24/20 02:42	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	11.2	ug/L	2.0	1		05/21/20 00:47	123-91-1	
1,2-Dichloroethane-d4 (S)	98	%	50-150	1		05/21/20 00:47	17060-07-0	
Toluene-d8 (S)	97	%	50-150	1		05/21/20 00:47	2037-26-5	

Project: Kop-Flex onsite
Pace Project No: 92478032

Date: 05/28/2020 02:20 PM


Sample: MW-18	Lab ID: 924	78032005	Collected: 05/12/2	20 12:50	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Metl	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/24/20 02:24	4 67-64-1	
Benzene	ND	ug/L	1.0	1		05/24/20 02:24	4 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/24/20 02:24	4 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/24/20 02:24	4 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/24/20 02:24	4 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/24/20 02:24	4 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/24/20 02:24		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		05/24/20 02:24		
Carbon tetrachloride	ND	ug/L	1.0	1		05/24/20 02:24		
Chlorobenzene	ND	ug/L	1.0	1		05/24/20 02:24		
Chloroethane	ND	ug/L	1.0	1		05/24/20 02:24		
Chloroform	ND ND	ug/L	5.0	1		05/24/20 02:24		
Chloromethane	ND ND	•	1.0	1		05/24/20 02:24		
		ug/L						
2-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 02:24		
4-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 02:24		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/24/20 02:24		
Dibromochloromethane	ND	ug/L	1.0	1		05/24/20 02:24	-	
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/24/20 02:24		
Dibromomethane	ND	ug/L	1.0	1		05/24/20 02:24		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:24	4 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:24	4 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:24	4 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/24/20 02:24	4 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		05/24/20 02:24	4 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		05/24/20 02:24	4 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		05/24/20 02:24	4 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 02:24	4 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 02:24	4 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 02:24	4 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		05/24/20 02:24	4 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 02:24	4 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		05/24/20 02:24		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 02:24		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 02:24		
Diisopropyl ether	ND	ug/L	1.0	1		05/24/20 02:24		
Ethylbenzene	ND	ug/L	1.0	1		05/24/20 02:24		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/24/20 02:24		
2-Hexanone	ND	ug/L	5.0	1		05/24/20 02:24		
		_		1				
o-Isopropyltoluene	ND	ug/L	1.0			05/24/20 02:24		
Methylene Chloride	ND	ug/L	5.0	1		05/24/20 02:24		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/24/20 02:24		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/24/20 02:24		
Naphthalene	ND	ug/L	1.0	1		05/24/20 02:24		
Styrene	ND	ug/L	1.0	1		05/24/20 02:24		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 02:24		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 02:24	4 79-34-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-18	Lab ID: 9247	78032005	Collected: 05/12/2	0 12:50	Received: 0	5/18/20 09:12 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260D MSV Low Level	Analytical Meth	od: EPA 82	60D					
	Pace Analytical	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/24/20 02:24	127-18-4	
Toluene	ND	ug/L	1.0	1		05/24/20 02:24	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:24	87-61-6	IH
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:24	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/24/20 02:24	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/24/20 02:24	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/24/20 02:24	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/24/20 02:24	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/24/20 02:24	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		05/24/20 02:24	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		05/24/20 02:24	75-01-4	
(Ylene (Total)	ND	ug/L	1.0	1		05/24/20 02:24	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		05/24/20 02:24	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/24/20 02:24	95-47-6	
Surrogates		•						
I-Bromofluorobenzene (S)	101	%	70-130	1		05/24/20 02:24	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	70-130	1		05/24/20 02:24	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		05/24/20 02:24	2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	60D Mod.					
	Pace Analytical	Services -	Charlotte					
l,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		05/21/20 01:08	123-91-1	
I,2-Dichloroethane-d4 (S)	96	%	50-150	1		05/21/20 01:08	17060-07-0	
Foluene-d8 (S)	103	%	50-150	1		05/21/20 01:08	2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM


Sample: MW-38R	Lab ID: 924	78032006	Collected: 05/12/2	20 14:05	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/24/20 02:06	67-64-1	
Benzene	ND	ug/L	1.0	1		05/24/20 02:06	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/24/20 02:06	5 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/24/20 02:06	6 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/24/20 02:06	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/24/20 02:06	6 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/24/20 02:06		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		05/24/20 02:06		
Carbon tetrachloride	ND	ug/L	1.0	1		05/24/20 02:06		
Chlorobenzene	ND	ug/L	1.0	1		05/24/20 02:06		
Chloroethane	ND ND	-	1.0	1		05/24/20 02:00		
Chloroform	ND ND	ug/L	5.0	1		05/24/20 02:06		
		ug/L						
Chloromethane	ND	ug/L	1.0	1		05/24/20 02:06		
2-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 02:06		
4-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 02:06		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/24/20 02:06		
Dibromochloromethane	ND	ug/L	1.0	1		05/24/20 02:06		
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/24/20 02:06		
Dibromomethane	ND	ug/L	1.0	1		05/24/20 02:06	6 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:06	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:06	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:06	106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/24/20 02:06	5 75-71-8	
1,1-Dichloroethane	6.2	ug/L	1.0	1		05/24/20 02:06	5 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		05/24/20 02:06	107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		05/24/20 02:06	6 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 02:06		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 02:06		
1,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 02:06		
1,3-Dichloropropane	ND	ug/L	1.0	1		05/24/20 02:06		
2,2-Dichloropropane	ND ND	ug/L	1.0	1		05/24/20 02:06		
1,1-Dichloropropane	ND ND	-	1.0	1		05/24/20 02:06		
• •		ug/L						
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 02:06		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 02:06		
Diisopropyl ether	ND	ug/L	1.0	1		05/24/20 02:06		
Ethylbenzene	ND	ug/L	1.0	1		05/24/20 02:06		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/24/20 02:06		
2-Hexanone	ND	ug/L	5.0	1		05/24/20 02:06		
o-Isopropyltoluene	ND	ug/L	1.0	1		05/24/20 02:06		
Methylene Chloride	ND	ug/L	5.0	1		05/24/20 02:06	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/24/20 02:06	6 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/24/20 02:06	6 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		05/24/20 02:06	91-20-3	
Styrene	ND	ug/L	1.0	1		05/24/20 02:06	6 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 02:06		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 02:06		

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-38R	Lab ID: 9247	78032006	Collected: 05/12/2	0 14:05	Received: 0	5/18/20 09:12 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/24/20 02:06	127-18-4	
Toluene	ND	ug/L	1.0	1		05/24/20 02:06	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:06	87-61-6	IH
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 02:06	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/24/20 02:06	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/24/20 02:06	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/24/20 02:06	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/24/20 02:06	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/24/20 02:06	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/24/20 02:06	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		05/24/20 02:06	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/24/20 02:06	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		05/24/20 02:06	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/24/20 02:06	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	101	%	70-130	1		05/24/20 02:06	460-00-4	
1,2-Dichloroethane-d4 (S)	112	%	70-130	1		05/24/20 02:06	17060-07-0	
Toluene-d8 (S)	103	%	70-130	1		05/24/20 02:06	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	40.8	ug/L	2.0	1		05/21/20 01:28	123-91-1	
1,2-Dichloroethane-d4 (S)	98	%	50-150	1		05/21/20 01:28	17060-07-0	
Toluene-d8 (S)	104	%	50-150	1		05/21/20 01:28	2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-40D	Lab ID: 924	78032007	Collected: 05/12/2	20 14:20	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/24/20 01:48	3 67-64-1	
Benzene	ND	ug/L	1.0	1		05/24/20 01:48	3 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/24/20 01:48	3 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/24/20 01:48	3 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/24/20 01:48	3 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/24/20 01:48	3 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/24/20 01:48	3 74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		05/24/20 01:48		
Carbon tetrachloride	ND	ug/L	1.0	1		05/24/20 01:48		
Chlorobenzene	ND	ug/L	1.0	1		05/24/20 01:48		
Chloroethane	ND	ug/L	1.0	1		05/24/20 01:48		
Chloroform	ND ND	ug/L ug/L	5.0	1		05/24/20 01:48		
Chloromethane	ND ND	•	1.0	1		05/24/20 01:48		
		ug/L						
2-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 01:48		
4-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 01:48		
,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/24/20 01:48		
Dibromochloromethane	ND	ug/L	1.0	1		05/24/20 01:48		
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/24/20 01:48		
Dibromomethane	ND	ug/L	1.0	1		05/24/20 01:48	3 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:48	3 95-50-1	
,3-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:48	3 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:48	3 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/24/20 01:48	3 75-71-8	
,1-Dichloroethane	ND	ug/L	1.0	1		05/24/20 01:48	3 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		05/24/20 01:48	3 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		05/24/20 01:48	3 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 01:48	3 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 01:48	3 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 01:48		
1,3-Dichloropropane	ND	ug/L	1.0	1		05/24/20 01:48		
2,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 01:48		
1,1-Dichloropropene	ND	ug/L	1.0	1		05/24/20 01:48		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 01:48		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 01:48		
	ND	•	1.0	1				
Diisopropyl ether		ug/L	1.0			05/24/20 01:48 05/24/20 01:48		
Ethylbenzene	ND	ug/L		1				
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/24/20 01:48		
2-Hexanone	ND	ug/L	5.0	1		05/24/20 01:48		
p-Isopropyltoluene	ND	ug/L	1.0	1		05/24/20 01:48		
Methylene Chloride	ND	ug/L	5.0	1		05/24/20 01:48		
1-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/24/20 01:48		
Methyl-tert-butyl ether	3.1	ug/L	1.0	1		05/24/20 01:48		
Naphthalene	ND	ug/L	1.0	1		05/24/20 01:48		
Styrene	ND	ug/L	1.0	1		05/24/20 01:48	3 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 01:48	3 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 01:48	3 79-34-5	

Date: 05/28/2020 02:20 PM

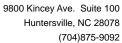
ANALYTICAL RESULTS

Project: Kop-Flex onsite
Pace Project No.: 92478032

Sample: MW-40D	Lab ID: 9247	78032007	Collected: 05/12/2	20 14:20	Received: 0	5/18/20 09:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/24/20 01:48	127-18-4	
Toluene	ND	ug/L	1.0	1		05/24/20 01:48	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:48	87-61-6	IH
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:48	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/24/20 01:48	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/24/20 01:48	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/24/20 01:48	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/24/20 01:48	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/24/20 01:48	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/24/20 01:48	108-05-4	
√inyl chloride	ND	ug/L	1.0	1		05/24/20 01:48	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/24/20 01:48	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		05/24/20 01:48	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/24/20 01:48	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	101	%	70-130	1		05/24/20 01:48	460-00-4	
1,2-Dichloroethane-d4 (S)	112	%	70-130	1		05/24/20 01:48	17060-07-0	
Toluene-d8 (S)	103	%	70-130	1		05/24/20 01:48	2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		05/21/20 01:47	123-91-1	
1,2-Dichloroethane-d4 (S)	106	%	50-150	1		05/21/20 01:47	17060-07-0	
Toluene-d8 (S)	105	%	50-150	1		05/21/20 01:47	2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM


Sample: MW-21D	Lab ID: 924	478032008	Collected: 05/12/2	20 15:15	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Me	thod: EPA 82	260D					
	Pace Analytic	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/24/20 01:3	0 67-64-1	
Benzene	ND	ug/L	1.0	1		05/24/20 01:3		
Bromobenzene	ND	ug/L	1.0	1		05/24/20 01:3		
Bromochloromethane	ND	ug/L	1.0	1		05/24/20 01:3	0 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/24/20 01:3		
Bromoform	ND	ug/L	1.0	1		05/24/20 01:3	0 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/24/20 01:3	0 74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		05/24/20 01:3	0 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		05/24/20 01:3		
Chlorobenzene	ND	ug/L	1.0	1		05/24/20 01:3		
Chloroethane	ND	ug/L	1.0	1		05/24/20 01:3		
Chloroform	ND	ug/L	5.0	1		05/24/20 01:3		
Chloromethane	ND	ug/L	1.0	1		05/24/20 01:3		
2-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 01:3		
1-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 01:3		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/24/20 01:3		
Dibromochloromethane	ND	ug/L	1.0	1		05/24/20 01:3		
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/24/20 01:3		
Dibromomethane	ND	ug/L	1.0	1		05/24/20 01:3		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:3		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:3		
I,4-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:3		
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/24/20 01:3		
1,1-Dichloroethane	ND	ug/L	1.0	1		05/24/20 01:3		
1,2-Dichloroethane	ND	ug/L	1.0	1		05/24/20 01:3		
1,1-Dichloroethene	13.6	ug/L	1.0	1		05/24/20 01:3		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 01:3		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 01:3		
1,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 01:3		
1,3-Dichloropropane	ND	ug/L	1.0	1		05/24/20 01:3		
2,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 01:3		
1,1-Dichloropropene	ND	ug/L	1.0	1		05/24/20 01:3		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			0 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1			0 10061-01-5	
Diisopropyl ether	ND	ug/L	1.0	1		05/24/20 01:3		
Ethylbenzene	ND ND		1.0	1		05/24/20 01:3		
Hexachloro-1,3-butadiene	ND ND	ug/L ug/L	1.0	1		05/24/20 01:3		
2-Hexanone	ND ND	ug/L ug/L	5.0	1		05/24/20 01:3		
		_				05/24/20 01:3		
o-Isopropyltoluene	ND	ug/L	1.0	1		05/24/20 01:3		
Methylene Chloride	ND ND	ug/L	5.0	1				
I-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/24/20 01:3 05/24/20 01:3		
Methyl-tert-butyl ether	2.9	ug/L	1.0	1				
Naphthalene	ND	ug/L	1.0	1		05/24/20 01:3		
Styrene	ND	ug/L	1.0	1		05/24/20 01:3		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 01:3		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 01:3	0 79-34-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-21D	Lab ID: 924	78032008	Collected: 05/12/2	0 15:15	Received: 0	5/18/20 09:12 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/24/20 01:30	127-18-4	
Toluene	ND	ug/L	1.0	1		05/24/20 01:30	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:30	87-61-6	IH
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:30	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/24/20 01:30	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/24/20 01:30	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/24/20 01:30	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/24/20 01:30	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/24/20 01:30	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/24/20 01:30	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		05/24/20 01:30	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/24/20 01:30	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		05/24/20 01:30	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/24/20 01:30	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	102	%	70-130	1		05/24/20 01:30	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	70-130	1		05/24/20 01:30	17060-07-0	
Toluene-d8 (S)	106	%	70-130	1		05/24/20 01:30	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	7.6	ug/L	2.0	1		05/21/20 02:07	123-91-1	
1,2-Dichloroethane-d4 (S)	96	%	50-150	1		05/21/20 02:07	17060-07-0	
Toluene-d8 (S)	101	%	50-150	1		05/21/20 02:07	2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM


Sample: MW-5R	Lab ID: 924	78032009	Collected: 05/12/2	20 16:25	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/24/20 01:1:	2 67-64-1	
Benzene	ND	ug/L	1.0	1		05/24/20 01:12	2 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/24/20 01:12	2 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/24/20 01:12	2 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/24/20 01:12	2 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/24/20 01:12		
Bromomethane	ND	ug/L	2.0	1		05/24/20 01:12		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		05/24/20 01:12		
Carbon tetrachloride	ND	ug/L	1.0	1		05/24/20 01:12		
Chlorobenzene	ND	ug/L	1.0	1		05/24/20 01:12		
Chloroethane	ND	ug/L	1.0	1		05/24/20 01:12		
Chloroform	ND ND	-	5.0	1		05/24/20 01:12		
		ug/L						
Chloromethane	ND	ug/L	1.0	1		05/24/20 01:12		
2-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 01:12		
1-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 01:12		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/24/20 01:12		
Dibromochloromethane	ND	ug/L	1.0	1		05/24/20 01:12		
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/24/20 01:12		
Dibromomethane	ND	ug/L	1.0	1		05/24/20 01:12	2 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:12	2 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:12	2 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:12	2 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/24/20 01:12	2 75-71-8	
1,1-Dichloroethane	1.8	ug/L	1.0	1		05/24/20 01:12	2 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		05/24/20 01:12	2 107-06-2	
1,1-Dichloroethene	1.7	ug/L	1.0	1		05/24/20 01:12		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 01:12		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 01:12		
1,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 01:12		
1,3-Dichloropropane	ND	ug/L	1.0	1		05/24/20 01:12		
2,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 01:12		
1,1-Dichloropropane	ND ND	-	1.0	1		05/24/20 01:12		
• •		ug/L						
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 01:12		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 01:12		
Diisopropyl ether	ND	ug/L	1.0	1		05/24/20 01:12		
Ethylbenzene	ND	ug/L	1.0	1		05/24/20 01:12		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/24/20 01:12		
2-Hexanone	ND	ug/L	5.0	1		05/24/20 01:12		
o-Isopropyltoluene	ND	ug/L	1.0	1		05/24/20 01:12		
Methylene Chloride	ND	ug/L	5.0	1		05/24/20 01:12	2 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/24/20 01:12	2 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/24/20 01:12	2 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		05/24/20 01:12	2 91-20-3	
Styrene	ND	ug/L	1.0	1		05/24/20 01:12	2 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 01:12		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 01:12		

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-5R	Lab ID: 924	78032009	Collected: 05/12/2	20 16:25	Received: 0	5/18/20 09:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/24/20 01:12	127-18-4	
Toluene	ND	ug/L	1.0	1		05/24/20 01:12	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:12	87-61-6	IH
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 01:12	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/24/20 01:12	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/24/20 01:12	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/24/20 01:12	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/24/20 01:12	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/24/20 01:12	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		05/24/20 01:12	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		05/24/20 01:12	75-01-4	
(Ylene (Total)	ND	ug/L	1.0	1		05/24/20 01:12	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		05/24/20 01:12	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/24/20 01:12	95-47-6	
Surrogates								
I-Bromofluorobenzene (S)	102	%	70-130	1		05/24/20 01:12	460-00-4	
1,2-Dichloroethane-d4 (S)	110	%	70-130	1		05/24/20 01:12	17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		05/24/20 01:12	2037-26-5	
3260D MSV SIM	Analytical Meth	nod: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
l,4-Dioxane (p-Dioxane) Surrogates	13.4	ug/L	2.0	1		05/21/20 02:28	123-91-1	
1,2-Dichloroethane-d4 (S)	97	%	50-150	1		05/21/20 02:28	17060-07-0	
Toluene-d8 (S)	107	%	50-150	1		05/21/20 02:28	2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-41D	Lab ID: 924	78032010	Collected: 05/12/2	20 16:40	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/24/20 06:0	1 67-64-1	
Benzene	ND	ug/L	1.0	1		05/24/20 06:0		
Bromobenzene	ND	ug/L	1.0	1		05/24/20 06:0		
Bromochloromethane	ND	ug/L	1.0	1		05/24/20 06:0		
Bromodichloromethane	ND	ug/L	1.0	1		05/24/20 06:0		
Bromoform	ND	ug/L	1.0	1		05/24/20 06:0		
Bromomethane	ND	ug/L	2.0	1		05/24/20 06:0		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		05/24/20 06:0		
Carbon tetrachloride	ND	ug/L	1.0	1		05/24/20 06:0		
Chlorobenzene	ND	ug/L	1.0	1		05/24/20 06:0		
Chloroethane	ND	ug/L	1.0	1		05/24/20 06:0		
Chloroform	ND	ug/L	5.0	1		05/24/20 06:0		
Chloromethane	ND	ug/L	1.0	1		05/24/20 06:0		
2-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 06:0		
4-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 06:0		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/24/20 06:0		
Dibromochloromethane	ND	ug/L	1.0	1		05/24/20 06:0		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/24/20 06:0		
Dibromomethane	ND	ug/L	1.0	1		05/24/20 06:0		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 06:0		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 06:0		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 06:0		
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/24/20 06:0		
1,1-Dichloroethane	ND	ug/L	1.0	1		05/24/20 06:0		
1,2-Dichloroethane	ND	ug/L	1.0	1		05/24/20 06:0		
1,1-Dichloroethane	ND	ug/L	1.0	1		05/24/20 06:0		
cis-1,2-Dichloroethene	ND ND	ug/L ug/L	1.0	1		05/24/20 06:0		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 06:0		
1,2-Dichloropropane	ND	ug/L ug/L	1.0	1		05/24/20 06:0		
1,3-Dichloropropane	ND	ug/L ug/L	1.0	1		05/24/20 06:0		
	ND ND	•	1.0	1		05/24/20 06:0		
2,2-Dichloropropane 1,1-Dichloropropene	ND ND	ug/L ug/L	1.0	1		05/24/20 06:0		
• •	ND ND	•	1.0	1		05/24/20 06:0		
cis-1,3-Dichloropropene		ug/L		1				
rans-1,3-Dichloropropene	ND	ug/L	1.0				1 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		05/24/20 06:0		
Ethylbenzene	ND	ug/L	1.0	1		05/24/20 06:0		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/24/20 06:0		
2-Hexanone	ND	ug/L	5.0	1		05/24/20 06:0		
o-Isopropyltoluene	ND	ug/L	1.0	1		05/24/20 06:0		
Methylene Chloride	ND	ug/L	5.0	1		05/24/20 06:0		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/24/20 06:0		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/24/20 06:0		
Naphthalene -	ND	ug/L	1.0	1		05/24/20 06:0		
Styrene	ND	ug/L	1.0	1		05/24/20 06:0		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 06:0		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 06:0	1 79-34-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-41D	Lab ID: 9247	78032010	Collected: 05/12/2	16:40	Received: 0	5/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/24/20 06:01	l 127-18-4	
Toluene	ND	ug/L	1.0	1		05/24/20 06:01	I 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 06:01	l 87-61-6	IH
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 06:01	I 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/24/20 06:01	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/24/20 06:01	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/24/20 06:01	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/24/20 06:01	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/24/20 06:01	I 96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/24/20 06:01	I 108-05-4	
√inyl chloride	ND	ug/L	1.0	1		05/24/20 06:01	I 75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/24/20 06:01	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		05/24/20 06:01	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/24/20 06:01	l 95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	99	%	70-130	1		05/24/20 06:01	I 460-00-4	
1,2-Dichloroethane-d4 (S)	118	%	70-130	1		05/24/20 06:01	I 17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		05/24/20 06:01	2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		05/21/20 02:47	7 123-91-1	
1,2-Dichloroethane-d4 (S)	97	%	50-150	1		05/21/20 02:47	7 17060-07-0	
Toluene-d8 (S)	105	%	50-150	1		05/21/20 02:47	7 2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM


Sample: MW-1D	Lab ID: 924	78032011	Collected: 05/12/2	20 17:05	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	I Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/24/20 05:4	3 67-64-1	
Benzene	ND	ug/L	1.0	1		05/24/20 05:4		
Bromobenzene	ND	ug/L	1.0	1		05/24/20 05:4		
Bromochloromethane	ND	ug/L	1.0	1		05/24/20 05:4		
Bromodichloromethane	ND	ug/L	1.0	1		05/24/20 05:4		
Bromoform	ND	ug/L	1.0	1		05/24/20 05:4		
Bromomethane	ND	ug/L	2.0	1		05/24/20 05:4		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		05/24/20 05:4		
Carbon tetrachloride	ND	ug/L	1.0	1		05/24/20 05:4		
Chlorobenzene	ND	ug/L	1.0	1		05/24/20 05:4		
Chloroethane	ND	ug/L	1.0	1		05/24/20 05:4		
Chloroform	ND	ug/L	5.0	1		05/24/20 05:4		
Chloromethane	ND	ug/L	1.0	1		05/24/20 05:4		
2-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 05:4		
4-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 05:4		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/24/20 05:4		
Dibromochloromethane	ND	ug/L	1.0	1		05/24/20 05:4		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/24/20 05:4		
Dibromomethane	ND	ug/L	1.0	1		05/24/20 05:4		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/24/20 05:4		
1,3-Dichlorobenzene	ND ND	ug/L	1.0	1		05/24/20 05:4		
1,4-Dichlorobenzene	ND ND	ug/L	1.0	1		05/24/20 05:4		
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/24/20 05:4		
1,1-Dichloroethane	2.6	ug/L	1.0	1		05/24/20 05:4		
1,2-Dichloroethane	ND	ug/L	1.0	1		05/24/20 05:4		
1,1-Dichloroethane	16.5	ug/L	1.0	1		05/24/20 05:4		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 05:4		
trans-1,2-Dichloroethene	ND ND	ug/L	1.0	1		05/24/20 05:4		
1,2-Dichloropropane	ND ND	ug/L	1.0	1		05/24/20 05:4		
1,3-Dichloropropane	ND ND	ug/L ug/L	1.0	1		05/24/20 05:4		
2,2-Dichloropropane	ND ND	ug/L ug/L	1.0	1		05/24/20 05:4		
1,1-Dichloropropene	ND ND	ug/L ug/L	1.0	1		05/24/20 05:4		
cis-1,3-Dichloropropene	ND ND	ug/L ug/L	1.0	1			3 10061-01-5	
· ·	ND ND	•	1.0	1			3 10061-01-5	
rans-1,3-Dichloropropene Diisopropyl ether		ug/L						
	ND	ug/L	1.0	1		05/24/20 05:4		
Ethylbenzene Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/24/20 05:4 05/24/20 05:4		
*	ND	ug/L	1.0	1				
2-Hexanone	ND	ug/L	5.0	1		05/24/20 05:4		
o-Isopropyltoluene	ND	ug/L	1.0	1		05/24/20 05:4		
Methylene Chloride	ND	ug/L	5.0	1		05/24/20 05:4		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/24/20 05:4		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/24/20 05:4		
Naphthalene	ND	ug/L	1.0	1		05/24/20 05:4		
Styrene	ND	ug/L	1.0	1		05/24/20 05:4		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 05:4		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 05:4	3 79-34-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

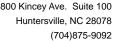
Date: 05/28/2020 02:20 PM

Sample: MW-1D	Lab ID: 9247	78032011	Collected: 05/12/2	0 17:05	Received: 0	5/18/20 09:12 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/24/20 05:43	127-18-4	
Toluene	ND	ug/L	1.0	1		05/24/20 05:43	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 05:43	87-61-6	IH
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 05:43	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/24/20 05:43	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/24/20 05:43	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/24/20 05:43	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/24/20 05:43	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/24/20 05:43	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/24/20 05:43	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		05/24/20 05:43	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/24/20 05:43	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		05/24/20 05:43	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/24/20 05:43	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	102	%	70-130	1		05/24/20 05:43	460-00-4	
1,2-Dichloroethane-d4 (S)	111	%	70-130	1		05/24/20 05:43	17060-07-0	
Toluene-d8 (S)	106	%	70-130	1		05/24/20 05:43	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	12.8	ug/L	2.0	1		05/21/20 03:07	123-91-1	
1,2-Dichloroethane-d4 (S)	97	%	50-150	1		05/21/20 03:07	17060-07-0	
Toluene-d8 (S)	100	%	50-150	1		05/21/20 03:07	2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-22D	Lab ID: 924	78032012	Collected: 05/12/2	20 17:20	Received: 05/18/20 09:	12 Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyz	zed CAS No.	Qua
3260D MSV Low Level	Analytical Met	hod: EPA 82	260D				
	Pace Analytica	al Services -	Charlotte				
Acetone	ND	ug/L	25.0	1	05/24/20	03:55 67-64-1	
Benzene	ND	ug/L	1.0	1	05/24/20	03:55 71-43-2	
Bromobenzene	ND	ug/L	1.0	1	05/24/20	03:55 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1	05/24/20	03:55 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1	05/24/20	03:55 75-27-4	
Bromoform	ND	ug/L	1.0	1	05/24/20	03:55 75-25-2	
Bromomethane	ND	ug/L	2.0	1		03:55 74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		03:55 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		03:55 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		03:55 108-90-7	
Chloroethane	ND	ug/L	1.0	1		03:55 75-00-3	
Chloroform	ND	ug/L	5.0	1		03:55 67-66-3	
Chloromethane	ND	ug/L	1.0	1		03:55 74-87-3	
2-Chlorotoluene	ND ND	ug/L	1.0	1		03:55 95-49-8	
4-Chlorotoluene	ND ND	-		1		03:55 106-43-4	
		ug/L	1.0			03:55 96-12-8	
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1			
Dibromochloromethane	ND	ug/L	1.0	1		03:55 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		03:55 106-93-4	
Dibromomethane	ND	ug/L	1.0	1		03:55 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		03:55 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		03:55 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		03:55 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		03:55 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		03:55 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1	05/24/20	03:55 107-06-2	
1,1-Dichloroethene	6.2	ug/L	1.0	1	05/24/20	03:55 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1	05/24/20	03:55 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1	05/24/20	03:55 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1	05/24/20	03:55 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1	05/24/20	03:55 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1	05/24/20	03:55 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1	05/24/20	03:55 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1	05/24/20	03:55 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1	05/24/20	03:55 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1	05/24/20	03:55 108-20-3	
Ethylbenzene	ND	ug/L	1.0	1		03:55 100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		03:55 87-68-3	
2-Hexanone	ND	ug/L	5.0	1		03:55 591-78-6	
o-Isopropyltoluene	ND	ug/L	1.0	1		03:55 99-87-6	
Methylene Chloride	ND ND	ug/L	5.0	1		03:55 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ND	ug/L	5.0	1		03:55 108-10-1	
Methyl-tert-butyl ether	ND ND	-	1.0	1		03:55 1634-04-4	
•	ND ND	ug/L	1.0			03:55 91-20-3	
Naphthalene Sturene		ug/L		1			
Styrene	ND	ug/L	1.0	1		03:55 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1	05/24/20	03:55 630-20-6	



Date: 05/28/2020 02:20 PM

ANALYTICAL RESULTS

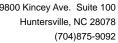
Project: Kop-Flex onsite
Pace Project No.: 92478032

Sample: MW-22D	Lab ID: 9247	78032012	Collected: 05/12/2	20 17:20	Received: 0	5/18/20 09:12 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/24/20 03:55	127-18-4	
Toluene	ND	ug/L	1.0	1		05/24/20 03:55	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:55	87-61-6	IH
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 03:55	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/24/20 03:55	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/24/20 03:55	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/24/20 03:55	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/24/20 03:55	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/24/20 03:55	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/24/20 03:55	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		05/24/20 03:55	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/24/20 03:55	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		05/24/20 03:55	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/24/20 03:55	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	105	%	70-130	1		05/24/20 03:55	460-00-4	
1,2-Dichloroethane-d4 (S)	114	%	70-130	1		05/24/20 03:55	17060-07-0	
Toluene-d8 (S)	102	%	70-130	1		05/24/20 03:55	2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	4.6	ug/L	2.0	1		05/21/20 03:27	123-91-1	
1,2-Dichloroethane-d4 (S)	94	%	50-150	1		05/21/20 03:27	17060-07-0	
Toluene-d8 (S)	106	%	50-150	1		05/21/20 03:27	2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-04	Lab ID: 924	78032013	Collected: 05/13/2	20 10:10	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/26/20 17:1	3 67-64-1	
Benzene	ND	ug/L	1.0	1		05/26/20 17:1	3 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/26/20 17:1	3 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/26/20 17:1	3 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/26/20 17:1	3 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/26/20 17:1	3 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/26/20 17:1	3 74-83-9	IH
2-Butanone (MEK)	ND	ug/L	5.0	1		05/26/20 17:1	3 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		05/26/20 17:1	3 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		05/26/20 17:1		
Chloroethane	ND	ug/L	1.0	1		05/26/20 17:1		
Chloroform	ND	ug/L	5.0	1		05/26/20 17:1		
Chloromethane	ND	ug/L	1.0	1		05/26/20 17:1		
2-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 17:1		
4-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 17:1		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/26/20 17:1		
Dibromochloromethane	ND ND	ug/L	1.0	1		05/26/20 17:1		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/26/20 17:1		
Dibromomethane	ND ND	ug/L	1.0	1		05/26/20 17:1		
1,2-Dichlorobenzene	ND ND	ug/L	1.0	1		05/26/20 17:1		
1,3-Dichlorobenzene	ND ND	-	1.0	1		05/26/20 17:1		
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	ug/L	1.0	1		05/26/20 17:1		
Dichlorodifluoromethane	ND ND	ug/L	1.0	1		05/26/20 17:1		
		ug/L						
1,1-Dichloroethane	58.6	ug/L	1.0	1		05/26/20 17:1		
1,2-Dichloroethane	1.3	ug/L	1.0	1		05/26/20 17:1		
1,1-Dichloroethene	149	ug/L	1.0	1		05/26/20 17:1		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 17:1		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 17:1		
1,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 17:1		
1,3-Dichloropropane	ND	ug/L	1.0	1		05/26/20 17:1		
2,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 17:1		
1,1-Dichloropropene	ND	ug/L	1.0	1		05/26/20 17:1		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		05/26/20 17:1		
Ethylbenzene	ND	ug/L	1.0	1		05/26/20 17:1		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/26/20 17:1		IH
2-Hexanone	ND	ug/L	5.0	1		05/26/20 17:1		v1
o-Isopropyltoluene	ND	ug/L	1.0	1		05/26/20 17:1		
Methylene Chloride	ND	ug/L	5.0	1		05/26/20 17:1	3 75-09-2	v1
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/26/20 17:1		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/26/20 17:1	3 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		05/26/20 17:1	3 91-20-3	
Styrene	ND	ug/L	1.0	1		05/26/20 17:1	3 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 17:1	3 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 17:1	3 79-34-5	



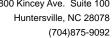
Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-04	Lab ID: 9247	78032013	Collected: 05/13/2	20 10:10	Received: 0	5/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/26/20 17:13	3 127-18-4	
Toluene	ND	ug/L	1.0	1		05/26/20 17:13	3 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 17:13	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 17:13	3 120-82-1	
1,1,1-Trichloroethane	1.4	ug/L	1.0	1		05/26/20 17:13	3 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/26/20 17:13	3 79-00-5	
Trichloroethene	1.2	ug/L	1.0	1		05/26/20 17:13	3 79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/26/20 17:13	3 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/26/20 17:13	3 96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/26/20 17:13	3 108-05-4	v1
Vinyl chloride	ND	ug/L	1.0	1		05/26/20 17:13	3 75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/26/20 17:13	3 1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		05/26/20 17:13	3 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/26/20 17:13	3 95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	104	%	70-130	1		05/26/20 17:13	3 460-00-4	
1,2-Dichloroethane-d4 (S)	118	%	70-130	1		05/26/20 17:13	3 17060-07-0	
Toluene-d8 (S)	103	%	70-130	1		05/26/20 17:13	3 2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	84.6	ug/L	2.0	1		05/21/20 14:52	2 123-91-1	
1,2-Dichloroethane-d4 (S)	97	%	50-150	1		05/21/20 14:52	2 17060-07-0	
Toluene-d8 (S)	113	%	50-150	1		05/21/20 14:52	2 2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM


Sample: MW-20	Lab ID: 924	78032014	Collected: 05/13/2	20 10:30	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	50.0	2		05/26/20 21:30	0 67-64-1	
Benzene	ND	ug/L	2.0	2		05/26/20 21:30	71-43-2	
Bromobenzene	ND	ug/L	2.0	2		05/26/20 21:30	108-86-1	
Bromochloromethane	ND	ug/L	2.0	2		05/26/20 21:30	74-97-5	
Bromodichloromethane	ND	ug/L	2.0	2		05/26/20 21:30		
Bromoform	ND	ug/L	2.0	2		05/26/20 21:30		
Bromomethane	ND	ug/L	4.0	2		05/26/20 21:30		IK
2-Butanone (MEK)	ND	ug/L	10.0	2		05/26/20 21:30		
Carbon tetrachloride	ND	ug/L	2.0	2		05/26/20 21:30		
Chlorobenzene	ND	ug/L	2.0	2		05/26/20 21:30		
Chloroethane	ND ND	ug/L ug/L	2.0	2		05/26/20 21:30		
Chloroform	ND ND	_	10.0	2		05/26/20 21:30		
		ug/L						
Chloromethane	ND	ug/L	2.0	2		05/26/20 21:30		
2-Chlorotoluene	ND	ug/L	2.0	2		05/26/20 21:30		
4-Chlorotoluene	ND	ug/L	2.0	2		05/26/20 21:30		
1,2-Dibromo-3-chloropropane	ND	ug/L	10.0	2		05/26/20 21:30		
Dibromochloromethane	ND	ug/L	2.0	2		05/26/20 21:30		
I,2-Dibromoethane (EDB)	ND	ug/L	2.0	2		05/26/20 21:30) 106-93-4	
Dibromomethane	ND	ug/L	2.0	2		05/26/20 21:30	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	2.0	2		05/26/20 21:30	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	2.0	2		05/26/20 21:30	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	2.0	2		05/26/20 21:30	106-46-7	
Dichlorodifluoromethane	ND	ug/L	2.0	2		05/26/20 21:30	75-71-8	
1,1-Dichloroethane	188	ug/L	2.0	2		05/26/20 21:30	75-34-3	
1,2-Dichloroethane	7.7	ug/L	2.0	2		05/26/20 21:30	107-06-2	
1,1-Dichloroethene	232	ug/L	2.0	2		05/26/20 21:30	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	2.0	2		05/26/20 21:30	156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	2.0	2		05/26/20 21:30	156-60-5	
1,2-Dichloropropane	ND	ug/L	2.0	2		05/26/20 21:30		
1,3-Dichloropropane	ND	ug/L	2.0	2		05/26/20 21:30		
2,2-Dichloropropane	ND	ug/L	2.0	2		05/26/20 21:30		
1,1-Dichloropropene	ND	ug/L	2.0	2		05/26/20 21:30		
cis-1,3-Dichloropropene	ND	ug/L	2.0	2		05/26/20 21:30		
	ND	•	2.0	2		05/26/20 21:30		
rans-1,3-Dichloropropene		ug/L	_					
Diisopropyl ether	ND	ug/L	2.0	2		05/26/20 21:30		
Ethylbenzene	ND	ug/L	2.0	2		05/26/20 21:30		
Hexachloro-1,3-butadiene	ND	ug/L	2.0	2		05/26/20 21:30		
2-Hexanone	ND	ug/L	10.0	2		05/26/20 21:30		
o-Isopropyltoluene	ND	ug/L	2.0	2		05/26/20 21:30		
Methylene Chloride	ND	ug/L	10.0	2		05/26/20 21:30		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	2		05/26/20 21:30		
Methyl-tert-butyl ether	ND	ug/L	2.0	2		05/26/20 21:30	1634-04-4	
Naphthalene	ND	ug/L	2.0	2		05/26/20 21:30	91-20-3	
Styrene	ND	ug/L	2.0	2		05/26/20 21:30	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	2		05/26/20 21:30	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	2		05/26/20 21:30		

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-20	Lab ID: 9247	78032014	Collected: 05/13/2	0 10:30	Received: 0	5/18/20 09:12 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	2.0	2		05/26/20 21:30	127-18-4	
Toluene	ND	ug/L	2.0	2		05/26/20 21:30	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	2.0	2		05/26/20 21:30	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	2.0	2		05/26/20 21:30	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	2.0	2		05/26/20 21:30	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	2.0	2		05/26/20 21:30	79-00-5	
Trichloroethene	ND	ug/L	2.0	2		05/26/20 21:30	79-01-6	
Trichlorofluoromethane	ND	ug/L	2.0	2		05/26/20 21:30	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	2.0	2		05/26/20 21:30	96-18-4	
√inyl acetate	ND	ug/L	4.0	2		05/26/20 21:30	108-05-4	
√inyl chloride	ND	ug/L	2.0	2		05/26/20 21:30	75-01-4	
Xylene (Total)	ND	ug/L	2.0	2		05/26/20 21:30	1330-20-7	
n&p-Xylene	ND	ug/L	4.0	2		05/26/20 21:30	179601-23-1	
o-Xylene	ND	ug/L	2.0	2		05/26/20 21:30	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	101	%	70-130	2		05/26/20 21:30	460-00-4	
1,2-Dichloroethane-d4 (S)	96	%	70-130	2		05/26/20 21:30	17060-07-0	
Toluene-d8 (S)	101	%	70-130	2		05/26/20 21:30	2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	1000	ug/L	40.0	20		05/21/20 16:10	123-91-1	
1,2-Dichloroethane-d4 (S)	100	%	50-150	20		05/21/20 16:10	17060-07-0	
Toluene-d8 (S)	110	%	50-150	20		05/21/20 16:10	2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM


Sample: MW-09	Lab ID: 924	78032015	Collected: 05/13/2	20 10:45	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytic	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/26/20 20:35	5 67-64-1	
Benzene	ND	ug/L	1.0	1		05/26/20 20:35	5 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/26/20 20:35	5 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/26/20 20:35	5 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/26/20 20:35	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/26/20 20:35	5 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/26/20 20:35	5 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		05/26/20 20:35		
Carbon tetrachloride	ND	ug/L	1.0	1		05/26/20 20:35		
Chlorobenzene	ND	ug/L	1.0	1		05/26/20 20:35		
Chloroethane	ND	ug/L	1.0	1		05/26/20 20:35		
Chloroform	ND ND	ug/L	5.0	1		05/26/20 20:35		
Chloromethane	ND	ug/L	1.0	1		05/26/20 20:35		
2-Chlorotoluene	ND ND	•	1.0	1		05/26/20 20:35		
		ug/L						
4-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 20:35		
I,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/26/20 20:35		
Dibromochloromethane	ND	ug/L	1.0	1		05/26/20 20:35	_	
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/26/20 20:35		
Dibromomethane	ND	ug/L	1.0	1		05/26/20 20:35		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 20:35		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 20:35		
,4-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 20:35		
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/26/20 20:35		
1,1-Dichloroethane	2.6	ug/L	1.0	1		05/26/20 20:35		
1,2-Dichloroethane	ND	ug/L	1.0	1		05/26/20 20:35	5 107-06-2	
1,1-Dichloroethene	50.5	ug/L	1.0	1		05/26/20 20:35	5 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 20:35	5 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 20:35	5 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 20:35	5 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		05/26/20 20:35	5 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 20:35	5 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		05/26/20 20:35	5 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		05/26/20 20:35	5 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/26/20 20:35	5 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		05/26/20 20:35		
Ethylbenzene	ND	ug/L	1.0	1		05/26/20 20:35		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/26/20 20:35		
2-Hexanone	ND	ug/L	5.0	1		05/26/20 20:35		
o-Isopropyltoluene	ND	ug/L	1.0	1		05/26/20 20:35		
Methylene Chloride	ND	ug/L	5.0	1		05/26/20 20:35		
4-Methyl-2-pentanone (MIBK)	ND ND	-	5.0	1		05/26/20 20:35		
		ug/L						
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/26/20 20:35		
Naphthalene	ND	ug/L	1.0	1		05/26/20 20:35		
Styrene	ND	ug/L	1.0	1		05/26/20 20:35		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 20:35		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 20:35	5 79-34-5	

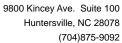
Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-09	Lab ID: 924	78032015	Collected: 05/13/2	0 10:45	Received: 0	5/18/20 09:12 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/26/20 20:35	127-18-4	
Toluene	ND	ug/L	1.0	1		05/26/20 20:35	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 20:35	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 20:35	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/26/20 20:35	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/26/20 20:35	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/26/20 20:35	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/26/20 20:35	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/26/20 20:35	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/26/20 20:35	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		05/26/20 20:35	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/26/20 20:35	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		05/26/20 20:35	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/26/20 20:35	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	99	%	70-130	1		05/26/20 20:35	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	70-130	1		05/26/20 20:35	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		05/26/20 20:35	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	18.7	ug/L	2.0	1		05/21/20 15:12	123-91-1	
1,2-Dichloroethane-d4 (S)	101	%	50-150	1		05/21/20 15:12	17060-07-0	
Toluene-d8 (S)	120	%	50-150	1		05/21/20 15:12	2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM


Sample: MW-23D	Lab ID: 924	78032016	Collected: 05/13/2	20 11:00	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	nod: EPA 82	260D					
	Pace Analytica	I Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/26/20 20:5	3 67-64-1	
Benzene	ND	ug/L	1.0	1		05/26/20 20:5	3 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/26/20 20:5	3 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/26/20 20:5	3 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/26/20 20:5	3 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/26/20 20:5	3 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/26/20 20:5	3 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		05/26/20 20:5	3 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		05/26/20 20:5	3 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		05/26/20 20:5		
Chloroethane	ND	ug/L	1.0	1		05/26/20 20:5		
Chloroform	ND	ug/L	5.0	1		05/26/20 20:5		
Chloromethane	ND	ug/L	1.0	1		05/26/20 20:5		
2-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 20:5		
4-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 20:5		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/26/20 20:5		
Dibromochloromethane	ND ND	ug/L	1.0	1		05/26/20 20:5		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/26/20 20:5	-	
Dibromomethane	ND ND	ug/L ug/L	1.0	1		05/26/20 20:5		
1,2-Dichlorobenzene	ND ND	-	1.0	1		05/26/20 20:5		
•		ug/L						
1,3-Dichlorobenzene	ND	ug/L	1.0	1 1		05/26/20 20:5		
1,4-Dichlorobenzene	ND	ug/L	1.0			05/26/20 20:5		
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/26/20 20:5		
1,1-Dichloroethane	35.2	ug/L	1.0	1		05/26/20 20:5		
1,2-Dichloroethane	1.8	ug/L	1.0	1		05/26/20 20:5		
1,1-Dichloroethene	142	ug/L	1.0	1		05/26/20 20:5		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 20:5		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 20:5		
1,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 20:5		
1,3-Dichloropropane	ND	ug/L	1.0	1		05/26/20 20:5		
2,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 20:5		
1,1-Dichloropropene	ND	ug/L	1.0	1		05/26/20 20:5		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/26/20 20:5	3 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		05/26/20 20:5	3 108-20-3	
Ethylbenzene	ND	ug/L	1.0	1		05/26/20 20:5	3 100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/26/20 20:5	3 87-68-3	
2-Hexanone	ND	ug/L	5.0	1		05/26/20 20:5	3 591-78-6	
p-Isopropyltoluene	ND	ug/L	1.0	1		05/26/20 20:5	3 99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		05/26/20 20:5	3 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/26/20 20:5	3 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/26/20 20:5	3 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		05/26/20 20:5	3 91-20-3	
Styrene	ND	ug/L	1.0	1		05/26/20 20:5		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 20:5		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 20:5		

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-23D	Lab ID: 924	78032016	Collected: 05/13/2	0 11:00	Received: 0	5/18/20 09:12 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/26/20 20:53	127-18-4	
Toluene	ND	ug/L	1.0	1		05/26/20 20:53	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 20:53	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 20:53	120-82-1	
1,1,1-Trichloroethane	13.6	ug/L	1.0	1		05/26/20 20:53	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/26/20 20:53	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/26/20 20:53	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/26/20 20:53	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/26/20 20:53	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/26/20 20:53	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		05/26/20 20:53	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/26/20 20:53	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		05/26/20 20:53	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/26/20 20:53	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	95	%	70-130	1		05/26/20 20:53	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	70-130	1		05/26/20 20:53	17060-07-0	
Toluene-d8 (S)	99	%	70-130	1		05/26/20 20:53	2037-26-5	
3260D MSV SIM	Analytical Meth	nod: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	112	ug/L	4.0	2		05/21/20 16:30	123-91-1	
1,2-Dichloroethane-d4 (S)	102	%	50-150	2		05/21/20 16:30	17060-07-0	
Toluene-d8 (S)	110	%	50-150	2		05/21/20 16:30	2037-26-5	

Project: Kop-Flex onsite
Pace Project No: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-27D	Lab ID: 924	78032017	Collected: 05/13/2	20 13:10	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/26/20 20:10	6 67-64-1	
Benzene	ND	ug/L	1.0	1		05/26/20 20:10	6 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/26/20 20:10	5 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/26/20 20:10	6 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/26/20 20:10	6 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/26/20 20:10	6 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/26/20 20:10		IK
2-Butanone (MEK)	ND	ug/L	5.0	1		05/26/20 20:10		
Carbon tetrachloride	ND	ug/L	1.0	1		05/26/20 20:10		
Chlorobenzene	ND	ug/L	1.0	1		05/26/20 20:10		
Chloroethane	ND ND	-	1.0	1		05/26/20 20:10		
Chloroform	ND ND	ug/L	5.0	1		05/26/20 20:10		
		ug/L						
Chloromethane	ND	ug/L	1.0	1		05/26/20 20:10		
2-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 20:10		
4-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 20:10		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/26/20 20:10		
Dibromochloromethane	ND	ug/L	1.0	1		05/26/20 20:10	-	
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/26/20 20:10		
Dibromomethane	ND	ug/L	1.0	1		05/26/20 20:10	6 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 20:10	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 20:10	5 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 20:10	5 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/26/20 20:10	6 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		05/26/20 20:10	6 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		05/26/20 20:10	6 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		05/26/20 20:10	6 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 20:10	5 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 20:10	3 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 20:10		
1,3-Dichloropropane	ND	ug/L	1.0	1		05/26/20 20:10		
2,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 20:10		
1,1-Dichloropropene	ND ND	ug/L	1.0	1		05/26/20 20:10		
	ND		1.0	1		05/26/20 20:10		
cis-1,3-Dichloropropene		ug/L		1				
rans-1,3-Dichloropropene	ND	ug/L	1.0			05/26/20 20:10		
Diisopropyl ether	ND	ug/L	1.0	1		05/26/20 20:10		
Ethylbenzene	ND	ug/L	1.0	1		05/26/20 20:10		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/26/20 20:10		
2-Hexanone	ND	ug/L	5.0	1		05/26/20 20:10		
o-Isopropyltoluene	ND	ug/L	1.0	1		05/26/20 20:10		
Methylene Chloride	ND	ug/L	5.0	1		05/26/20 20:10	6 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/26/20 20:10	5 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/26/20 20:10	6 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		05/26/20 20:10	6 91-20-3	
Styrene	ND	ug/L	1.0	1		05/26/20 20:10	6 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 20:10		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 20:10		

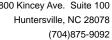
Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-27D	Lab ID: 924	78032017	Collected: 05/13/2	20 13:10	Received: 05	5/18/20 09:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/26/20 20:16	127-18-4	
Toluene	ND	ug/L	1.0	1		05/26/20 20:16	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 20:16	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 20:16	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/26/20 20:16	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/26/20 20:16	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/26/20 20:16	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/26/20 20:16	75-69-4	
,2,3-Trichloropropane	ND	ug/L	1.0	1		05/26/20 20:16	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		05/26/20 20:16	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		05/26/20 20:16	75-01-4	
(ylene (Total)	ND	ug/L	1.0	1		05/26/20 20:16	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		05/26/20 20:16	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/26/20 20:16	95-47-6	
Surrogates		-						
I-Bromofluorobenzene (S)	99	%	70-130	1		05/26/20 20:16	460-00-4	
,2-Dichloroethane-d4 (S)	95	%	70-130	1		05/26/20 20:16	17060-07-0	
Toluene-d8 (S)	99	%	70-130	1		05/26/20 20:16	2037-26-5	
3260D MSV SIM	Analytical Meth	nod: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		05/21/20 13:53	123-91-1	
1,2-Dichloroethane-d4 (S)	97	%	50-150	1		05/21/20 13:53	17060-07-0	
Foluene-d8 (S)	106	%	50-150	1		05/21/20 13:53	2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM


Sample: Trip Blank A	Lab ID: 924	78032018	Collected: 05/13/2	20 00:00	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/26/20 18:0	8 67-64-1	
Benzene	ND	ug/L	1.0	1		05/26/20 18:0		
Bromobenzene	ND	ug/L	1.0	1		05/26/20 18:0		
Bromochloromethane	ND	ug/L	1.0	1		05/26/20 18:0		
Bromodichloromethane	ND	ug/L	1.0	1		05/26/20 18:0		
Bromoform	ND	ug/L	1.0	1		05/26/20 18:0		
Bromomethane	ND	ug/L	2.0	1		05/26/20 18:0		IK
2-Butanone (MEK)	ND	ug/L	5.0	1		05/26/20 18:0		
Carbon tetrachloride	ND	ug/L	1.0	1		05/26/20 18:0		
Chlorobenzene	ND	ug/L	1.0	1		05/26/20 18:0		
Chloroethane	ND	ug/L	1.0	1		05/26/20 18:0		
Chloroform	ND	ug/L	5.0	1		05/26/20 18:0		
Chloromethane	ND	ug/L	1.0	1		05/26/20 18:0		
2-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 18:0		
1-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 18:0		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/26/20 18:0	8 96-12-8	
Dibromochloromethane	ND	ug/L	1.0	1		05/26/20 18:0	8 124-48-1	
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/26/20 18:0	8 106-93-4	
Dibromomethane	ND	ug/L	1.0	1		05/26/20 18:0	8 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 18:0	8 95-50-1	
,3-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 18:0	8 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 18:0	8 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/26/20 18:0	8 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		05/26/20 18:0	8 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		05/26/20 18:0	8 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		05/26/20 18:0	8 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 18:0	8 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 18:0	8 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 18:0	8 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		05/26/20 18:0	8 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 18:0	8 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		05/26/20 18:0	8 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		05/26/20 18:0	8 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/26/20 18:0	8 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		05/26/20 18:0	8 108-20-3	
Ethylbenzene	ND	ug/L	1.0	1		05/26/20 18:0	8 100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/26/20 18:0	8 87-68-3	
2-Hexanone	ND	ug/L	5.0	1		05/26/20 18:0	8 591-78-6	
o-Isopropyltoluene	ND	ug/L	1.0	1		05/26/20 18:0	8 99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		05/26/20 18:0		
I-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/26/20 18:0		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/26/20 18:0		
Naphthalene	ND	ug/L	1.0	1		05/26/20 18:0		
Styrene	ND	ug/L	1.0	1		05/26/20 18:0		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 18:0		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 18:0		

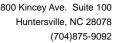
Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: Trip Blank A	Lab ID: 924	78032018	Collected: 05/13/2	20 00:00	Received: 0	5/18/20 09:12 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/26/20 18:08	127-18-4	
Toluene	ND	ug/L	1.0	1		05/26/20 18:08	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 18:08	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 18:08	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/26/20 18:08	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/26/20 18:08	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/26/20 18:08	79-01-6	
richlorofluoromethane	ND	ug/L	1.0	1		05/26/20 18:08	75-69-4	
,2,3-Trichloropropane	ND	ug/L	1.0	1		05/26/20 18:08	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		05/26/20 18:08	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		05/26/20 18:08	75-01-4	
(ylene (Total)	ND	ug/L	1.0	1		05/26/20 18:08	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		05/26/20 18:08	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/26/20 18:08	95-47-6	
Surrogates		•						
I-Bromofluorobenzene (S)	97	%	70-130	1		05/26/20 18:08	460-00-4	
,2-Dichloroethane-d4 (S)	93	%	70-130	1		05/26/20 18:08	17060-07-0	
oluene-d8 (S)	98	%	70-130	1		05/26/20 18:08	2037-26-5	
260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		05/21/20 12:52	123-91-1	
,2-Dichloroethane-d4 (S)	96	%	50-150	1		05/21/20 12:52	17060-07-0	
oluene-d8 (S)	105	%	50-150	1		05/21/20 12:52	2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM


Sample: Trip Blank B	Lab ID: 924	78032019	Collected: 05/13/2	20 00:00	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/26/20 18:26	6 67-64-1	
Benzene	ND	ug/L	1.0	1		05/26/20 18:26	71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/26/20 18:26	5 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/26/20 18:26	6 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/26/20 18:26	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/26/20 18:26	6 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/26/20 18:26	6 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		05/26/20 18:26		
Carbon tetrachloride	ND	ug/L	1.0	1		05/26/20 18:26		
Chlorobenzene	ND	ug/L	1.0	1		05/26/20 18:26		
Chloroethane	ND	ug/L	1.0	1		05/26/20 18:26		
Chloroform	ND ND	ug/L	5.0	1		05/26/20 18:26		
Chloromethane	ND ND	•		1		05/26/20 18:26		
		ug/L	1.0					
2-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 18:26		
4-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 18:26		
I,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/26/20 18:26		
Dibromochloromethane	ND	ug/L	1.0	1		05/26/20 18:26	_	
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/26/20 18:26		
Dibromomethane	ND	ug/L	1.0	1		05/26/20 18:26	6 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 18:26	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 18:26	5 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 18:26	5 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/26/20 18:26	5 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		05/26/20 18:26	6 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		05/26/20 18:26	6 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		05/26/20 18:26	6 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 18:26	5 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 18:26	5 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 18:26		
1,3-Dichloropropane	ND	ug/L	1.0	1		05/26/20 18:26		
2,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 18:26		
1,1-Dichloropropene	ND	ug/L	1.0	1		05/26/20 18:26		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		05/26/20 18:26		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/26/20 18:26		
	ND ND	•	1.0	•				
Diisopropyl ether		ug/L		1		05/26/20 18:26		
Ethylbenzene	ND	ug/L	1.0	1		05/26/20 18:26		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/26/20 18:26		
2-Hexanone	ND	ug/L	5.0	1		05/26/20 18:26		
p-Isopropyltoluene	ND	ug/L	1.0	1		05/26/20 18:26		
Methylene Chloride	ND	ug/L	5.0	1		05/26/20 18:26		
1-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/26/20 18:26		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/26/20 18:26	6 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		05/26/20 18:26	91-20-3	
Styrene	ND	ug/L	1.0	1		05/26/20 18:26	6 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 18:26	6 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 18:26	6 79-34-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: Trip Blank B	Lab ID: 924	78032019	Collected: 05/13/2	20 00:00	Received: 05	5/18/20 09:12 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/26/20 18:26	127-18-4	
Toluene	ND	ug/L	1.0	1		05/26/20 18:26	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 18:26	87-61-6	
,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 18:26	120-82-1	
,1,1-Trichloroethane	ND	ug/L	1.0	1		05/26/20 18:26	71-55-6	
,1,2-Trichloroethane	ND	ug/L	1.0	1		05/26/20 18:26	79-00-5	
richloroethene	ND	ug/L	1.0	1		05/26/20 18:26	79-01-6	
richlorofluoromethane	ND	ug/L	1.0	1		05/26/20 18:26	75-69-4	
,2,3-Trichloropropane	ND	ug/L	1.0	1		05/26/20 18:26	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		05/26/20 18:26	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		05/26/20 18:26	75-01-4	
(ylene (Total)	ND	ug/L	1.0	1		05/26/20 18:26	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		05/26/20 18:26	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/26/20 18:26	95-47-6	
Surrogates								
-Bromofluorobenzene (S)	101	%	70-130	1		05/26/20 18:26	460-00-4	
,2-Dichloroethane-d4 (S)	92	%	70-130	1		05/26/20 18:26	17060-07-0	
oluene-d8 (S)	98	%	70-130	1		05/26/20 18:26	2037-26-5	
260D MSV SIM	Analytical Meth	nod: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		05/21/20 13:13	123-91-1	
,2-Dichloroethane-d4 (S)	92	%	50-150	1		05/21/20 13:13	17060-07-0	
Foluene-d8 (S)	105	%	50-150	1		05/21/20 13:13	2037-26-5	

Project: Kop-Flex onsite
Pace Project No: 92478032

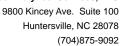
Date: 05/28/2020 02:20 PM


Sample: MW-44	Lab ID: 924	78032020	Collected: 05/13/2	20 17:30	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/26/20 19:0	3 67-64-1	
Benzene	ND	ug/L	1.0	1		05/26/20 19:0	3 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/26/20 19:0	3 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/26/20 19:0	3 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/26/20 19:0	3 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/26/20 19:0	3 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/26/20 19:0	3 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		05/26/20 19:0		
Carbon tetrachloride	ND	ug/L	1.0	1		05/26/20 19:0		
Chlorobenzene	ND	ug/L	1.0	1		05/26/20 19:0		
Chloroethane	ND	ug/L	1.0	1		05/26/20 19:0		
Chloroform	ND ND	ug/L ug/L	5.0	1		05/26/20 19:0		
Chloromethane	ND ND	•	1.0	1		05/26/20 19:0		
		ug/L						
2-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 19:0		
4-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 19:0		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/26/20 19:0		
Dibromochloromethane	ND	ug/L	1.0	1		05/26/20 19:0	-	
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/26/20 19:0		
Dibromomethane	ND	ug/L	1.0	1		05/26/20 19:0	3 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 19:0	3 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 19:0	3 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 19:0	3 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/26/20 19:0	3 75-71-8	
1,1-Dichloroethane	3.0	ug/L	1.0	1		05/26/20 19:0	3 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		05/26/20 19:0	3 107-06-2	
1,1-Dichloroethene	4.1	ug/L	1.0	1		05/26/20 19:0	3 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 19:0	3 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 19:0	3 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 19:0		
1,3-Dichloropropane	ND	ug/L	1.0	1		05/26/20 19:0		
2,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 19:0		
1,1-Dichloropropene	ND	ug/L	1.0	1		05/26/20 19:0		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/26/20 19:0		
	ND ND	•	1.0					
Diisopropyl ether		ug/L		1		05/26/20 19:0		
Ethylbenzene	ND	ug/L	1.0	1		05/26/20 19:0		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/26/20 19:0		
2-Hexanone	ND	ug/L	5.0	1		05/26/20 19:0		
o-Isopropyltoluene	ND	ug/L	1.0	1		05/26/20 19:0		
Methylene Chloride	ND	ug/L	5.0	1		05/26/20 19:0		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/26/20 19:0		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/26/20 19:0	3 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		05/26/20 19:0		
Styrene	ND	ug/L	1.0	1		05/26/20 19:0	3 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 19:0	3 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 19:0	3 79-34-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

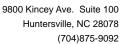
Sample: MW-44	Lab ID: 924	78032020	Collected: 05/13/2	20 17:30	Received: 0	5/18/20 09:12 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/26/20 19:03	127-18-4	
Toluene	ND	ug/L	1.0	1		05/26/20 19:03	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 19:03	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 19:03	120-82-1	
1,1,1-Trichloroethane	11.9	ug/L	1.0	1		05/26/20 19:03	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/26/20 19:03	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/26/20 19:03	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/26/20 19:03	75-69-4	
,2,3-Trichloropropane	ND	ug/L	1.0	1		05/26/20 19:03	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		05/26/20 19:03	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		05/26/20 19:03	75-01-4	
Kylene (Total)	ND	ug/L	1.0	1		05/26/20 19:03	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		05/26/20 19:03	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/26/20 19:03	95-47-6	
Surrogates		Ü						
4-Bromofluorobenzene (S)	98	%	70-130	1		05/26/20 19:03	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	70-130	1		05/26/20 19:03	17060-07-0	
Toluene-d8 (S)	99	%	70-130	1		05/26/20 19:03	2037-26-5	
260D MSV SIM	Analytical Meth	nod: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	17.7	ug/L	2.0	1		05/21/20 15:31	123-91-1	
1,2-Dichloroethane-d4 (S)	101	%	50-150	1		05/21/20 15:31	17060-07-0	
Foluene-d8 (S)	112	%	50-150	1		05/21/20 15:31	2037-26-5	



Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-16D	Lab ID: 924	78032021	Collected: 05/13/2	20 17:50	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	- Charlotte					
Acetone	ND	ug/L	25.0	1		05/26/20 19:2	1 67-64-1	
Benzene	ND	ug/L	1.0	1		05/26/20 19:2°	1 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/26/20 19:2	1 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/26/20 19:2	1 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/26/20 19:2	1 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/26/20 19:2	1 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/26/20 19:2	1 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		05/26/20 19:2	1 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		05/26/20 19:2	1 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		05/26/20 19:2°	1 108-90-7	
Chloroethane	ND	ug/L	1.0	1		05/26/20 19:2°	1 75-00-3	
Chloroform	ND	ug/L	5.0	1		05/26/20 19:2		
Chloromethane	ND	ug/L	1.0	1		05/26/20 19:2		
2-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 19:2		
4-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 19:2		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/26/20 19:2		
Dibromochloromethane	ND	ug/L	1.0	1		05/26/20 19:2		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/26/20 19:2	_	
Dibromomethane	ND	ug/L	1.0	1		05/26/20 19:2		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 19:2		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 19:2		
1,4-Dichlorobenzene	ND ND	ug/L	1.0	1		05/26/20 19:2		
Dichlorodifluoromethane	ND ND	ug/L ug/L	1.0	1		05/26/20 19:2		
1,1-Dichloroethane	29.1	-	1.0	1		05/26/20 19:2		
•	1.9	ug/L	1.0	1		05/26/20 19:2		
1,2-Dichloroethane		ug/L						
1,1-Dichloroethene	145	ug/L	1.0	1 1		05/26/20 19:2		
cis-1,2-Dichloroethene	ND	ug/L	1.0			05/26/20 19:2		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 19:2		
1,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 19:2		
1,3-Dichloropropane	ND	ug/L	1.0	1		05/26/20 19:2		
2,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 19:2		
1,1-Dichloropropene	ND	ug/L	1.0	1		05/26/20 19:2		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		05/26/20 19:2		
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/26/20 19:2		
Diisopropyl ether	ND	ug/L	1.0	1		05/26/20 19:2		
Ethylbenzene	ND	ug/L	1.0	1		05/26/20 19:2		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/26/20 19:2		
2-Hexanone	ND	ug/L	5.0	1		05/26/20 19:2		
o-Isopropyltoluene	ND	ug/L	1.0	1		05/26/20 19:2		
Methylene Chloride	ND	ug/L	5.0	1		05/26/20 19:2		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/26/20 19:2		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/26/20 19:2		
Naphthalene	ND	ug/L	1.0	1		05/26/20 19:2	1 91-20-3	
Styrene	ND	ug/L	1.0	1		05/26/20 19:2	1 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 19:2	1 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 19:2	1 79-34-5	



Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-16D	Lab ID: 924	78032021	Collected: 05/13/2	0 17:50	Received: 05	5/18/20 09:12 N	Natrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/26/20 19:21	127-18-4	
Toluene	ND	ug/L	1.0	1		05/26/20 19:21	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 19:21	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 19:21	120-82-1	
1,1,1-Trichloroethane	11.7	ug/L	1.0	1		05/26/20 19:21	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/26/20 19:21	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/26/20 19:21	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/26/20 19:21	75-69-4	
,2,3-Trichloropropane	ND	ug/L	1.0	1		05/26/20 19:21	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		05/26/20 19:21	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		05/26/20 19:21	75-01-4	
(Ylene (Total)	ND	ug/L	1.0	1		05/26/20 19:21	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		05/26/20 19:21	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/26/20 19:21	95-47-6	
Surrogates		Ü						
1-Bromofluorobenzene (S)	98	%	70-130	1		05/26/20 19:21	460-00-4	
1,2-Dichloroethane-d4 (S)	94	%	70-130	1		05/26/20 19:21	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		05/26/20 19:21	2037-26-5	
260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
l,4-Dioxane (p-Dioxane) Surrogates	130	ug/L	5.0	2.5		05/21/20 16:49	123-91-1	
1,2-Dichloroethane-d4 (S)	105	%	50-150	2.5		05/21/20 16:49	17060-07-0	
Foluene-d8 (S)	112	%	50-150	2.5		05/21/20 16:49	2037-26-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: Dup-051320	Lab ID: 924	478032022	Collected: 05/13/2	20 09:00	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Me	thod: EPA 82	260D					
	Pace Analytic	al Services -	Charlotte					
Acetone	ND	ug/L	125	5		05/27/20 14:3	7 67-64-1	
Benzene	ND	ug/L	5.0	5		05/27/20 14:3	7 71-43-2	
Bromobenzene	ND	ug/L	5.0	5		05/27/20 14:3	7 108-86-1	
Bromochloromethane	ND	ug/L	5.0	5		05/27/20 14:3	7 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	5		05/27/20 14:3	7 75-27-4	
Bromoform	ND	ug/L	5.0	5		05/27/20 14:3	7 75-25-2	
Bromomethane	ND	ug/L	10.0	5		05/27/20 14:3	7 74-83-9	IK,v2,v3
2-Butanone (MEK)	ND	ug/L	25.0	5		05/27/20 14:3	7 78-93-3	
Carbon tetrachloride	ND	ug/L	5.0	5		05/27/20 14:3	7 56-23-5	
Chlorobenzene	ND	ug/L	5.0	5		05/27/20 14:3	7 108-90-7	
Chloroethane	10.1	ug/L	5.0	5		05/27/20 14:3	7 75-00-3	
Chloroform	ND	ug/L	25.0	5		05/27/20 14:3	7 67-66-3	
Chloromethane	ND	ug/L	5.0	5		05/27/20 14:3	7 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	5		05/27/20 14:3	7 95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	5		05/27/20 14:3	7 106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L	25.0	5		05/27/20 14:3	7 96-12-8	
Dibromochloromethane	ND	ug/L	5.0	5		05/27/20 14:3	7 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	5		05/27/20 14:3	7 106-93-4	
Dibromomethane	ND	ug/L	5.0	5		05/27/20 14:3	7 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	5		05/27/20 14:3	7 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	5		05/27/20 14:3	7 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	5		05/27/20 14:3	7 106-46-7	
Dichlorodifluoromethane	ND	ug/L	5.0	5		05/27/20 14:3	7 75-71-8	
1,1-Dichloroethane	425	ug/L	5.0	5		05/27/20 14:3	7 75-34-3	M1
1,2-Dichloroethane	ND	ug/L	5.0	5		05/27/20 14:3	7 107-06-2	
1,1-Dichloroethene	594	ug/L	5.0	5		05/27/20 14:3	7 75-35-4	M1
cis-1,2-Dichloroethene	ND	ug/L	5.0	5		05/27/20 14:3	7 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	5		05/27/20 14:3	7 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	5		05/27/20 14:3	7 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	5		05/27/20 14:3	7 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	5		05/27/20 14:3	7 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	5		05/27/20 14:3	7 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	5		05/27/20 14:3	7 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	5.0	5		05/27/20 14:3	7 10061-02-6	
Diisopropyl ether	ND	ug/L	5.0	5		05/27/20 14:3	7 108-20-3	
Ethylbenzene	ND	ug/L	5.0	5		05/27/20 14:3	7 100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	5		05/27/20 14:3	7 87-68-3	
2-Hexanone	ND	ug/L	25.0	5		05/27/20 14:3	7 591-78-6	
o-Isopropyltoluene	ND	ug/L	5.0	5		05/27/20 14:3	7 99-87-6	
Methylene Chloride	ND	ug/L	25.0	5		05/27/20 14:3	7 75-09-2	
I-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	5		05/27/20 14:3	7 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	5.0	5		05/27/20 14:3	7 1634-04-4	
Naphthalene	ND	ug/L	5.0	5		05/27/20 14:3		
Styrene	ND	ug/L	5.0	5		05/27/20 14:3		
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	5		05/27/20 14:3		
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	5		05/27/20 14:3		

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

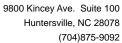
Sample: Dup-051320	Lab ID: 9247	78032022	Collected: 05/13/2	20 09:00	Received: 0	5/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	5.0	5		05/27/20 14:37	127-18-4	
Toluene	ND	ug/L	5.0	5		05/27/20 14:37	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	5		05/27/20 14:37	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	5		05/27/20 14:37	120-82-1	
1,1,1-Trichloroethane	518	ug/L	5.0	5		05/27/20 14:37	71-55-6	M1
1,1,2-Trichloroethane	ND	ug/L	5.0	5		05/27/20 14:37	79-00-5	
Trichloroethene	12.0	ug/L	5.0	5		05/27/20 14:37	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	5		05/27/20 14:37	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	5		05/27/20 14:37	96-18-4	M1
Vinyl acetate	ND	ug/L	10.0	5		05/27/20 14:37	108-05-4	
Vinyl chloride	ND	ug/L	5.0	5		05/27/20 14:37	75-01-4	
Xylene (Total)	ND	ug/L	5.0	5		05/27/20 14:37	1330-20-7	
m&p-Xylene	ND	ug/L	10.0	5		05/27/20 14:37	179601-23-1	
o-Xylene	ND	ug/L	5.0	5		05/27/20 14:37	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	99	%	70-130	5		05/27/20 14:37	460-00-4	
1,2-Dichloroethane-d4 (S)	92	%	70-130	5		05/27/20 14:37	17060-07-0	
Toluene-d8 (S)	99	%	70-130	5		05/27/20 14:37	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	35.0	ug/L	2.0	1		05/22/20 01:22	123-91-1	
1,2-Dichloroethane-d4 (S)	101	%	50-150	1		05/22/20 01:22	17060-07-0	
,	106	%	50-150	1		05/22/20 01:22		
Toluene-d8 (S)	106	%	50-150	1		05/22/20 01:22	2037-26-5	

(704)875-9092

ANALYTICAL RESULTS

Project: Kop-Flex onsite
Pace Project No.: 92478032

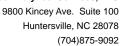
Date: 05/28/2020 02:20 PM


Sample: MW-16	Lab ID: 924	78032023	Collected: 05/13/2	20 18:00	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	nod: EPA 82	260D					
	Pace Analytica	al Services -	- Charlotte					
Acetone	ND	ug/L	125	5		05/27/20 20:4	4 67-64-1	
Benzene	ND	ug/L	5.0	5		05/27/20 20:4	4 71-43-2	
Bromobenzene	ND	ug/L	5.0	5		05/27/20 20:4	4 108-86-1	
Bromochloromethane	ND	ug/L	5.0	5		05/27/20 20:4	4 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	5		05/27/20 20:4	4 75-27-4	
Bromoform	ND	ug/L	5.0	5		05/27/20 20:4	4 75-25-2	
Bromomethane	ND	ug/L	10.0	5		05/27/20 20:4	4 74-83-9	IK,v2
2-Butanone (MEK)	ND	ug/L	25.0	5		05/27/20 20:4	4 78-93-3	
Carbon tetrachloride	ND	ug/L	5.0	5		05/27/20 20:4	4 56-23-5	
Chlorobenzene	ND	ug/L	5.0	5		05/27/20 20:4	4 108-90-7	
Chloroethane	10.9	ug/L	5.0	5		05/27/20 20:4		
Chloroform	ND	ug/L	25.0	5		05/27/20 20:4		
Chloromethane	ND	ug/L	5.0	5		05/27/20 20:4		
2-Chlorotoluene	ND	ug/L	5.0	5		05/27/20 20:4		
4-Chlorotoluene	ND	ug/L	5.0	5		05/27/20 20:4		
1,2-Dibromo-3-chloropropane	ND	ug/L	25.0	5		05/27/20 20:4		
Dibromochloromethane	ND	ug/L	5.0	5		05/27/20 20:4		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	5		05/27/20 20:4		
Dibromomethane	ND	ug/L	5.0	5		05/27/20 20:4		
1,2-Dichlorobenzene	ND	ug/L	5.0	5		05/27/20 20:4		
1,3-Dichlorobenzene	ND	ug/L	5.0	5		05/27/20 20:4		
1,4-Dichlorobenzene	ND ND	ug/L	5.0	5		05/27/20 20:4		
Dichlorodifluoromethane	ND	ug/L	5.0	5		05/27/20 20:4		
1,1-Dichloroethane	394	•	5.0	5		05/27/20 20:4		
1,1-Dichloroethane	394 ND	ug/L	5.0	5 5		05/27/20 20:4		
1,1-Dichloroethene	571	ug/L	5.0	5 5		05/27/20 20:4		
•	ND	ug/L	5.0	5 5		05/27/20 20:4		
cis-1,2-Dichloroethene		ug/L		5 5				
trans-1,2-Dichloroethene	ND	ug/L	5.0	5 5		05/27/20 20:4		
1,2-Dichloropropane	ND	ug/L	5.0			05/27/20 20:4		
1,3-Dichloropropane	ND	ug/L	5.0	5		05/27/20 20:4		
2,2-Dichloropropane	ND	ug/L	5.0	5		05/27/20 20:4		
1,1-Dichloropropene	ND	ug/L	5.0	5		05/27/20 20:4		
cis-1,3-Dichloropropene	ND	ug/L	5.0	5			4 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	5			4 10061-02-6	
Diisopropyl ether	ND	ug/L	5.0	5		05/27/20 20:4		
Ethylbenzene	ND	ug/L	5.0	5		05/27/20 20:4		
Hexachloro-1,3-butadiene	ND	ug/L	5.0	5		05/27/20 20:4		
2-Hexanone	ND	ug/L	25.0	5		05/27/20 20:4		
p-Isopropyltoluene	ND	ug/L	5.0	5		05/27/20 20:4		
Methylene Chloride	ND	ug/L	25.0	5		05/27/20 20:4		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	5		05/27/20 20:4		
Methyl-tert-butyl ether	ND	ug/L	5.0	5		05/27/20 20:4		
Naphthalene	ND	ug/L	5.0	5		05/27/20 20:4		
Styrene	ND	ug/L	5.0	5		05/27/20 20:4		
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	5		05/27/20 20:4	4 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	5		05/27/20 20:4	4 79-34-5	

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

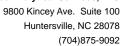
Sample: MW-16	Lab ID: 924	78032023	Collected: 05/13/2	20 18:00	Received: 0	5/18/20 09:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	5.0	5		05/27/20 20:44	127-18-4	
Toluene	ND	ug/L	5.0	5		05/27/20 20:44	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	5		05/27/20 20:44	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	5		05/27/20 20:44	120-82-1	
1,1,1-Trichloroethane	487	ug/L	5.0	5		05/27/20 20:44	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	5		05/27/20 20:44	79-00-5	
Trichloroethene	10.7	ug/L	5.0	5		05/27/20 20:44	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	5		05/27/20 20:44	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	5		05/27/20 20:44	96-18-4	
√inyl acetate	ND	ug/L	10.0	5		05/27/20 20:44	108-05-4	
√inyl chloride	ND	ug/L	5.0	5		05/27/20 20:44	75-01-4	
Xylene (Total)	ND	ug/L	5.0	5		05/27/20 20:44	1330-20-7	
n&p-Xylene	ND	ug/L	10.0	5		05/27/20 20:44	179601-23-1	
p-Xylene	ND	ug/L	5.0	5		05/27/20 20:44	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	98	%	70-130	5		05/27/20 20:44	460-00-4	
1,2-Dichloroethane-d4 (S)	90	%	70-130	5		05/27/20 20:44	17060-07-0	
Toluene-d8 (S)	98	%	70-130	5		05/27/20 20:44	2037-26-5	
3260D MSV SIM	Analytical Meth	nod: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	39.2	ug/L	2.0	1		05/21/20 15:51	123-91-1	
1,2-Dichloroethane-d4 (S)	98	%	50-150	1		05/21/20 15:51	17060-07-0	
Γoluene-d8 (S)	106	%	50-150	1		05/21/20 15:51	2037-26-5	



Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-01	Lab ID: 924	78032024	Collected: 05/14/2	20 10:18	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	I Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/26/20 19:5	8 67-64-1	
Benzene	ND	ug/L	1.0	1		05/26/20 19:5	8 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/26/20 19:5	8 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/26/20 19:5	8 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/26/20 19:5	8 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/26/20 19:5	8 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/26/20 19:5	8 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		05/26/20 19:5	8 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		05/26/20 19:5		
Chlorobenzene	ND	ug/L	1.0	1		05/26/20 19:5		
Chloroethane	ND	ug/L	1.0	1		05/26/20 19:5		
Chloroform	ND	ug/L	5.0	1		05/26/20 19:5		
Chloromethane	ND	ug/L	1.0	1		05/26/20 19:5		
2-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 19:5		
4-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 19:5		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/26/20 19:5		
Dibromochloromethane	ND	ug/L	1.0	1		05/26/20 19:5		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/26/20 19:5		
Dibromomethane	ND ND	ug/L	1.0	1		05/26/20 19:5		
1,2-Dichlorobenzene	ND ND	ug/L	1.0	1		05/26/20 19:5		
1,3-Dichlorobenzene	ND ND	-	1.0	1		05/26/20 19:5		
1,4-Dichlorobenzene	ND ND	ug/L	1.0	1		05/26/20 19:5		
Dichlorodifluoromethane	ND ND	ug/L	1.0	1		05/26/20 19:5		
		ug/L						
1,1-Dichloroethane	ND	ug/L	1.0	1		05/26/20 19:5		
1,2-Dichloroethane	ND	ug/L	1.0	1		05/26/20 19:5		
1,1-Dichloroethene	ND	ug/L	1.0	1		05/26/20 19:5		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 19:5		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 19:5		
1,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 19:5		
1,3-Dichloropropane	ND	ug/L	1.0	1		05/26/20 19:5		
2,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 19:5		
1,1-Dichloropropene	ND	ug/L	1.0	1		05/26/20 19:5		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			8 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			8 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		05/26/20 19:5		
Ethylbenzene	ND	ug/L	1.0	1		05/26/20 19:5		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/26/20 19:5		
2-Hexanone	ND	ug/L	5.0	1		05/26/20 19:5		
p-Isopropyltoluene	ND	ug/L	1.0	1		05/26/20 19:5		
Methylene Chloride	ND	ug/L	5.0	1		05/26/20 19:5	8 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/26/20 19:5		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/26/20 19:5	8 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		05/26/20 19:5	8 91-20-3	
Styrene	ND	ug/L	1.0	1		05/26/20 19:5	8 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 19:5	8 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 19:5	8 79-34-5	



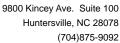
Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: MW-01	Lab ID: 924	78032024	Collected: 05/14/2	20 10:18	Received: 0	5/18/20 09:12 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/26/20 19:58	127-18-4	
Toluene	ND	ug/L	1.0	1		05/26/20 19:58	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 19:58	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 19:58	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/26/20 19:58	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/26/20 19:58	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/26/20 19:58	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/26/20 19:58	75-69-4	
,2,3-Trichloropropane	ND	ug/L	1.0	1		05/26/20 19:58	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		05/26/20 19:58	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		05/26/20 19:58	75-01-4	
(ylene (Total)	ND	ug/L	1.0	1		05/26/20 19:58	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		05/26/20 19:58	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/26/20 19:58	95-47-6	
Surrogates		•						
I-Bromofluorobenzene (S)	99	%	70-130	1		05/26/20 19:58	460-00-4	
,2-Dichloroethane-d4 (S)	94	%	70-130	1		05/26/20 19:58	17060-07-0	
oluene-d8 (S)	99	%	70-130	1		05/26/20 19:58	2037-26-5	
260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		05/21/20 14:12	123-91-1	
,2-Dichloroethane-d4 (S)	91	%	50-150	1		05/21/20 14:12	17060-07-0	
oluene-d8 (S)	92	%	50-150	1		05/21/20 14:12	2037-26-5	

Project: Kop-Flex onsite
Pace Project No: 92478032

Date: 05/28/2020 02:20 PM


Sample: Trip Blank C	Lab ID: 924	78032025	Collected: 05/14/2	20 00:00	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/26/20 17:3	1 67-64-1	
Benzene	ND	ug/L	1.0	1		05/26/20 17:3	1 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		05/26/20 17:3	1 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/26/20 17:3	1 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/26/20 17:3	1 75-27-4	
Bromoform	ND	ug/L	1.0	1		05/26/20 17:3	1 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/26/20 17:3	1 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		05/26/20 17:3		
Carbon tetrachloride	ND	ug/L	1.0	1		05/26/20 17:3		
Chlorobenzene	ND	ug/L	1.0	1		05/26/20 17:3		
Chloroethane	ND	ug/L	1.0	1		05/26/20 17:3		
Chloroform	ND ND	ug/L ug/L	5.0	1		05/26/20 17:3		
Chloromethane	ND ND	•	1.0	1		05/26/20 17:3		
		ug/L						
2-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 17:3		
-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 17:3		
,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/26/20 17:3		
Dibromochloromethane	ND	ug/L	1.0	1		05/26/20 17:3		
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/26/20 17:3		
Dibromomethane	ND	ug/L	1.0	1		05/26/20 17:3	1 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 17:3	1 95-50-1	
,3-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 17:3	1 541-73-1	
,4-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 17:3	1 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/26/20 17:3	1 75-71-8	
,1-Dichloroethane	ND	ug/L	1.0	1		05/26/20 17:3	1 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		05/26/20 17:3	1 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		05/26/20 17:3	1 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 17:3	1 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 17:3	1 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 17:3		
I,3-Dichloropropane	ND	ug/L	1.0	1		05/26/20 17:3		
2,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 17:3		
1,1-Dichloropropene	ND	ug/L	1.0	1		05/26/20 17:3		
cis-1,3-Dichloropropene	ND		1.0	1		05/26/20 17:3		
· ·	ND	ug/L	1.0	1		05/26/20 17:3		
rans-1,3-Dichloropropene		ug/L		•				
Diisopropyl ether	ND	ug/L	1.0	1		05/26/20 17:3		
Ethylbenzene	ND	ug/L	1.0	1		05/26/20 17:3		
lexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/26/20 17:3		
2-Hexanone	ND	ug/L	5.0	1		05/26/20 17:3		
p-Isopropyltoluene	ND	ug/L	1.0	1		05/26/20 17:3		
Methylene Chloride	ND	ug/L	5.0	1		05/26/20 17:3		
I-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/26/20 17:3	1 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/26/20 17:3	1 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		05/26/20 17:3	1 91-20-3	
Styrene	ND	ug/L	1.0	1		05/26/20 17:3	1 100-42-5	
,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 17:3	1 630-20-6	
I,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 17:3		

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

Sample: Trip Blank C	Lab ID: 924	78032025	Collected: 05/14/2	00:00	Received: 0	5/18/20 09:12 N	fatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/26/20 17:31	127-18-4	
Toluene	ND	ug/L	1.0	1		05/26/20 17:31	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 17:31	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 17:31	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/26/20 17:31	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/26/20 17:31	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/26/20 17:31	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/26/20 17:31	75-69-4	
,2,3-Trichloropropane	ND	ug/L	1.0	1		05/26/20 17:31	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		05/26/20 17:31	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		05/26/20 17:31	75-01-4	
(ylene (Total)	ND	ug/L	1.0	1		05/26/20 17:31	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		05/26/20 17:31	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/26/20 17:31	95-47-6	
Surrogates		•						
I-Bromofluorobenzene (S)	97	%	70-130	1		05/26/20 17:31	460-00-4	
,2-Dichloroethane-d4 (S)	91	%	70-130	1		05/26/20 17:31	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		05/26/20 17:31	2037-26-5	
260D MSV SIM	Analytical Meth	nod: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
l,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		05/21/20 13:33	123-91-1	
1,2-Dichloroethane-d4 (S)	94	%	50-150	1		05/21/20 13:33	17060-07-0	
oluene-d8 (S)	110	%	50-150	1		05/21/20 13:33	2037-26-5	

Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

QC Batch: 542927 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92478032001, 92478032002, 92478032003, 92478032004, 92478032005, 92478032006, 92478032007,

92478032008, 92478032009, 92478032010, 92478032011, 92478032012

METHOD BLANK: 2892230 Matrix: Water

Associated Lab Samples: 92478032001, 92478032002, 92478032003, 92478032004, 92478032005, 92478032006, 92478032007,

92478032008, 92478032009, 92478032010, 92478032011, 92478032012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	05/24/20 00:00	
1,1,1-Trichloroethane	ug/L	ND	1.0	05/24/20 00:00	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	05/24/20 00:00	
1,1,2-Trichloroethane	ug/L	ND	1.0	05/24/20 00:00	
1,1-Dichloroethane	ug/L	ND	1.0	05/24/20 00:00	
1,1-Dichloroethene	ug/L	ND	1.0	05/24/20 00:00	
1,1-Dichloropropene	ug/L	ND	1.0	05/24/20 00:00	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	05/24/20 00:00	IH
1,2,3-Trichloropropane	ug/L	ND	1.0	05/24/20 00:00	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	05/24/20 00:00	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	05/24/20 00:00	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	05/24/20 00:00	
1,2-Dichlorobenzene	ug/L	ND	1.0	05/24/20 00:00	
1,2-Dichloroethane	ug/L	ND	1.0	05/24/20 00:00	
1,2-Dichloropropane	ug/L	ND	1.0	05/24/20 00:00	
1,3-Dichlorobenzene	ug/L	ND	1.0	05/24/20 00:00	
1,3-Dichloropropane	ug/L	ND	1.0	05/24/20 00:00	
1,4-Dichlorobenzene	ug/L	ND	1.0	05/24/20 00:00	
2,2-Dichloropropane	ug/L	ND	1.0	05/24/20 00:00	
2-Butanone (MEK)	ug/L	ND	5.0	05/24/20 00:00	
2-Chlorotoluene	ug/L	ND	1.0	05/24/20 00:00	
2-Hexanone	ug/L	ND	5.0	05/24/20 00:00	
4-Chlorotoluene	ug/L	ND	1.0	05/24/20 00:00	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	05/24/20 00:00	
Acetone	ug/L	ND	25.0	05/24/20 00:00	
Benzene	ug/L	ND	1.0	05/24/20 00:00	
Bromobenzene	ug/L	ND	1.0	05/24/20 00:00	
Bromochloromethane	ug/L	ND	1.0	05/24/20 00:00	
Bromodichloromethane	ug/L	ND	1.0	05/24/20 00:00	
Bromoform	ug/L	ND	1.0	05/24/20 00:00	
Bromomethane	ug/L	ND	2.0	05/24/20 00:00	v2
Carbon tetrachloride	ug/L	ND	1.0	05/24/20 00:00	
Chlorobenzene	ug/L	ND	1.0	05/24/20 00:00	
Chloroethane	ug/L	ND	1.0	05/24/20 00:00	
Chloroform	ug/L	ND	5.0	05/24/20 00:00	
Chloromethane	ug/L	ND	1.0	05/24/20 00:00	
cis-1,2-Dichloroethene	ug/L	ND	1.0	05/24/20 00:00	
cis-1,3-Dichloropropene	ug/L	ND	1.0	05/24/20 00:00	
Dibromochloromethane	ug/L	ND	1.0	05/24/20 00:00	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

METHOD BLANK: 2892230 Matrix: Water

Associated Lab Samples: 92478032001, 92478032002, 92478032003, 92478032004, 92478032005, 92478032006, 92478032007,

92478032008, 92478032009, 92478032010, 92478032011, 92478032012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/L	ND	1.0	05/24/20 00:00	
Dichlorodifluoromethane	ug/L	ND	1.0	05/24/20 00:00	
Diisopropyl ether	ug/L	ND	1.0	05/24/20 00:00	
Ethylbenzene	ug/L	ND	1.0	05/24/20 00:00	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	05/24/20 00:00	
m&p-Xylene	ug/L	ND	2.0	05/24/20 00:00	
Methyl-tert-butyl ether	ug/L	ND	1.0	05/24/20 00:00	
Methylene Chloride	ug/L	ND	5.0	05/24/20 00:00	
Naphthalene	ug/L	ND	1.0	05/24/20 00:00	
o-Xylene	ug/L	ND	1.0	05/24/20 00:00	
p-Isopropyltoluene	ug/L	ND	1.0	05/24/20 00:00	
Styrene	ug/L	ND	1.0	05/24/20 00:00	
Tetrachloroethene	ug/L	ND	1.0	05/24/20 00:00	
Toluene	ug/L	ND	1.0	05/24/20 00:00	
trans-1,2-Dichloroethene	ug/L	ND	1.0	05/24/20 00:00	
trans-1,3-Dichloropropene	ug/L	ND	1.0	05/24/20 00:00	
Trichloroethene	ug/L	ND	1.0	05/24/20 00:00	
Trichlorofluoromethane	ug/L	ND	1.0	05/24/20 00:00	
Vinyl acetate	ug/L	ND	2.0	05/24/20 00:00	
Vinyl chloride	ug/L	ND	1.0	05/24/20 00:00	
Xylene (Total)	ug/L	ND	1.0	05/24/20 00:00	
1,2-Dichloroethane-d4 (S)	%	108	70-130	05/24/20 00:00	
4-Bromofluorobenzene (S)	%	99	70-130	05/24/20 00:00	
Toluene-d8 (S)	%	102	70-130	05/24/20 00:00	

LABORATORY CONTROL SAMPLE:	2892231					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	50.5	101	70-130	_
1,1,1-Trichloroethane	ug/L	50	54.7	109	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	51.4	103	70-130	
1,1,2-Trichloroethane	ug/L	50	50.9	102	70-130	
1,1-Dichloroethane	ug/L	50	50.3	101	70-130	
1,1-Dichloroethene	ug/L	50	55.0	110	70-130	
1,1-Dichloropropene	ug/L	50	52.5	105	70-130	
1,2,3-Trichlorobenzene	ug/L	50	60.5	121	70-130 II	-1
1,2,3-Trichloropropane	ug/L	50	47.6	95	70-130	
1,2,4-Trichlorobenzene	ug/L	50	50.4	101	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	52.0	104	70-130	
1,2-Dibromoethane (EDB)	ug/L	50	52.6	105	70-130	
1,2-Dichlorobenzene	ug/L	50	51.0	102	70-130	
1,2-Dichloroethane	ug/L	50	52.4	105	70-130	
1,2-Dichloropropane	ug/L	50	50.5	101	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

_ABORATORY CONTROL SAMPLE:	2892231					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
1,3-Dichlorobenzene	ug/L	50	50.2	100	70-130	
1,3-Dichloropropane	ug/L	50	50.7	101	70-131	
1,4-Dichlorobenzene	ug/L	50	49.3	99	70-130	
2,2-Dichloropropane	ug/L	50	44.2	88	69-130	
2-Butanone (MEK)	ug/L	100	106	106	64-135	
2-Chlorotoluene	ug/L	50	46.8	94	70-130	
-Hexanone	ug/L	100	109	109	66-135	
-Chlorotoluene	ug/L	50	48.7	97	70-130	
-Methyl-2-pentanone (MIBK)	ug/L	100	109	109	70-130	
Acetone	ug/L	100	106	106	61-157	
Benzene	ug/L	50	51.4	103	70-130	
Bromobenzene	ug/L	50	46.8	94	70-130	
Bromochloromethane	ug/L	50	50.4	101	70-130	
Bromodichloromethane	ug/L	50	53.9	108	70-130	
Bromoform	ug/L	50	43.8	88	70-130	
Bromomethane	ug/L	50	33.3	67	38-130 v	/3
Carbon tetrachloride	ug/L	50	58.2	116	70-130	
Chlorobenzene	ug/L	50	50.6	101	70-130	
Chloroethane	ug/L	50	43.6	87	37-142	
Chloroform	ug/L	50	52.8	106	70-130	
Chloromethane	ug/L	50	34.8	70	48-130	
is-1,2-Dichloroethene	ug/L	50	49.8	100	70-130	
is-1,3-Dichloropropene	ug/L	50	49.6	99	70-130	
Dibromochloromethane	ug/L	50	48.7	97	70-130	
Dibromomethane	ug/L	50	52.3	105	70-130	
Dichlorodifluoromethane	ug/L	50	46.5	93	53-134	
Diisopropyl ether	ug/L	50	53.9	108	70-135	
Ethylbenzene	ug/L	50	48.1	96	70-130	
lexachloro-1,3-butadiene	ug/L	50	50.8	102	68-132	
n&p-Xylene	ug/L	100	95.3	95	70-130	
Methyl-tert-butyl ether	ug/L	50	52.7	105	70-130	
Methylene Chloride	ug/L	50	52.9	106	67-132	
Naphthalene	ug/L	50	59.5	119	70-130	
p-Xylene	ug/L	50	49.0	98	70-131	
o-Isopropyltoluene	ug/L	50	48.1	96	70-130	
Styrene	ug/L	50	52.3	105	70-130	
Tetrachloroethene	ug/L	50	52.0	104	69-130	
oluene	ug/L	50	48.4	97	70-130	
rans-1,2-Dichloroethene	ug/L	50	54.4	109	70-130	
rans-1,3-Dichloropropene	ug/L	50	51.1	102	70-130	
richloroethene	ug/L	50	50.5	101	70-130	
richlorofluoromethane	ug/L	50	45.7	91	63-130	
/inyl acetate	ug/L	100	96.7	97	55-143	
/inyl chloride	ug/L	50	52.3	105	70-131	
(ylene (Total)	ug/L	150	144	96	70-130	
,2-Dichloroethane-d4 (S)	%	.00		96	70-130	
I-Bromofluorobenzene (S)	%			103	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qualifiers

(704)875-9092

Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

LABORATORY CONTROL SAMPLE: 2892231

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits

Toluene-d8 (S) % 100 70-130

MATRIX SPIKE SAMPLE:	2892233						
		92478024015	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits (Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	20	21.5	107	73-134	
1,1,1-Trichloroethane	ug/L	ND	20	34.9	175	82-143 M1	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20.3	102	70-136	
1,1,2-Trichloroethane	ug/L	ND	20	21.9	109	70-135	
1,1-Dichloroethane	ug/L	12.8	20	36.2	117	70-139	
1,1-Dichloroethene	ug/L	58.0	20	87.1	146	70-154	
1,1-Dichloropropene	ug/L	ND	20	24.0	120	70-149	
1,2,3-Trichlorobenzene	ug/L	ND	20	22.7	113	70-135 IH	
1,2,3-Trichloropropane	ug/L	ND	20	18.5	93	71-137	
1,2,4-Trichlorobenzene	ug/L	ND	20	22.2	111	73-140	
1,2-Dibromo-3-chloropropane	ug/L	ND	20	21.0	105	65-134	
1,2-Dibromoethane (EDB)	ug/L	ND	20	21.8	109	70-137	
1,2-Dichlorobenzene	ug/L	ND	20	20.7	104	70-133	
1,2-Dichloroethane	ug/L	ND	20	22.4	108	70-137	
1,2-Dichloropropane	ug/L	ND	20	21.6	108	70-140	
I,3-Dichlorobenzene	ug/L	ND	20	21.0	105	70-135	
I,3-Dichloropropane	ug/L	ND	20	21.3	107	70-143	
I,4-Dichlorobenzene	ug/L	ND	20	20.1	100	70-133	
2,2-Dichloropropane	ug/L	ND	20	24.6	123	61-148	
2-Butanone (MEK)	ug/L	ND	40	48.6	121	60-139	
2-Chlorotoluene	ug/L	ND	20	19.4	97	70-144	
2-Hexanone	ug/L	ND	40	44.2	111	65-138	
1-Chlorotoluene	ug/L	ND	20	21.1	105	70-137	
1-Methyl-2-pentanone (MIBK)	ug/L	ND	40	44.7	112	65-135	
Acetone	ug/L	ND	40	45.4	114	60-148	
Benzene	ug/L	ND	20	21.7	109	70-151	
Bromobenzene	ug/L	ND	20	20.1	100	70-136	
Bromochloromethane	ug/L	ND	20	22.7	113	70-141	
Bromodichloromethane	ug/L	ND	20	23.6	118	70-138	
Bromoform	ug/L	ND	20	19.4	97	63-130	
Bromomethane	ug/L	ND	20	19.4	97	15-152	
Carbon tetrachloride	ug/L	ND	20	25.4	127	70-143	
Chlorobenzene	ug/L	ND	20	20.4	102	70-138	
Chloroethane	ug/L	ND	20	22.3	111	52-163	
Chloroform	ug/L	ND	20	24.2	121	70-139	
Chloromethane	ug/L	ND	20	19.8	99	41-139	
cis-1,2-Dichloroethene	ug/L	ND	20	22.1	111	70-141	
cis-1,3-Dichloropropene	ug/L	ND	20	22.3	112	70-137	
Dibromochloromethane	ug/L	ND	20	19.8	99	70-134	
Dibromomethane	ug/L	ND	20	21.9	109	70-138	

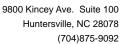
Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032


MATRIX SPIKE SAMPLE:	2892233						
		92478024015	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Dichlorodifluoromethane	ug/L	ND	20	24.7	124	47-155	
Diisopropyl ether	ug/L	ND	20	24.8	124	63-144	
Ethylbenzene	ug/L	ND	20	20.1	101	66-153	
Hexachloro-1,3-butadiene	ug/L	ND	20	20.6	103	65-149	
m&p-Xylene	ug/L	ND	40	40.0	100	69-152	
Methyl-tert-butyl ether	ug/L	1.1	20	24.5	117	54-156	
Methylene Chloride	ug/L	ND	20	23.9	120	42-159	
Naphthalene	ug/L	ND	20	22.2	111	61-148	
o-Xylene	ug/L	ND	20	19.8	99	70-148	
p-Isopropyltoluene	ug/L	ND	20	20.9	104	70-146	
Styrene	ug/L	ND	20	20.8	104	70-135	
Tetrachloroethene	ug/L	ND	20	22.2	111	59-143	
Toluene	ug/L	ND	20	21.0	105	59-148	
trans-1,2-Dichloroethene	ug/L	ND	20	23.2	116	70-146	
trans-1,3-Dichloropropene	ug/L	ND	20	22.3	112	70-135	
Trichloroethene	ug/L	ND	20	22.5	113	70-147	
Trichlorofluoromethane	ug/L	ND	20	25.0	125	70-148	
Vinyl acetate	ug/L	ND	40	44.8	112	49-151	
Vinyl chloride	ug/L	ND	20	25.2	126	70-156	
Xylene (Total)	ug/L	ND	60	59.8	100	63-158	
1,2-Dichloroethane-d4 (S)	%				111	70-130	
4-Bromofluorobenzene (S)	%				105	70-130	
Toluene-d8 (S)	%				100	70-130	

SAMPLE DUPLICATE: 2892232						
		92478032010	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	ND		30)
1,1,1-Trichloroethane	ug/L	ND	ND		30)
1,1,2,2-Tetrachloroethane	ug/L	ND	ND		30)
1,1,2-Trichloroethane	ug/L	ND	ND		30)
1,1-Dichloroethane	ug/L	ND	ND		30)
1,1-Dichloroethene	ug/L	ND	ND		30)
1,1-Dichloropropene	ug/L	ND	ND		30)
1,2,3-Trichlorobenzene	ug/L	ND	ND		30) IH
1,2,3-Trichloropropane	ug/L	ND	ND		30)
1,2,4-Trichlorobenzene	ug/L	ND	ND		30)
1,2-Dibromo-3-chloropropane	ug/L	ND	ND		30)
1,2-Dibromoethane (EDB)	ug/L	ND	ND		30)
1,2-Dichlorobenzene	ug/L	ND	ND		30)
1,2-Dichloroethane	ug/L	ND	ND		30)
1,2-Dichloropropane	ug/L	ND	ND		30)
1,3-Dichlorobenzene	ug/L	ND	ND		30)
1,3-Dichloropropane	ug/L	ND	ND		30)
1,4-Dichlorobenzene	ug/L	ND	ND		30)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

SAMPLE DUPLICATE: 2892232		92478032010	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
2,2-Dichloropropane	ug/L	ND -	ND		30)
2-Butanone (MEK)	ug/L	ND	ND		30)
2-Chlorotoluene	ug/L	ND	ND		30)
2-Hexanone	ug/L	ND	ND		30)
4-Chlorotoluene	ug/L	ND	ND		30)
4-Methyl-2-pentanone (MIBK)	ug/L	ND	ND		30)
Acetone	ug/L	ND	ND		30)
Benzene	ug/L	ND	ND		30)
Bromobenzene	ug/L	ND	ND		30)
Bromochloromethane	ug/L	ND	ND		30)
Bromodichloromethane	ug/L	ND	ND		30)
Bromoform	ug/L	ND	ND		30)
Bromomethane	ug/L	ND	ND		30) v2
Carbon tetrachloride	ug/L	ND	ND		30)
Chlorobenzene	ug/L	ND	ND		30)
Chloroethane	ug/L	ND	ND		30)
Chloroform	ug/L	ND	ND		30)
Chloromethane	ug/L	ND	ND		30)
cis-1,2-Dichloroethene	ug/L	ND	ND		30)
cis-1,3-Dichloropropene	ug/L	ND	ND		30)
Dibromochloromethane	ug/L	ND	ND		30)
Dibromomethane	ug/L	ND	ND		30)
Dichlorodifluoromethane	ug/L	ND	ND		30)
Diisopropyl ether	ug/L	ND	ND		30)
Ethylbenzene	ug/L	ND	ND		30)
Hexachloro-1,3-butadiene	ug/L	ND	ND		30)
m&p-Xylene	ug/L	ND	ND		30)
Methyl-tert-butyl ether	ug/L	ND	ND		30)
Methylene Chloride	ug/L	ND	ND		30)
Naphthalene	ug/L	ND	ND		30)
o-Xylene	ug/L	ND	ND		30)
p-Isopropyltoluene	ug/L	ND	ND		30)
Styrene	ug/L	ND	ND		30)
Tetrachloroethene	ug/L	ND	ND		30	
Toluene	ug/L	ND	ND		30)
trans-1,2-Dichloroethene	ug/L	ND	ND		30	
trans-1,3-Dichloropropene	ug/L	ND	ND		30)
Trichloroethene	ug/L	ND	ND		30	
Trichlorofluoromethane	ug/L	ND	ND		30	
Vinyl acetate	ug/L	ND	ND		30	
Vinyl chloride	ug/L	ND	ND		30	
Xylene (Total)	ug/L	ND	ND		30)
1,2-Dichloroethane-d4 (S)	%	118	115			
4-Bromofluorobenzene (S)	%	99	95			
Toluene-d8 (S)	%	100	101			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

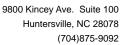
QC Batch: 543215 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92478032014, 92478032015, 92478032016, 92478032017, 92478032018, 92478032019, 92478032020,

92478032021, 92478032024, 92478032025


METHOD BLANK: 2893742 Matrix: Water

Associated Lab Samples: 92478032014, 92478032015, 92478032016, 92478032017, 92478032018, 92478032019, 92478032020,

92478032021, 92478032024, 92478032025

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	05/26/20 16:36	·
1,1,1-Trichloroethane	ug/L	ND	1.0	05/26/20 16:36	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	05/26/20 16:36	
1,1,2-Trichloroethane	ug/L	ND	1.0	05/26/20 16:36	
1,1-Dichloroethane	ug/L	ND	1.0	05/26/20 16:36	
1,1-Dichloroethene	ug/L	ND	1.0	05/26/20 16:36	
1,1-Dichloropropene	ug/L	ND	1.0	05/26/20 16:36	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	05/26/20 16:36	
1,2,3-Trichloropropane	ug/L	ND	1.0	05/26/20 16:36	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	05/26/20 16:36	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	05/26/20 16:36	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	05/26/20 16:36	
1,2-Dichlorobenzene	ug/L	ND	1.0	05/26/20 16:36	
1,2-Dichloroethane	ug/L	ND	1.0	05/26/20 16:36	
1,2-Dichloropropane	ug/L	ND	1.0	05/26/20 16:36	
1,3-Dichlorobenzene	ug/L	ND	1.0	05/26/20 16:36	
1,3-Dichloropropane	ug/L	ND	1.0	05/26/20 16:36	
1,4-Dichlorobenzene	ug/L	ND	1.0	05/26/20 16:36	
2,2-Dichloropropane	ug/L	ND	1.0	05/26/20 16:36	
2-Butanone (MEK)	ug/L	ND	5.0	05/26/20 16:36	
2-Chlorotoluene	ug/L	ND	1.0	05/26/20 16:36	
2-Hexanone	ug/L	ND	5.0	05/26/20 16:36	
4-Chlorotoluene	ug/L	ND	1.0	05/26/20 16:36	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	05/26/20 16:36	
Acetone	ug/L	ND	25.0	05/26/20 16:36	
Benzene	ug/L	ND	1.0	05/26/20 16:36	
Bromobenzene	ug/L	ND	1.0	05/26/20 16:36	
Bromochloromethane	ug/L	ND	1.0	05/26/20 16:36	
Bromodichloromethane	ug/L	ND	1.0	05/26/20 16:36	
Bromoform	ug/L	ND	1.0	05/26/20 16:36	
Bromomethane	ug/L	ND	2.0	05/26/20 16:36	IK
Carbon tetrachloride	ug/L	ND	1.0	05/26/20 16:36	
Chlorobenzene	ug/L	ND	1.0	05/26/20 16:36	
Chloroethane	ug/L	ND	1.0	05/26/20 16:36	
Chloroform	ug/L	ND	5.0	05/26/20 16:36	
Chloromethane	ug/L	ND	1.0	05/26/20 16:36	
cis-1,2-Dichloroethene	ug/L	ND	1.0	05/26/20 16:36	
cis-1,3-Dichloropropene	ug/L	ND	1.0	05/26/20 16:36	
Dibromochloromethane	ug/L	ND	1.0	05/26/20 16:36	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

METHOD BLANK: 2893742 Matrix: Water

Associated Lab Samples: 92478032014, 92478032015, 92478032016, 92478032017, 92478032018, 92478032019, 92478032020,

92478032021, 92478032024, 92478032025

_		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/L	ND	1.0	05/26/20 16:36	
Dichlorodifluoromethane	ug/L	ND	1.0	05/26/20 16:36	
Diisopropyl ether	ug/L	ND	1.0	05/26/20 16:36	
Ethylbenzene	ug/L	ND	1.0	05/26/20 16:36	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	05/26/20 16:36	
m&p-Xylene	ug/L	ND	2.0	05/26/20 16:36	
Methyl-tert-butyl ether	ug/L	ND	1.0	05/26/20 16:36	
Methylene Chloride	ug/L	ND	5.0	05/26/20 16:36	
Naphthalene	ug/L	ND	1.0	05/26/20 16:36	
o-Xylene	ug/L	ND	1.0	05/26/20 16:36	
p-Isopropyltoluene	ug/L	ND	1.0	05/26/20 16:36	
Styrene	ug/L	ND	1.0	05/26/20 16:36	
Tetrachloroethene	ug/L	ND	1.0	05/26/20 16:36	
Toluene	ug/L	ND	1.0	05/26/20 16:36	
trans-1,2-Dichloroethene	ug/L	ND	1.0	05/26/20 16:36	
trans-1,3-Dichloropropene	ug/L	ND	1.0	05/26/20 16:36	
Trichloroethene	ug/L	ND	1.0	05/26/20 16:36	
Trichlorofluoromethane	ug/L	ND	1.0	05/26/20 16:36	
Vinyl acetate	ug/L	ND	2.0	05/26/20 16:36	
Vinyl chloride	ug/L	ND	1.0	05/26/20 16:36	
Xylene (Total)	ug/L	ND	1.0	05/26/20 16:36	
1,2-Dichloroethane-d4 (S)	%	91	70-130	05/26/20 16:36	
4-Bromofluorobenzene (S)	%	99	70-130	05/26/20 16:36	
Toluene-d8 (S)	%	98	70-130	05/26/20 16:36	

LABORATORY CONTROL SAMPLE:	2893743					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	50.9	102	70-130	
1,1,1-Trichloroethane	ug/L	50	50.3	101	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	47.2	94	70-130	
1,1,2-Trichloroethane	ug/L	50	49.4	99	70-130	
1,1-Dichloroethane	ug/L	50	50.9	102	70-130	
1,1-Dichloroethene	ug/L	50	53.7	107	70-130	
1,1-Dichloropropene	ug/L	50	50.0	100	70-130	
1,2,3-Trichlorobenzene	ug/L	50	53.4	107	70-130	
1,2,3-Trichloropropane	ug/L	50	48.0	96	70-130	
1,2,4-Trichlorobenzene	ug/L	50	55.0	110	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	55.0	110	70-130	
1,2-Dibromoethane (EDB)	ug/L	50	48.7	97	70-130	
1,2-Dichlorobenzene	ug/L	50	52.3	105	70-130	
1,2-Dichloroethane	ug/L	50	46.4	93	70-130	
1,2-Dichloropropane	ug/L	50	48.9	98	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

LABORATORY CONTROL SAMPLE:	2893743					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
,3-Dichlorobenzene	ug/L	50	52.0	104	70-130	
1,3-Dichloropropane	ug/L	50	48.0	96	70-131	
1,4-Dichlorobenzene	ug/L	50	48.1	96	70-130	
2,2-Dichloropropane	ug/L	50	56.4	113	69-130	
2-Butanone (MEK)	ug/L	100	94.8	95	64-135	
2-Chlorotoluene	ug/L	50	50.9	102	70-130	
2-Hexanone	ug/L	100	97.9	98	66-135	
I-Chlorotoluene	ug/L	50	50.4	101	70-130	
1-Methyl-2-pentanone (MIBK)	ug/L	100	98.3	98	70-130	
Acetone	ug/L	100	100	100	61-157	
Benzene	ug/L	50	49.3	99	70-130	
Bromobenzene	ug/L	50	50.9	102	70-130	
Bromochloromethane	ug/L	50	52.0	104	70-130	
Bromodichloromethane	ug/L	50	47.6	95	70-130	
Bromoform	ug/L	50	51.4	103	70-130	
Bromomethane	ug/L	50	50.7	101	38-130	IK
Carbon tetrachloride	ug/L	50	52.5	105	70-130	
Chlorobenzene	ug/L	50	48.8	98	70-130	
Chloroethane	ug/L	50	44.7	89	37-142	
Chloroform	ug/L	50	49.0	98	70-130	
Chloromethane	ug/L	50	40.4	81	48-130	
cis-1,2-Dichloroethene	ug/L	50	49.4	99	70-130	
cis-1,3-Dichloropropene	ug/L	50	50.8	102	70-130	
Dibromochloromethane	ug/L	50	51.5	103	70-130	
Dibromomethane	ug/L	50	49.3	99	70-130	
Dichlorodifluoromethane	ug/L	50	47.2	94	53-134	
Diisopropyl ether	ug/L	50	50.1	100	70-135	
Ethylbenzene	ug/L	50	48.3	97	70-130	
Hexachloro-1,3-butadiene	ug/L	50	55.5	111	68-132	
n&p-Xylene	ug/L	100	97.9	98	70-130	
Methyl-tert-butyl ether	ug/L	50	52.3	105	70-130	
Methylene Chloride	ug/L	50	47.5	95	67-132	
Naphthalene	ug/L	50	51.4	103	70-130	
o-Xylene	ug/L	50	49.3	99	70-131	
o-Isopropyltoluene	ug/L	50	50.1	100	70-130	
Styrene	ug/L	50	50.8	102	70-130	
Tetrachloroethene	ug/L	50	52.7	105	69-130	
Toluene	ug/L	50	48.0	96	70-130	
rans-1,2-Dichloroethene	ug/L	50	53.2	106	70-130	
rans-1,3-Dichloropropene	ug/L	50	47.6	95	70-130	
richloroethene	ug/L	50	50.9	102	70-130	
Trichlorofluoromethane	ug/L	50	49.3	99	63-130	
/inyl acetate	ug/L	100	98.0	98	55-143	
/inyl chloride	ug/L	50	52.8	106	70-131	
(ylene (Total)	ug/L	150	147	98	70-130	
I,2-Dichloroethane-d4 (S)	%			99	70-130	
I-Bromofluorobenzene (S)	%			101	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

00 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

LABORATORY CONTROL SAMPLE: 2893743

Spike LCS LCS % Rec

Parameter Units Conc. Result % Rec Limits Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2893744					2893745							
			MS	MSD								
		92478032020	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	20	20	20.4	20.3	102	101	73-134	1	30	
1,1,1-Trichloroethane	ug/L	11.9	20	20	33.3	32.6	107	104	82-143	2	30	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	19.7	20.0	99	100	70-136	1	30	
1,1,2-Trichloroethane	ug/L	ND	20	20	20.0	19.8	100	99	70-135	1	30	
1,1-Dichloroethane	ug/L	3.0	20	20	23.0	23.0	100	100	70-139	0	30	
1,1-Dichloroethene	ug/L	4.1	20	20	25.3	25.5	106	107	70-154	1	30	
1,1-Dichloropropene	ug/L	ND	20	20	20.6	21.0	103	105	70-149	2	30	
1,2,3-Trichlorobenzene	ug/L	ND	20	20	19.5	19.9	97	99	70-135	2	30	
1,2,3-Trichloropropane	ug/L	ND	20	20	20.1	19.8	101	99	71-137	2	30	
1,2,4-Trichlorobenzene	ug/L	ND	20	20	19.7	19.7	98	99	73-140	0	30	
1,2-Dibromo-3-	ug/L	ND	20	20	20.5	20.4	102	102	65-134	0	30	
chloropropane	· ·											
1,2-Dibromoethane (EDB)	ug/L	ND	20	20	20.9	20.7	105	104	70-137	1	30	
1,2-Dichlorobenzene	ug/L	ND	20	20	19.4	19.4	97	97	70-133	0	30	
1,2-Dichloroethane	ug/L	ND	20	20	19.4	19.6	97	98	70-137	1	30	
1,2-Dichloropropane	ug/L	ND	20	20	19.7	20.2	98	101	70-140	3	30	
1,3-Dichlorobenzene	ug/L	ND	20	20	19.3	19.4	97	97	70-135	0	30	
1,3-Dichloropropane	ug/L	ND	20	20	20.4	20.5	102	103	70-143	0	30	
1,4-Dichlorobenzene	ug/L	ND	20	20	19.6	19.4	98	97	70-133	1	30	
2,2-Dichloropropane	ug/L	ND	20	20	22.2	22.3	111	111	61-148	0	30	
2-Butanone (MEK)	ug/L	ND	40	40	42.9	42.9	107	107	60-139	0	30	
2-Chlorotoluene	ug/L	ND	20	20	19.4	18.8	97	94	70-144	3	30	
2-Hexanone	ug/L	ND	40	40	43.5	42.7	109	107	65-138	2	30	
4-Chlorotoluene	ug/L	ND	20	20	19.2	18.7	96	94	70-137	3	30	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	40	40	42.9	42.4	107	106	65-135	1	30	
Acetone	ug/L	ND	40	40	45.3	43.5	113	109	60-148	4	30	
Benzene	ug/L	ND	20	20	19.7	20.2	98	101	70-151	3	30	
Bromobenzene	ug/L	ND	20	20	19.3	19.6	96	98	70-136	2	30	
Bromochloromethane	ug/L	ND	20	20	20.8	20.1	104	100	70-141	4	30	
Bromodichloromethane	ug/L	ND	20	20	20.0	20.2	100	101	70-138	1	30	
Bromoform	ug/L	ND	20	20	19.6	19.5	98	97	63-130	0	30	
Bromomethane	ug/L	ND	20	20	21.8	24.7	109	123	15-152	12	30	
Carbon tetrachloride	ug/L	ND	20	20	21.2	20.8	106	104	70-143	2	30	
Chlorobenzene	ug/L	ND	20	20	20.2	20.1	101	100	70-138	0	30	
Chloroethane	ug/L	ND	20	20	19.0	19.0	95	95	52-163	0	30	
Chloroform	ug/L	ND	20	20	19.8	19.1	99	95	70-139	4	30	
Chloromethane	ug/L	ND	20	20	17.4	17.8	87	89	41-139	2	30	
cis-1,2-Dichloroethene	ug/L	ND	20	20	19.7	20.1	99	100	70-141	2		
cis-1,3-Dichloropropene	ug/L	ND	20	20	20.3	20.0	101	100	70-137	1		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

MATRIX SPIKE & MATRIX SF	IKE DUP	LICATE: 2893			2893745							
		00.47000000	MS	MSD		1400			0/ 5			
Parameter	Units	92478032020 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
Dibromochloromethane	ug/L	ND	20	20	20.2	20.5	101	102	70-134	1		
Dibromomethane	ug/L	ND	20	20	20.2	20.1	101	101	70-138	0		
Dichlorodifluoromethane	ug/L	ND	20	20	18.5	18.6	92	93	47-155	1		
Diisopropyl ether	ug/L	ND	20	20	20.3	20.6	102	103	63-144	1		
Ethylbenzene	ug/L	ND	20	20	18.9	18.9	94	94	66-153	0	30	
Hexachloro-1,3-butadiene	ug/L	ND	20	20	21.5	21.4	108	107	65-149	1	30	
m&p-Xylene	ug/L	ND	40	40	38.0	37.8	95	94	69-152	1	30	
Methyl-tert-butyl ether	ug/L	ND	20	20	20.8	21.0	104	105	54-156	1	30	
Methylene Chloride	ug/L	ND	20	20	20.8	21.1	104	105	42-159	1	30	
Naphthalene	ug/L	ND	20	20	18.1	18.6	90	93	61-148	3	30	
o-Xylene	ug/L	ND	20	20	19.3	19.1	97	96	70-148	1	30	
p-Isopropyltoluene	ug/L	ND	20	20	21.0	20.7	105	103	70-146	1	30	
Styrene	ug/L	ND	20	20	19.6	19.9	98	99	70-135	1	30	
Tetrachloroethene	ug/L	ND	20	20	20.0	19.9	100	100	59-143	0	30	
Toluene	ug/L	ND	20	20	19.0	19.1	95	96	59-148	1	30	
trans-1,2-Dichloroethene	ug/L	ND	20	20	20.0	20.2	100	101	70-146	1	30	
trans-1,3-Dichloropropene	ug/L	ND	20	20	20.0	19.9	100	100	70-135	0	30	
Trichloroethene	ug/L	ND	20	20	21.2	21.1	106	105	70-147	1	30	
Trichlorofluoromethane	ug/L	ND	20	20	19.8	19.7	99	99	70-148	1	30	
Vinyl acetate	ug/L	ND	40	40	44.7	44.8	112	112	49-151	0	30	
Vinyl chloride	ug/L	ND	20	20	22.2	22.2	111	111	70-156	0		
Xylene (Total)	ug/L	ND	60	60	57.4	56.9	96	95	63-158	1	30	
1,2-Dichloroethane-d4 (S)	%						105	103	70-130			
4-Bromofluorobenzene (S)	%						100	100	70-130			
Toluene-d8 (S)	%						98	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop-Flex onsite

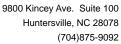
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

QC Batch: 543382 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte


Associated Lab Samples: 92478032013

METHOD BLANK: 2894165 Matrix: Water

Associated Lab Samples: 92478032013

December 02470002010	, I laita	Blank	Reporting	A made image	O !: #
Parameter ———————————————————————————————————	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	05/26/20 12:50	
1,1,1-Trichloroethane	ug/L	ND	1.0	05/26/20 12:50	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	05/26/20 12:50	
1,1,2-Trichloroethane	ug/L	ND	1.0	05/26/20 12:50	
1,1-Dichloroethane	ug/L	ND	1.0	05/26/20 12:50	
1,1-Dichloroethene	ug/L	ND	1.0	05/26/20 12:50	
1,1-Dichloropropene	ug/L	ND	1.0	05/26/20 12:50	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	05/26/20 12:50	
1,2,3-Trichloropropane	ug/L	ND	1.0	05/26/20 12:50	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	05/26/20 12:50	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	05/26/20 12:50	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	05/26/20 12:50	
1,2-Dichlorobenzene	ug/L	ND	1.0	05/26/20 12:50	
1,2-Dichloroethane	ug/L	ND	1.0	05/26/20 12:50	
1,2-Dichloropropane	ug/L	ND	1.0	05/26/20 12:50	
1,3-Dichlorobenzene	ug/L	ND	1.0	05/26/20 12:50	
1,3-Dichloropropane	ug/L	ND	1.0	05/26/20 12:50	
1,4-Dichlorobenzene	ug/L	ND	1.0	05/26/20 12:50	
2,2-Dichloropropane	ug/L	ND	1.0	05/26/20 12:50	
2-Butanone (MEK)	ug/L	ND	5.0	05/26/20 12:50	
2-Chlorotoluene	ug/L	ND	1.0	05/26/20 12:50	
2-Hexanone	ug/L	ND	5.0	05/26/20 12:50	v1
4-Chlorotoluene	ug/L	ND	1.0	05/26/20 12:50	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	05/26/20 12:50	
Acetone	ug/L	ND	25.0	05/26/20 12:50	
Benzene	ug/L	ND	1.0	05/26/20 12:50	
Bromobenzene	ug/L	ND	1.0	05/26/20 12:50	
Bromochloromethane	ug/L	ND	1.0	05/26/20 12:50	
Bromodichloromethane	ug/L	ND	1.0	05/26/20 12:50	
Bromoform	ug/L	ND	1.0	05/26/20 12:50	
Bromomethane	ug/L	ND	2.0	05/26/20 12:50	IH
Carbon tetrachloride	ug/L	ND	1.0	05/26/20 12:50	
Chlorobenzene	ug/L	ND	1.0	05/26/20 12:50	
Chloroethane	ug/L	ND	1.0	05/26/20 12:50	
Chloroform	ug/L	ND	5.0	05/26/20 12:50	
Chloromethane	ug/L	ND	1.0	05/26/20 12:50	
cis-1,2-Dichloroethene	ug/L	ND	1.0	05/26/20 12:50	
cis-1,3-Dichloropropene	ug/L	ND	1.0	05/26/20 12:50	
Dibromochloromethane	ug/L	ND	1.0	05/26/20 12:50	
Dibromomethane	ug/L	ND	1.0	05/26/20 12:50	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

METHOD BLANK: 2894165 Matrix: Water

Associated Lab Samples: 92478032013

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
					- Guainiois
Dichlorodifluoromethane	ug/L	ND	1.0	05/26/20 12:50	
Diisopropyl ether	ug/L	ND	1.0	05/26/20 12:50	
Ethylbenzene	ug/L	ND	1.0	05/26/20 12:50	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	05/26/20 12:50	IH
m&p-Xylene	ug/L	ND	2.0	05/26/20 12:50	
Methyl-tert-butyl ether	ug/L	ND	1.0	05/26/20 12:50	
Methylene Chloride	ug/L	ND	5.0	05/26/20 12:50	v1
Naphthalene	ug/L	ND	1.0	05/26/20 12:50	
o-Xylene	ug/L	ND	1.0	05/26/20 12:50	
p-Isopropyltoluene	ug/L	ND	1.0	05/26/20 12:50	
Styrene	ug/L	ND	1.0	05/26/20 12:50	
Tetrachloroethene	ug/L	ND	1.0	05/26/20 12:50	
Toluene	ug/L	ND	1.0	05/26/20 12:50	
trans-1,2-Dichloroethene	ug/L	ND	1.0	05/26/20 12:50	
trans-1,3-Dichloropropene	ug/L	ND	1.0	05/26/20 12:50	
Trichloroethene	ug/L	ND	1.0	05/26/20 12:50	
Trichlorofluoromethane	ug/L	ND	1.0	05/26/20 12:50	
Vinyl acetate	ug/L	ND	2.0	05/26/20 12:50	v1
Vinyl chloride	ug/L	ND	1.0	05/26/20 12:50	
Xylene (Total)	ug/L	ND	1.0	05/26/20 12:50	
1,2-Dichloroethane-d4 (S)	%	115	70-130	05/26/20 12:50	
4-Bromofluorobenzene (S)	%	100	70-130	05/26/20 12:50	
Toluene-d8 (S)	%	98	70-130	05/26/20 12:50	

LABORATORY CONTROL SAMPLE:	2894166					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	54.2	108	70-130	
1,1,1-Trichloroethane	ug/L	50	49.3	99	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	53.0	106	70-130	
1,1,2-Trichloroethane	ug/L	50	47.6	95	70-130	
1,1-Dichloroethane	ug/L	50	51.9	104	70-130	
1,1-Dichloroethene	ug/L	50	56.0	112	70-130	
1,1-Dichloropropene	ug/L	50	50.5	101	70-130	
1,2,3-Trichlorobenzene	ug/L	50	50.1	100	70-130	
1,2,3-Trichloropropane	ug/L	50	51.5	103	70-130	
1,2,4-Trichlorobenzene	ug/L	50	52.4	105	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	44.4	89	70-130	
1,2-Dibromoethane (EDB)	ug/L	50	54.1	108	70-130	
1,2-Dichlorobenzene	ug/L	50	55.5	111	70-130	
1,2-Dichloroethane	ug/L	50	52.3	105	70-130	
1,2-Dichloropropane	ug/L	50	53.1	106	70-130	
1,3-Dichlorobenzene	ug/L	50	55.7	111	70-130	
1,3-Dichloropropane	ug/L	50	56.2	112	70-131	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA

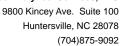
Project: Kop-Flex onsite
Pace Project No.: 92478032

LABORATORY CONTROL SAMPLE:	2894166	Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifie
,4-Dichlorobenzene	ug/L		53.8	108	70-130
2,2-Dichloropropane	ug/L	50	48.4	97	69-130
2-Butanone (MEK)	ug/L	100	112	112	64-135
2-Chlorotoluene	ug/L	50	54.3	109	70-130
2-Hexanone	ug/L	100	123	123	66-135 v1
I-Chlorotoluene	ug/L	50	54.8	110	70-130
I-Methyl-2-pentanone (MIBK)	ug/L	100	113	113	70-130
Acetone	ug/L	100	115	115	61-157
Benzene	ug/L	50	52.4	105	70-130
Bromobenzene	ug/L	50	54.5	109	70-130
Bromochloromethane	ug/L	50	45.8	92	70-130
Bromodichloromethane	ug/L	50	49.0	98	70-130
Bromoform	ug/L	50	50.8	102	70-130
Bromomethane	ug/L	50	41.8	84	38-130 IH
Carbon tetrachloride	ug/L	50	52.6	105	70-130
Chlorobenzene	ug/L	50	53.6	107	70-130
Chloroethane	ug/L	50	42.2	84	37-142
Chloroform	ug/L	50	49.5	99	70-130
Chloromethane	ug/L	50	49.8	100	48-130
is-1,2-Dichloroethene	ug/L	50	51.2	102	70-130
is-1,3-Dichloropropene	ug/L	50	49.5	99	70-130
Dibromochloromethane	ug/L	50	55.7	111	70-130
Dibromomethane	ug/L	50	50.5	101	70-130
Dichlorodifluoromethane	ug/L	50	44.2	88	53-134
Diisopropyl ether	ug/L	50	58.7	117	70-135
Ethylbenzene	ug/L	50	54.9	110	70-130
Hexachloro-1,3-butadiene	ug/L	50	49.7	99	68-132 IH
n&p-Xylene	ug/L	100	109	109	70-130
Methyl-tert-butyl ether	ug/L	50	52.4	105	70-130
Methylene Chloride	ug/L	50	60.8	122	67-132 v1
Naphthalene	ug/L	50	49.2	98	70-130
o-Xylene	ug/L	50	54.1	108	70-131
o-Isopropyltoluene	ug/L	50	56.8	114	70-130
Styrene	ug/L	50	56.9	114	70-130
etrachloroethene	ug/L	50	53.7	107	69-130
oluene	ug/L	50 50	46.8	94	70-130
rans-1,2-Dichloroethene	ug/L	50 50	54.4	109	70-130
rans-1,3-Dichloropropene		50		98	70-130
richloroethene	ug/L ug/L	50 50	49.1 50.5	101	70-130 70-130
richlorofluoromethane	ug/∟ ug/L	50 50	43.4	87	63-130
inyl acetate	ug/L ug/L	100	132	132	55-143 v1
/inyl chloride	_	50	50.9	102	70-131
•	ug/L				
(ylene (Total) ,2-Dichloroethane-d4 (S)	ug/L %	150	163	109 107	70-130 70-130
. ,	%			107	70-130 70-130
-Bromofluorobenzene (S)	%			101	70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.


Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

MATRIX SPIKE & MATRIX SI	PIKE DUPL	LICATE: 2894	2894167 2894168									
Parameter	Units	92478005001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
1,1,1,2-Tetrachloroethane	ug/L	ND	100	100	120	139	120	139	73-134	 15	30	H1,N
1,1,1-Trichloroethane	ug/L	ND	100	100	122	140	122	140	82-143	14		H1
1,1,2,2-Tetrachloroethane	ug/L	ND	100	100	121	140	121	140	70-136	15		H1,N
1,1,2-Trichloroethane	ug/L	ND	100	100	119	133	119	133	70-135	11		H1
1.1-Dichloroethane	ug/L	ND	100	100	139	149	139	149	70-139	6		H1,N
1,1-Dichloroethene	ug/L	ND	100	100	147	164	147	164	70-154	11		H1,N
1,1-Dichloropropene	ug/L	ND	100	100	131	147	131	147	70-134	11		H1
1,2,3-Trichlorobenzene	ug/L ug/L	ND ND	100	100	116	130	116	130	70-149	11		H1
1,2,3-Trichloropropane		ND ND	100	100	123	144	123	144	70-135	16		H1,N
	ug/L											
1,2,4-Trichlorobenzene	ug/L	ND	100	100	123	123	123	123	73-140	0		H1
1,2-Dibromo-3- chloropropane	ug/L	ND	100	100	109	113	109	113	65-134	3	30	H1
1,2-Dibromoethane (EDB)	ug/L	ND	100	100	125	146	125	146	70-137	15	30	H1,N
1,2-Dichlorobenzene	ug/L	ND	100	100	139	140	139	140	70-133	1		H1,N
1,2-Dichloroethane	ug/L	ND	100	100	137	148	137	148	70-137	8		H1,N
1,2-Dichloropropane	ug/L ug/L	ND	100	100	131	152	131	152	70-137	15		H1,N
1,3-Dichlorobenzene		ND ND	100	100	133	134	133	134	70-140	15		H1
·	ug/L		100			156	134		70-133			
,3-Dichloropropane	ug/L	ND		100	134			156	-	15		H1,N
1,4-Dichlorobenzene	ug/L	ND	100	100	130	134	130	134	70-133	3		H1,N
2,2-Dichloropropane	ug/L	ND	100	100	128	138	128	138	61-148	7		H1
2-Butanone (MEK)	ug/L	ND	200	200	274	298	137	149	60-139	8		H1,N
2-Chlorotoluene	ug/L	ND	100	100	145	143	145	143	70-144	1		H1,N
2-Hexanone	ug/L	ND	200	200	279	324	139	162	65-138	15	30	H1,N v1
I-Chlorotoluene	ug/L	ND	100	100	134	136	134	136	70-137	1	30	H1
I-Methyl-2-pentanone MIBK)	ug/L	ND	200	200	285	322	139	157	65-135	12		H1,I
Acetone	ug/L	ND	200	200	276	304	138	152	60-148	10		H1,N
Benzene	ug/L	346	100	100	471	502	126	157	70-151	6		H1,I
Bromobenzene	ug/L	ND	100	100	138	138	138	138	70-136	0	30	H1,I
Bromochloromethane	ug/L	ND	100	100	122	135	122	135	70-141	10		H1
Bromodichloromethane	ug/L	ND	100	100	118	133	118	133	70-138	12	30	H1
Bromoform	ug/L	ND	100	100	106	117	106	117	63-130	9		H1
Bromomethane	ug/L	ND	100	100	136	163	136	163	15-152	18		H1,I M1
Carbon tetrachloride	ug/L	ND	100	100	127	142	127	142	70-143	12		H1
Chlorobenzene	ug/L	ND	100	100	134	148	134	148	70-138	10		H1,
Chloroethane	ug/L	ND	100	100	129	136	129	136	52-163	5	30	H1
Chloroform	ug/L	ND	100	100	127	140	127	140	70-139	10	30	H1,
Chloromethane	ug/L	ND	100	100	132	144	130	143	41-139	9	30	H1,
cis-1,2-Dichloroethene	ug/L	ND	100	100	134	149	134	149	70-141	10	30	H1,
cis-1,3-Dichloropropene	ug/L	ND	100	100	126	135	126	135	70-137	7	30	H1
Dibromochloromethane	ug/L	ND	100	100	122	131	122	131	70-134	7		H1
Dibromomethane	ug/L	ND	100	100	126	141	126	141	70-138	12		H1,I
Dichlorodifluoromethane	ug/L	ND	100	100	121	131	121	131	47-155	7		H1
Diisopropyl ether	ug/L	8.9	100	100	158	174	149	165	63-144	10		H1,I
Ethylbenzene	ug/L	205	100	100	327	347	122	141	66-153	6		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

MATRIX SPIKE & MATRIX SF	IKE DUPLI(CATE: 2894	167 MS	MSD	2894168							
	9	2478005001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Hexachloro-1,3-butadiene	ug/L	ND	100	100	132	135	132	135	65-149	2	30	H1,IH
m&p-Xylene	ug/L	719	200	200	969	998	125	140	69-152	3	30	H1
Methyl-tert-butyl ether	ug/L	27.4	100	100	157	168	129	141	54-156	7	30	
Methylene Chloride	ug/L	ND	100	100	155	170	155	170	42-159	9		H1,M1 v1
Naphthalene	ug/L	110	100	100	230	229	120	120	61-148	0	30	H1
o-Xylene	ug/L	378	100	100	512	521	135	143	70-148	2	30	H1
p-Isopropyltoluene	ug/L	ND	100	100	155	158	155	158	70-146	1	30	H1,M1
Styrene	ug/L	ND	100	100	135	144	132	141	70-135	7	30	H1,M1
Tetrachloroethene	ug/L	ND	100	100	128	147	128	147	59-143	14	30	H1,M1
Toluene	ug/L	644	100	100	747	776	103	133	59-148	4	30	H1
trans-1,2-Dichloroethene	ug/L	ND	100	100	141	154	141	154	70-146	9	30	H1,M1
trans-1,3-Dichloropropene	ug/L	ND	100	100	121	133	121	133	70-135	9	30	H1
Trichloroethene	ug/L	ND	100	100	131	139	131	139	70-147	6	30	H1
Trichlorofluoromethane	ug/L	ND	100	100	114	129	114	129	70-148	13	30	
Vinyl acetate	ug/L	ND	200	200	322	367	161	184	49-151	13		H1,M1 v1
Vinyl chloride	ug/L	ND	100	100	136	147	136	147	70-156	8	30	H1
Xylene (Total)	ug/L	1100	300	300	1480	1520	128	141	63-158	3	30	
1,2-Dichloroethane-d4 (S)	%						111	113	70-130			
4-Bromofluorobenzene (S)	%						100	102	70-130			
Toluene-d8 (S)	%						100	103	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

QC Batch: 543671 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92478032022, 92478032023

METHOD BLANK: 2895491 Matrix: Water

Associated Lab Samples: 92478032022, 92478032023

1,1,1,2-Tetrachloroethane ug/L	ND		Analyzed	Qualifiers	
	שוו	1.0	05/27/20 13:06		
1,1,1-Trichloroethane ug/L	ND	1.0	05/27/20 13:06		
1,1,2,2-Tetrachloroethane ug/L	ND	1.0	05/27/20 13:06		
1,1,2-Trichloroethane ug/L	ND	1.0	05/27/20 13:06		
1,1-Dichloroethane ug/L	ND	1.0	05/27/20 13:06		
1,1-Dichloroethene ug/L	ND	1.0	05/27/20 13:06		
1,1-Dichloropropene ug/L	ND	1.0	05/27/20 13:06		
1,2,3-Trichlorobenzene ug/L	ND	1.0	05/27/20 13:06		
1,2,3-Trichloropropane ug/L	ND	1.0	05/27/20 13:06		
1,2,4-Trichlorobenzene ug/L	ND	1.0	05/27/20 13:06		
1,2-Dibromo-3-chloropropane ug/L	ND	5.0	05/27/20 13:06		
1,2-Dibromoethane (EDB) ug/L	ND	1.0	05/27/20 13:06		
1,2-Dichlorobenzene ug/L	ND	1.0	05/27/20 13:06		
1,2-Dichloroethane ug/L	ND	1.0	05/27/20 13:06		
1,2-Dichloropropane ug/L	ND	1.0	05/27/20 13:06		
1,3-Dichlorobenzene ug/L	ND	1.0	05/27/20 13:06		
1,3-Dichloropropane ug/L	ND	1.0	05/27/20 13:06		
1,4-Dichlorobenzene ug/L	ND	1.0	05/27/20 13:06		
2,2-Dichloropropane ug/L	ND	1.0	05/27/20 13:06		
2-Butanone (MEK) ug/L	ND	5.0	05/27/20 13:06		
2-Chlorotoluene ug/L	ND	1.0	05/27/20 13:06		
2-Hexanone ug/L	ND	5.0	05/27/20 13:06		
4-Chlorotoluene ug/L	ND	1.0	05/27/20 13:06		
4-Methyl-2-pentanone (MIBK) ug/L	ND	5.0	05/27/20 13:06		
Acetone ug/L	ND	25.0	05/27/20 13:06		
Benzene ug/L	ND	1.0	05/27/20 13:06		
Bromobenzene ug/L	ND	1.0	05/27/20 13:06		
Bromochloromethane ug/L	ND	1.0	05/27/20 13:06		
Bromodichloromethane ug/L	ND	1.0	05/27/20 13:06		
Bromoform ug/L	ND	1.0	05/27/20 13:06		
Bromomethane ug/L	ND	2.0	05/27/20 13:06	IK,v2	
Carbon tetrachloride ug/L	ND	1.0	05/27/20 13:06		
Chlorobenzene ug/L	ND	1.0	05/27/20 13:06		
Chloroethane ug/L	ND	1.0	05/27/20 13:06		
Chloroform ug/L	ND	5.0	05/27/20 13:06		
Chloromethane ug/L	ND	1.0	05/27/20 13:06		
cis-1,2-Dichloroethene ug/L	ND	1.0	05/27/20 13:06		
cis-1,3-Dichloropropene ug/L	ND	1.0	05/27/20 13:06		
Dibromochloromethane ug/L	ND	1.0	05/27/20 13:06		
Dibromomethane ug/L	ND	1.0	05/27/20 13:06		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

300 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

METHOD BLANK: 2895491 Matrix: Water

Associated Lab Samples: 92478032022, 92478032023

	,	Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dichlorodifluoromethane	ug/L	ND ND	1.0	05/27/20 13:06	
Diisopropyl ether	ug/L	ND	1.0	05/27/20 13:06	
Ethylbenzene	ug/L	ND	1.0	05/27/20 13:06	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	05/27/20 13:06	
m&p-Xylene	ug/L	ND	2.0	05/27/20 13:06	
Methyl-tert-butyl ether	ug/L	ND	1.0	05/27/20 13:06	
Methylene Chloride	ug/L	ND	5.0	05/27/20 13:06	
Naphthalene	ug/L	ND	1.0	05/27/20 13:06	
o-Xylene	ug/L	ND	1.0	05/27/20 13:06	
p-Isopropyltoluene	ug/L	ND	1.0	05/27/20 13:06	
Styrene	ug/L	ND	1.0	05/27/20 13:06	
Tetrachloroethene	ug/L	ND	1.0	05/27/20 13:06	
Toluene	ug/L	ND	1.0	05/27/20 13:06	
trans-1,2-Dichloroethene	ug/L	ND	1.0	05/27/20 13:06	
trans-1,3-Dichloropropene	ug/L	ND	1.0	05/27/20 13:06	
Trichloroethene	ug/L	ND	1.0	05/27/20 13:06	
Trichlorofluoromethane	ug/L	ND	1.0	05/27/20 13:06	
Vinyl acetate	ug/L	ND	2.0	05/27/20 13:06	
Vinyl chloride	ug/L	ND	1.0	05/27/20 13:06	
Xylene (Total)	ug/L	ND	1.0	05/27/20 13:06	
1,2-Dichloroethane-d4 (S)	%	92	70-130	05/27/20 13:06	
4-Bromofluorobenzene (S)	%	98	70-130	05/27/20 13:06	
Toluene-d8 (S)	%	99	70-130	05/27/20 13:06	

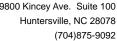
LABORATORY CONTROL SAMPLE:	2895492					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		47.9	96	70-130	
1,1,1-Trichloroethane	ug/L	50	46.6	93	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	46.2	92	70-130	
1,1,2-Trichloroethane	ug/L	50	47.5	95	70-130	
1,1-Dichloroethane	ug/L	50	47.9	96	70-130	
1,1-Dichloroethene	ug/L	50	48.9	98	70-130	
1,1-Dichloropropene	ug/L	50	47.6	95	70-130	
1,2,3-Trichlorobenzene	ug/L	50	48.7	97	70-130	
1,2,3-Trichloropropane	ug/L	50	47.4	95	70-130	
1,2,4-Trichlorobenzene	ug/L	50	50.6	101	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	52.1	104	70-130	
1,2-Dibromoethane (EDB)	ug/L	50	48.1	96	70-130	
1,2-Dichlorobenzene	ug/L	50	47.7	95	70-130	
1,2-Dichloroethane	ug/L	50	43.3	87	70-130	
1,2-Dichloropropane	ug/L	50	47.0	94	70-130	
1,3-Dichlorobenzene	ug/L	50	46.9	94	70-130	
1,3-Dichloropropane	ug/L	50	46.6	93	70-131	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

Date: 05/28/2020 02:20 PM

QUALITY CONTROL DATA


Project: Kop-Flex onsite
Pace Project No.: 92478032

ABORATORY CONTROL SAMPLE:	2895492					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
,4-Dichlorobenzene	ug/L		47.1	94	70-130	
2,2-Dichloropropane	ug/L	50	56.5	113	69-130	
2-Butanone (MEK)	ug/L	100	90.1	90	64-135	
2-Chlorotoluene	ug/L	50	47.5	95	70-130	
-Hexanone	ug/L	100	94.5	94	66-135	
-Chlorotoluene	ug/L	50	47.2	94	70-130	
-Methyl-2-pentanone (MIBK)	ug/L	100	92.5	93	70-130	
cetone	ug/L	100	96.6	97	61-157	
Senzene	ug/L	50	47.7	95	70-130	
romobenzene	ug/L	50	46.8	94	70-130	
romochloromethane	ug/L	50	51.8	104	70-130	
romodichloromethane	ug/L	50	45.6	91	70-130	
romoform	ug/L	50	47.1	94	70-130	
Bromomethane	ug/L	50	42.5	85	38-130	K,v3
arbon tetrachloride	ug/L	50	49.9	100	70-130	
hlorobenzene	ug/L	50	46.4	93	70-130	
hloroethane	ug/L	50	48.5	97	37-142	
hloroform	ug/L	50	45.8	92	70-130	
hloromethane	ug/L	50	36.8	74	48-130	
s-1,2-Dichloroethene	ug/L	50	46.7	93	70-130	
s-1,3-Dichloropropene	ug/L	50	50.5	101	70-130	
ibromochloromethane	ug/L	50	48.5	97	70-130	
ibromomethane	ug/L	50	46.8	94	70-130	
ichlorodifluoromethane	ug/L	50	41.3	83	53-134	
iisopropyl ether	ug/L	50	46.4	93	70-135	
thylbenzene	ug/L	50	46.7	93	70-130	
lexachloro-1,3-butadiene	ug/L	50	52.3	105	68-132	
n&p-Xylene	ug/L	100	95.1	95	70-130	
lethyl-tert-butyl ether	ug/L	50	49.7	99	70-130	
lethylene Chloride	ug/L	50	45.3	91	67-132	
laphthalene	ug/L	50	49.5	99	70-130	
-Xylene	ug/L	50	47.0	94	70-131	
-Isopropyltoluene	ug/L	50	48.1	96	70-130	
Styrene	ug/L	50	48.5	97	70-130	
etrachloroethene	ug/L	50	50.9	102	69-130	
oluene	ug/L	50	46.1	92	70-130	
ans-1,2-Dichloroethene	ug/L	50	49.0	98	70-130	
ans-1,3-Dichloropropene	ug/L	50	46.5	93	70-130	
richloroethene	ug/L	50	48.5	97	70-130	
richlorofluoromethane	ug/L	50	48.1	96	63-130	
inyl acetate	ug/L	100	91.7	92	55-143	
inyl chloride	ug/L	50	47.1	94	70-131	
(ylene (Total)	ug/L	150	142	95	70-130	
,2-Dichloroethane-d4 (S)	%	.00	· · -	87	70-130	
-Bromofluorobenzene (S)	%			100	70-130	
oluene-d8 (S)	%			99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

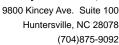
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

MATRIX SPIKE & MATRIX SF	PIKE DUPLICAT	E: 2895	493		2895494							
			MS	MSD								
	9247	8032022	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
,1,1,2-Tetrachloroethane	ug/L	ND	100	100	103	103	103	103	73-134	0	30	
,1,1-Trichloroethane	ug/L	518	100	100	573	584	55	67	82-143	2	30	M1
1,1,2,2-Tetrachloroethane	ug/L	ND	100	100	92.4	95.6	92	96	70-136	3	30	
1,1,2-Trichloroethane	ug/L	ND	100	100	97.2	97.4	97	97	70-135	0	30	
I,1-Dichloroethane	ug/L	425	100	100	477	482	52	57	70-139	1	30	M1
1,1-Dichloroethene	ug/L	594	100	100	643	659	50	66	70-154	2	30	M1
1,1-Dichloropropene	ug/L	ND	100	100	95.3	96.1	95	96	70-149	1	30	
1,2,3-Trichlorobenzene	ug/L	ND	100	100	104	104	104	104	70-135	0	30	
1,2,3-Trichloropropane	ug/L	ND	100	100	68.1	69.9	68	70	71-137	3	30	M1
1,2,4-Trichlorobenzene	ug/L	ND	100	100	104	107	104	107	73-140	3	30	
1,2-Dibromo-3-	ug/L	ND	100	100	103	108	103	108	65-134	5	30	
chloropropane	,,											
I,2-Dibromoethane (EDB)	ug/L	ND	100	100	98.0	102	98	102	70-137	4	30	
1,2-Dichlorobenzene	ug/L	ND	100	100	102	103	102	103	70-133	1	30	
I,2-Dichloroethane	ug/L	ND	100	100	87.9	90.0	88	90	70-137	2		
1,2-Dichloropropane	ug/L	ND	100	100	96.2	96.0	96	96	70-140	0		
,3-Dichlorobenzene	ug/L	ND	100	100	99.9	98.9	100	99	70-135	1	30	
,3-Dichloropropane	ug/L	ND	100	100	97.7	101	98	101	70-143	3		
,4-Dichlorobenzene	ug/L	ND	100	100	98.0	99.6	98	100	70-133	2		
2,2-Dichloropropane	ug/L	ND	100	100	98.3	101	98	101	61-148	3		
2-Butanone (MEK)	ug/L	ND	200	200	161	162	80	81	60-139	1	30	
2-Chlorotoluene	ug/L	ND	100	100	101	104	101	104	70-144	2		
2-Hexanone	ug/L	ND	200	200	181	184	91	92	65-138	2		
1-Chlorotoluene	ug/L	ND	100	100	101	102	101	102	70-137	0		
4-Methyl-2-pentanone MIBK)	ug/L	ND	200	200	179	177	90	89	65-135	1	30	
Acetone	ug/L	ND	200	200	188	190	94	95	60-148	1	30	
Benzene	ug/L	ND	100	100	100	99.3	100	99	70-151	1	30	
Bromobenzene	ug/L	ND	100	100	102	107	102	107	70-136	5		
Bromochloromethane	ug/L	ND	100	100	105	106	105	106	70-141	1	30	
Bromodichloromethane	ug/L	ND	100	100	93.0	92.8	93	93	70-138	0		
Bromoform	ug/L	ND	100	100	95.6	100	96	100	63-130	5		
Bromomethane	ug/L	ND	100	100	92.5	94.7	92	95	15-152	2	30	IK,v3
Carbon tetrachloride	ug/L	ND	100	100	107	107	107	107	70-143	0		
Chlorobenzene	ug/L	ND	100	100	98.7	101	99	101	70-138	2		
Chloroethane	ug/L	10.1	100	100	102	106	91	96	52-163	4		
Chloroform	ug/L	ND	100	100	88.3	89.2	88	89	70-139	1	30	
Chloromethane	ug/L	ND	100	100	61.5	64.9	61	65	41-139	5		
cis-1,2-Dichloroethene	ug/L	ND	100	100	95.8	95.9	92	92	70-141	0	30	
cis-1,3-Dichloropropene	ug/L	ND	100	100	98.5	100	98	100	70-137	2		
Dibromochloromethane	ug/L	ND	100	100	97.3	99.9	97	100	70-134	3		
Dibromomethane	ug/L	ND	100	100	103	103	103	103	70-138	0		
Dichlorodifluoromethane	ug/L	ND	100	100	81.2	83.4	81	83	47-155	3		
Diisopropyl ether	ug/L	ND	100	100	87.8	88.7	88	89	63-144	1	30	
Ethylbenzene	ug/L	ND	100	100	100	100	100	100	66-153	0	30	
Hexachloro-1,3-butadiene	ug/L	ND	100	100	106	114	106	114	65-149	7	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

MATRIX SPIKE & MATRIX SF	IKE DOI LI	CATE: 2895	MS	MSD	2895494							
	Ç	92478032022	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
m&p-Xylene	ug/L	ND	200	200	208	207	102	102	69-152	0	30	
Methyl-tert-butyl ether	ug/L	ND	100	100	100	101	100	101	54-156	1	30	
Methylene Chloride	ug/L	ND	100	100	89.5	89.3	89	89	42-159	0	30	
Naphthalene	ug/L	ND	100	100	102	101	102	101	61-148	1	30	
o-Xylene	ug/L	ND	100	100	103	100	102	99	70-148	3	30	
o-Isopropyltoluene	ug/L	ND	100	100	98.8	101	99	101	70-146	3	30	
Styrene	ug/L	ND	100	100	100	102	100	102	70-135	2	30	
Tetrachloroethene	ug/L	ND	100	100	116	120	112	116	59-143	3	30	
Toluene	ug/L	ND	100	100	102	101	100	99	59-148	1	30	
rans-1,2-Dichloroethene	ug/L	ND	100	100	99.9	99.1	100	99	70-146	1	30	
rans-1,3-Dichloropropene	ug/L	ND	100	100	92.3	94.0	92	94	70-135	2	30	
Trichloroethene	ug/L	12.0	100	100	115	117	103	105	70-147	2	30	
Trichlorofluoromethane	ug/L	ND	100	100	92.2	93.3	92	93	70-148	1	30	
/inyl acetate	ug/L	ND	200	200	171	169	85	85	49-151	1	30	
/inyl chloride	ug/L	ND	100	100	94.1	97.7	91	94	70-156	4	30	
(ylene (Total)	ug/L	ND	300	300	311	307	104	102	63-158	1	30	
,2-Dichloroethane-d4 (S)	%						91	90	70-130			
I-Bromofluorobenzene (S)	%						103	103	70-130			
Toluene-d8 (S)	%						98	96	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

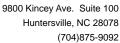
QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

QC Batch: 542729 Analysis Method: EPA 8260D Mod.
QC Batch Method: EPA 8260D Mod. Analysis Description: 8260D MSV SIM

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92478032001, 92478032002, 92478032003, 92478032004


METHOD BLANK: 2891387 Matrix: Water
Associated Lab Samples: 92478032001, 92478032002, 92478032003, 92478032004

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed 1,4-Dioxane (p-Dioxane) ND 2.0 05/20/20 17:52 ug/L 1,2-Dichloroethane-d4 (S) % 98 50-150 05/20/20 17:52 % 106 50-150 05/20/20 17:52 Toluene-d8 (S)

LABORATORY CONTROL SAMPLE: 2891388 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1,4-Dioxane (p-Dioxane) 20 19.3 97 70-130 ug/L 106 1,2-Dichloroethane-d4 (S) 50-150 % Toluene-d8 (S) % 101 50-150

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2891390 MS MSD MSD 92478023002 Spike Spike MS MS MSD % Rec Max Qual Parameter Conc. Result % Rec **RPD** RPD Units Result Conc. Result % Rec Limits 30 E 1,4-Dioxane (p-Dioxane) ug/L 99.8 20 20 120 127 99 134 50-150 1,2-Dichloroethane-d4 (S) % 95 95 50-150 30 Toluene-d8 (S) % 99 115 50-150 30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

QC Batch: 542730 Analysis Method: EPA 8260D Mod.

QC Batch Method: EPA 8260D Mod. Analysis Description: 8260D MSV SIM

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92478032005, 92478032006, 92478032007, 92478032008, 92478032009, 92478032010, 92478032011,

92478032012

METHOD BLANK: 2891393 Matrix: Water

Associated Lab Samples: 92478032005, 92478032006, 92478032007, 92478032008, 92478032009, 92478032010, 92478032011,

92478032012

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	ND -	2.0	05/20/20 18:12	
1,2-Dichloroethane-d4 (S)	%	107	50-150	05/20/20 18:12	
Toluene-d8 (S)	%	101	50-150	05/20/20 18:12	

LABORATORY CONTROL SAMPLE:	2891394	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	20	18.7	93	70-130	
1,2-Dichloroethane-d4 (S)	%			97	50-150	
Toluene-d8 (S)	%			98	50-150	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 2891	395		2891396							
			MS	MSD								
	ç	92478032005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,4-Dioxane (p-Dioxane)	ug/L	ND	20	20	18.7	17.9	92	88	50-150	4	30	
1,2-Dichloroethane-d4 (S)	%						101	104	50-150		30	
Toluene-d8 (S)	%						106	108	50-150		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop-Flex onsite
Pace Project No.: 92478032

QC Batch: 542881 Analysis Method: EPA 8260D Mod.
QC Batch Method: EPA 8260D Mod. Analysis Description: 8260D MSV SIM

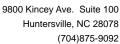
Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92478032013, 92478032014, 92478032015, 92478032016, 92478032017, 92478032018, 92478032019,

92478032020, 92478032021, 92478032023, 92478032024, 92478032025

METHOD BLANK: 2892029 Matrix: Water

Associated Lab Samples: 92478032013, 92478032014, 92478032015, 92478032016, 92478032017, 92478032018, 92478032019,


92478032020, 92478032021, 92478032023, 92478032024, 92478032025

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	ND	2.0	05/21/20 12:13	
1,2-Dichloroethane-d4 (S)	%	94	50-150	05/21/20 12:13	
Toluene-d8 (S)	%	105	50-150	05/21/20 12:13	

LABORATORY CONTROL SAMPLE:	2892030	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	20	19.4	97	70-130	
1,2-Dichloroethane-d4 (S)	%			92	50-150	
Toluene-d8 (S)	%			105	50-150	

MATRIX SPIKE & MATRIX SP	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2892586				2892587							
			MS	MSD								
	9	2478032017	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,4-Dioxane (p-Dioxane)	ug/L	ND	20	20	18.8	19.1	90	92	50-150	2	30	
1,2-Dichloroethane-d4 (S)	%						106	105	50-150		30	
Toluene-d8 (S)	%						111	110	50-150		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:

Kop-Flex onsite

Pace Project No.:

92478032

QC Batch:

542984

QC Batch Method:

EPA 8260D Mod.

Analysis Method:

EPA 8260D Mod.

Analysis Description:

8260D MSV SIM

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples:

92478032022

METHOD BLANK: 2892634

Matrix: Water

Associated Lab Samples:

92478032022

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	ND	2.0	05/22/20 00:43	
1,2-Dichloroethane-d4 (S)	%	101	50-150	05/22/20 00:43	
Toluene-d8 (S)	%	107	50-150	05/22/20 00:43	

LABORATORY CONTROL SAMPLE:

Parameter

1,4-Dioxane (p-Dioxane)

Toluene-d8 (S)

1,2-Dichloroethane-d4 (S)

Date: 05/28/2020 02:20 PM

2892635

Units

ug/L

%

%

Spike	LCS	LCS	% Rec	Qualifiers
Conc.	Result	% Rec	Limits	
20	17.1	86 96	70-130 50-150	

102

50-150

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

2892636

2892637

Parameter	Units	92478230010 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,4-Dioxane (p-Dioxane)	ug/L	ND	20	20	16.7	15.9	81	77	50-150	5	30	
1,2-Dichloroethane-d4 (S)	%						132	132	50-150		30	
Toluene-d8 (S)	%						123	122	50-150		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Kop-Flex onsite
Pace Project No.: 92478032

DEFINITIONS

- DF Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.
- ND Not Detected at or above adjusted reporting limit.
- TNTC Too Numerous To Count
- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- MDL Adjusted Method Detection Limit.
- PQL Practical Quantitation Limit.
- RL Reporting Limit The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.
- S Surrogate
- 1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

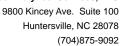
U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

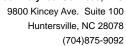

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 05/28/2020 02:20 PM

E	Analyte concentration exceeded the calibration range. The reported result is estimated.

- H1 Analysis conducted outside the EPA method holding time.
- IH This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.
- IK The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should be considered an estimated value.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
- v2 The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.



QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Kop-Flex onsite
Pace Project No.: 92478032

Date: 05/28/2020 02:20 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytic Batch
92478032001	MW-03	EPA 8260D	 542927		
92478032002	MW-43	EPA 8260D	542927		
2478032003	MW-39	EPA 8260D	542927		
2478032004	MW-42	EPA 8260D	542927		
2478032005	MW-18	EPA 8260D	542927		
2478032006	MW-38R	EPA 8260D	542927		
2478032007	MW-40D	EPA 8260D	542927		
2478032008	MW-21D	EPA 8260D	542927		
2478032009	MW-5R	EPA 8260D	542927		
2478032010	MW-41D	EPA 8260D	542927		
2478032011	MW-1D	EPA 8260D	542927		
2478032012	MW-22D	EPA 8260D	542927		
2478032013	MW-04	EPA 8260D	543382		
2478032014	MW-20	EPA 8260D	543215		
2478032015	MW-09	EPA 8260D	543215		
2478032016	MW-23D	EPA 8260D	543215		
2478032017	MW-27D	EPA 8260D	543215		
2478032018	Trip Blank A	EPA 8260D	543215		
2478032019	Trip Blank B	EPA 8260D	543215		
2478032020	MW-44	EPA 8260D	543215		
2478032021	MW-16D	EPA 8260D	543215		
2478032022	Dup-051320	EPA 8260D	543671		
2478032023	MW-16	EPA 8260D	543671		
2478032024	MW-01	EPA 8260D	543215		
2478032025	Trip Blank C	EPA 8260D	543215		
2478032001	MW-03	EPA 8260D Mod.	542729		
2478032002	MW-43	EPA 8260D Mod.	542729		
2478032003	MW-39	EPA 8260D Mod.	542729		
2478032004	MW-42	EPA 8260D Mod.	542729		
2478032005	MW-18	EPA 8260D Mod.	542730		
2478032006	MW-38R	EPA 8260D Mod.	542730		
2478032007	MW-40D	EPA 8260D Mod.	542730		
2478032008	MW-21D	EPA 8260D Mod.	542730		
2478032009	MW-5R	EPA 8260D Mod.	542730		
2478032010	MW-41D	EPA 8260D Mod.	542730		
2478032011	MW-1D	EPA 8260D Mod.	542730		
2478032012	MW-22D	EPA 8260D Mod.	542730		
2478032013	MW-04	EPA 8260D Mod.	542881		
2478032014	MW-20	EPA 8260D Mod.	542881		
2478032015	MW-09	EPA 8260D Mod.	542881		
2478032016	MW-23D	EPA 8260D Mod.	542881		
2478032017	MW-27D	EPA 8260D Mod.	542881		
2478032018	Trip Blank A	EPA 8260D Mod.	542881		
2478032019	Trip Blank B	EPA 8260D Mod.	542881		
2478032020	MW-44	EPA 8260D Mod.	542881		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Kop-Flex onsite
Pace Project No.: 92478032

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92478032021	MW-16D	EPA 8260D Mod.	542881		
92478032022	Dup-051320	EPA 8260D Mod.	542984		
92478032023	MW-16	EPA 8260D Mod.	542881		
92478032024	MW-01	EPA 8260D Mod.	542881		
92478032025	Trip Blank C	EPA 8260D Mod.	542881		

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority:
Pace Carolinas Quality Office

Laboratory receiving samples: Asheville Eden	Greenwood 🗌	Hunters	sville 🕡	Raleigh 🗌	Mechanics ville
Sample Condition Upon Receipt Client Name:		Proje	ct #: WO#	: 9247	8032
Courler: Fed Ex Commercial Pace	USPS USPS Other:	Client	924780	 	
Custody Seal Present? Yes	Seals Intact? Yes	□No	Date/Initi	als Person Examining (Contents: 8 5-18-70
Packing Material: Bubble Wrap Thermometer: 92T061 Cooler Temp (°C): 5.8,6.9,10,7 Correction Cooler Temp Corrected (°C): 5.9,7.0,10.8	Bubble Bags None Type of Ice: Factor: Add/Subtract (°C)			Biological Tissur Yes No above freezing to 6 ut of temp criteria. San]n/a
USDA Regulated Soil N/A, water sample) Did samples originate in a quarantine zone within t	the United States: CA, NY, or SC ((check maps)?		inate from a foreign so and Puerto Rico)? Y	es No
				Comments/Discrepa	incy;
Chain of Custody Present?	☑Yes ☐No	□N/A 1.			
Samples Arrived within Hold Time?	☐Yes ☐No	□N/A 2.			*
Short Hold Time Analysis (<72 hr.)?	□Yes ☑No	□N/A 3.			
Rush Turn Around Time Requested?	□Yes ☐No	□N/A 4.			
Sufficient Volume?	□ves □No	□N/A 5.			
	✓ Yes □No	□N/A 6.			
Correct Containers Used? -Pace Containers Used?	Ves No	□N/A 0.			
Containers Intact?	√Yes □No	□N/A 7.	-		
Dissolved analysis: Samples Field Filtered?	□Yes □No	N/A 8.			
Sample Labels Match COC?	Yes No	□N/A 9.			
-Includes Date/Time/ID/Analysis Matrix:	WI				
Headspace in VOA Vials (>5-6mm)?	□Yes □No	□N/A 10.			
Trip Blank Present?	Yes No	□N/A 11.			
COMMENTS/SAMPLE DISCREPANCY	√Yes □No	□N/A		Field Data F	Required? Yes No
100 MA14111					
CLIENT NOTIFICATION/RESOLUTION		Lo	ot ID of split cont	alners:	
Person contacted:		Date/Time:			
Project Manager SCURF Review:			Date:		
Project Manager SRF Review:			Date:		

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority:
Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project #

WO#: 92478032

PM: PTE

Due Date: 05/26/20

CLIENT: 92-WSP

	ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCI (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HC! (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)	
	1																G											-		
	2		24														9													
	3																0													
	4																0													
	5	7				Z	Z	7	Z			7		7	/	/	6								\angle	\setminus				
	6					/						/					5													
Ŧ	7					1	1					1		1			0			-					eg					
r	8					/	7	7	/			/		/	/	/	G								/					
r	9	7			3	/	/		/					/	/	/	G								/					
r	10					7	/	7	/			/		/	/	/	Ġ								\angle					
	11					/			/			/		/	/	/	6								/					
+	12					/	/	/	/			/		/	/	/	G													

		pH Ad	justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
					*	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

> Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project #

MO#: 92478032

PM: PTE

Due Date: 05/26/20

CLIENT: 92-WSP

Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (Cl-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG1S-1 liter Amber H2SO4 (pH < 2)	AG35-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1																5												
2	7					1					/					Q												
3																9												
1																5				=								
5	\sum				7	7	Z	7			7		7	/	1	G								/				
;	7	-			1	/	/	/			/		/	/	/	4						-						
_	7				7	1	1	/			1		1	/	1	4								/				
3	7					\angle	7	/			/		/	/	/	6								/				
)	7						/						/	/	/	G								/				
0	7					/	7	/								5												
1	7										/		/	/	/	5								/				
12	1					/	/	/			/		/	/	/	G												

		pH Ad	justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #
			2			
		ū				
			*			

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Matrix: AQ = Aqueous, S = Soil, SE = Sediment, A = Air, W = Wipe, B = Bulk, O = Other (detail in comments)	AQ = Aqueous, S = Soil, SE = Sedim	Matrix:			other samples.	time/date for all	es; use only star	Use stop time/date for composite and/or air samples; use only start time/date for all other samples.	-
Custody Seel Number(s) of 331, 08330, 0557)	Number of Packages	912	5 18-70)	W HOCL	Received By (Signature	Time	Date	Relinquished By (Signature)	-
	Shipment Method 179 5336	Time	Date	re)	Received By (Signature)	Time	5/15/Lo	Relinquished By (Signature)	
210			×	9 12401 0	5/13/20		AR	MW-09	0
Old			× ×	1030 6	2/9/20		40	MW-20	\cap
013			× ×	8 loio 5	5/13/20		8	MW-04	0
210			X X	m 1720 6	05/12/20		AQ	MW- 22D	5
011			×	1705 6	05/12/20		AQ	MW-ID	^
016			X	9 0HD1 0	05/10/20		AQ	JULY - MW	>
009			**	9 1888 C	05/12/20		AD	MW-SR	po
00¢			×		05/12/20		AQ	MW- 21D	0
067			X	05/12/20 1400 G	05/12/		AO	MW - 400	X
000			X	S Sohl 08/21/50	05/12/		AQ	MW - 38R	A
800			×	30 1250 G	05/10/20		AQ	MW-18	A
004			X	05/12/20 1235 Cp	oslal		AQ	MW- 42	5
003			×	क्ष १३३५ ८	os/valab		ð	Mw-39	D
200			X	6 1205 G	05/72/20		AQ	MW-43	D
001			×	8 1111S G	05/120		PO	Mw-03	B
Sample Comments 92478032			1,4	Collection Step	Colle	Collegion.	Matrix	Sample Identification	
Strandard				er of Container		Sampler(s) Signature(s)	Sample	Sampler(s) Name(s) Molly Long Elliat Martynkiewicz	(0)
Requested Torr Around-Time			2606 Ne	s	- 6500	/ ()	WSP US	Project Number & Task .	
Laboratory Project Manager			3 8260l	@wsp.com	10s00	WSP USA Contact E-mail	WSP USAC	KOPTIEX - On Site	77
No. 010011			7) /A	300 Herdon VA	SA Contact Name	Cchnology Dr Ste 3	ulks	
Page of	CORD Requested Analyses & Preservatives	ORD	CHAIN-OF-CUSTODY RECORD	CHAIN-OF-CL				WSP USA Office Address	

Matrix: AQ = Aqueous, S = Soil, SE = Sediment, A = Air, W = Wipe, B = Bulk, O = Other (detail in comments)	Matrix: AQ = Aqueous, S = Soil, SE = Sedimen	П	time/date for all other samples.	Use stop time/date for composite and/or air samples; use only start time/date for all other samples	اخ]
Custody Seal Number(s)	Time Number of Packages	51820	Time Received By (Signature)	Relinquished By (Signature)	ַּתַ
Tracking Number(s)	Fime Shipment Method	Date	Time Received By (Signature)		, p
		/			1
					100/100
			-		
37.0		メメ	ho provoud	TOBOXEC	(
Oel		6 × ×	5/4/20 10 18	MW-DI AR	235800
520		У Я	5/13/20 1805	MW-16 AS	_
077		5 / /	5/13/1020 05 00	DUP-051320 B	
120		6 × X	5/13/220 17 50	MN-16) \$	_
020		6 *	5/13/20017 30	MW-44 40	60
019		XXA	2	Trip Blank B	The Day
810		X	has provided	Trio Blank A	
017		×	13	MW-27D AS	()
010		X X	0	M-337 /	
HR Sample Comments		Number of	Collection Start Collection Start Date Tens Date Time	Sample Identification Merty Lipuite Matrix	<u></u> <u>ω</u> .
Standaro		5 1	Sampler(s) Signature(s)	log	φſ
Taylor Ezell		60B	96500	18 Task	او
Laboratory Project Manager)	ntact E		او
Laboratory Name & Location		SIN	WSP USA Contact Name	£6×	פַ
No.010013 115 1	Sicu Alialyses of Feservatives	S Support	404	Dullas Techno	_
Page A of	CHAIN-OF-CUSTODY RECORD	CUSTODY RECOF	CHAIN-OF	CN SAC	×
				>	

Huntersville, NC 28078 (704)875-9092

May 27, 2020

Eric Johnson WSP USA 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Dear Eric Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on May 18, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

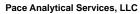
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Taylor Ezell taylor.ezell@pacelabs.com (704)875-9092


Project Manager

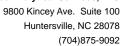
Enclosures

cc: Molly Long, WSP

Pam Robertson, WSP USA

Pace Analytical www.pacelabs.com

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092


CERTIFICATIONS

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Pace Analytical Services Charlotte

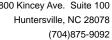
9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92478023001	RW-1S	Water	05/13/20 11:30	05/18/20 09:12
92478023002	RW-2S	Water	05/12/20 14:40	05/18/20 09:12
92478023003	RW-3S	Water	05/12/20 14:55	05/18/20 09:12
92478023004	RW-1D	Water	05/12/20 15:30	05/18/20 09:12
92478023005	RW-2D	Water	05/12/20 16:55	05/18/20 09:12


SAMPLE ANALYTE COUNT

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92478023001	RW-1S	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478023002	RW-2S	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478023003	RW-3S	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478023004	RW-1D	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92478023005	RW-2D	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C

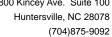
PASI-C = Pace Analytical Services - Charlotte

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

Sample: RW-1S	Lab ID: 924	78023001	Collected: 05/13/2	20 11:30	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	- Charlotte					
Acetone	ND	ug/L	62.5	2.5		05/26/20 18:28	8 67-64-1	
Benzene	ND	ug/L	2.5	2.5		05/26/20 18:28	3 71-43-2	
Bromobenzene	ND	ug/L	2.5	2.5		05/26/20 18:28	3 108-86-1	
Bromochloromethane	ND	ug/L	2.5	2.5		05/26/20 18:28	3 74-97-5	
Bromodichloromethane	ND	ug/L	2.5	2.5		05/26/20 18:28	3 75-27-4	
Bromoform	ND	ug/L	2.5	2.5		05/26/20 18:28	3 75-25-2	
Bromomethane	ND	ug/L	5.0	2.5		05/26/20 18:28	3 74-83-9	IH
2-Butanone (MEK)	ND	ug/L	12.5	2.5		05/26/20 18:28	3 78-93-3	
Carbon tetrachloride	ND	ug/L	2.5	2.5		05/26/20 18:28		
Chlorobenzene	ND	ug/L	2.5	2.5		05/26/20 18:28		
Chloroethane	16.3	ug/L	2.5	2.5		05/26/20 18:28		
Chloroform	ND	ug/L	12.5	2.5		05/26/20 18:28		
Chloromethane	ND	ug/L	2.5	2.5		05/26/20 18:28		
2-Chlorotoluene	ND	ug/L	2.5	2.5		05/26/20 18:28		
4-Chlorotoluene	ND	ug/L	2.5	2.5		05/26/20 18:28		
1,2-Dibromo-3-chloropropane	ND	ug/L	12.5	2.5		05/26/20 18:28		
Dibromochloromethane	ND	ug/L	2.5	2.5		05/26/20 18:28		
1,2-Dibromoethane (EDB)	ND	ug/L	2.5	2.5		05/26/20 18:28		
Dibromomethane	ND	ug/L	2.5	2.5		05/26/20 18:28		
1,2-Dichlorobenzene	ND	ug/L	2.5	2.5		05/26/20 18:28		
1,3-Dichlorobenzene	ND	ug/L	2.5	2.5		05/26/20 18:28		
1,4-Dichlorobenzene	ND	ug/L	2.5	2.5		05/26/20 18:28		
Dichlorodifluoromethane	ND	ug/L	2.5	2.5		05/26/20 18:28		
I,1-Dichloroethane	98.2	ug/L	2.5	2.5		05/26/20 18:28		
1,2-Dichloroethane	3.0	ug/L	2.5	2.5		05/26/20 18:28		
1,1-Dichloroethene	447	ug/L	2.5	2.5		05/26/20 18:28		
cis-1,2-Dichloroethene	ND	ug/L	2.5	2.5		05/26/20 18:28		
trans-1,2-Dichloroethene	ND	ug/L	2.5	2.5		05/26/20 18:28		
1,2-Dichloropropane	ND	ug/L	2.5	2.5		05/26/20 18:28		
1,3-Dichloropropane	ND	ug/L	2.5	2.5		05/26/20 18:28		
2,2-Dichloropropane	ND	ug/L	2.5	2.5		05/26/20 18:28		
1,1-Dichloropropene	ND	ug/L	2.5	2.5		05/26/20 18:28		
cis-1,3-Dichloropropene	ND	ug/L	2.5	2.5		05/26/20 18:28		
trans-1,3-Dichloropropene	ND	ug/L	2.5	2.5		05/26/20 18:28		
Diisopropyl ether	ND ND	ug/L	2.5	2.5		05/26/20 18:28		
Ethylbenzene	ND	ug/L	2.5	2.5		05/26/20 18:28		
Hexachloro-1,3-butadiene	ND ND	ug/L	2.5	2.5		05/26/20 18:28		IH
2-Hexanone	ND ND	ug/L ug/L	12.5	2.5		05/26/20 18:28		v1
o-Isopropyltoluene	ND ND	-	2.5	2.5		05/26/20 18:28		V I
Methylene Chloride	ND ND	ug/L	12.5	2.5		05/26/20 18:28		v1
1-Methyl-2-pentanone (MIBK)	ND ND	ug/L	12.5	2.5 2.5		05/26/20 18:28		V I
	ND ND	ug/L	2.5			05/26/20 18:28		
Methyl-tert-butyl ether		ug/L		2.5				
Naphthalene	ND	ug/L	2.5	2.5		05/26/20 18:28		
Styrene	ND	ug/L	2.5	2.5		05/26/20 18:28		
1,1,1,2-Tetrachloroethane	ND	ug/L	2.5	2.5		05/26/20 18:28		
1,1,2,2-Tetrachloroethane	ND	ug/L	2.5	2.5		05/26/20 18:28	5 /9-34-5	



Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

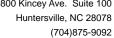
Sample: RW-1S	Lab ID: 9247	78023001	Collected: 05/13/2	20 11:30	Received: 05	5/18/20 09:12 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	2.5	2.5		05/26/20 18:28	127-18-4	
Toluene	ND	ug/L	2.5	2.5		05/26/20 18:28	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	2.5	2.5		05/26/20 18:28	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	2.5	2.5		05/26/20 18:28	120-82-1	
1,1,1-Trichloroethane	95.7	ug/L	2.5	2.5		05/26/20 18:28	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	2.5	2.5		05/26/20 18:28	79-00-5	
Trichloroethene	3.2	ug/L	2.5	2.5		05/26/20 18:28	79-01-6	
Trichlorofluoromethane	ND	ug/L	2.5	2.5		05/26/20 18:28	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	2.5	2.5		05/26/20 18:28	96-18-4	
/inyl acetate	ND	ug/L	5.0	2.5		05/26/20 18:28	108-05-4	v1
/inyl chloride	3.6	ug/L	2.5	2.5		05/26/20 18:28	75-01-4	
(Ylene (Total)	ND	ug/L	2.5	2.5		05/26/20 18:28	1330-20-7	
n&p-Xylene	ND	ug/L	5.0	2.5		05/26/20 18:28	179601-23-1	
o-Xylene	ND	ug/L	2.5	2.5		05/26/20 18:28	95-47-6	
Surrogates								
I-Bromofluorobenzene (S)	102	%	70-130	2.5		05/26/20 18:28	460-00-4	
,2-Dichloroethane-d4 (S)	118	%	70-130	2.5		05/26/20 18:28	17060-07-0	
Toluene-d8 (S)	102	%	70-130	2.5		05/26/20 18:28	2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	l Services -	Charlotte					
l,4-Dioxane (p-Dioxane) Surrogates	298	ug/L	10.0	5		05/19/20 03:47	123-91-1	
1,2-Dichloroethane-d4 (S)	111	%	50-150	5		05/19/20 03:47	17060-07-0	
Toluene-d8 (S)	94	%	50-150	5		05/19/20 03:47	2037-26-5	

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

Sample: RW-2S	Lab ID: 924	478023002	Collected: 05/12/2	20 14:40	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Me	thod: EPA 82	260D					
	Pace Analytic	al Services -	Charlotte					
Acetone	ND	ug/L	50.0	2		05/26/20 17:3	1 67-64-1	
Benzene	ND	ug/L	2.0	2		05/26/20 17:3		
Bromobenzene	ND	ug/L	2.0	2		05/26/20 17:3		
Bromochloromethane	ND	ug/L	2.0	2		05/26/20 17:3		
Bromodichloromethane	ND	ug/L	2.0	2		05/26/20 17:3		
Bromoform	ND	ug/L	2.0	2		05/26/20 17:3		
Bromomethane	ND	ug/L	4.0	2		05/26/20 17:3		IH
P-Butanone (MEK)	ND	ug/L	10.0	2		05/26/20 17:3	1 78-93-3	
Carbon tetrachloride	ND	ug/L	2.0	2		05/26/20 17:3	1 56-23-5	
Chlorobenzene	ND	ug/L	2.0	2		05/26/20 17:3	1 108-90-7	
Chloroethane	ND	ug/L	2.0	2		05/26/20 17:3		
Chloroform	ND	ug/L	10.0	2		05/26/20 17:3		
Chloromethane	ND	ug/L	2.0	2		05/26/20 17:3		
2-Chlorotoluene	ND	ug/L	2.0	2		05/26/20 17:3		
I-Chlorotoluene	ND	ug/L	2.0	2		05/26/20 17:3		
,2-Dibromo-3-chloropropane	ND	ug/L	10.0	2		05/26/20 17:3	1 96-12-8	
Dibromochloromethane	ND	ug/L	2.0	2		05/26/20 17:3	1 124-48-1	
,2-Dibromoethane (EDB)	ND	ug/L	2.0	2		05/26/20 17:3	1 106-93-4	
Dibromomethane	ND	ug/L	2.0	2		05/26/20 17:3	1 74-95-3	
,2-Dichlorobenzene	ND	ug/L	2.0	2		05/26/20 17:3	1 95-50-1	
,3-Dichlorobenzene	ND	ug/L	2.0	2		05/26/20 17:3	1 541-73-1	
,4-Dichlorobenzene	ND	ug/L	2.0	2		05/26/20 17:3	1 106-46-7	
Dichlorodifluoromethane	ND	ug/L	2.0	2		05/26/20 17:3	1 75-71-8	
,1-Dichloroethane	24.9	ug/L	2.0	2		05/26/20 17:3	1 75-34-3	
1,2-Dichloroethane	ND	ug/L	2.0	2		05/26/20 17:3	1 107-06-2	
,1-Dichloroethene	140	ug/L	2.0	2		05/26/20 17:3	1 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	2.0	2		05/26/20 17:3	1 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	2.0	2		05/26/20 17:3	1 156-60-5	
,2-Dichloropropane	ND	ug/L	2.0	2		05/26/20 17:3	1 78-87-5	
1,3-Dichloropropane	ND	ug/L	2.0	2		05/26/20 17:3	1 142-28-9	
2,2-Dichloropropane	ND	ug/L	2.0	2		05/26/20 17:3	1 594-20-7	
1,1-Dichloropropene	ND	ug/L	2.0	2		05/26/20 17:3	1 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	2.0	2		05/26/20 17:3	1 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	2.0	2		05/26/20 17:3	1 10061-02-6	
Diisopropyl ether	ND	ug/L	2.0	2		05/26/20 17:3	1 108-20-3	
Ethylbenzene	ND	ug/L	2.0	2		05/26/20 17:3	1 100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	2.0	2		05/26/20 17:3	1 87-68-3	IH
2-Hexanone	ND	ug/L	10.0	2		05/26/20 17:3	1 591-78-6	v1
-Isopropyltoluene	ND	ug/L	2.0	2		05/26/20 17:3	1 99-87-6	
Methylene Chloride	ND	ug/L	10.0	2		05/26/20 17:3	1 75-09-2	v1
I-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	2		05/26/20 17:3	1 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	2.0	2		05/26/20 17:3	1 1634-04-4	
Naphthalene	ND	ug/L	2.0	2		05/26/20 17:3		
Styrene	ND	ug/L	2.0	2		05/26/20 17:3		
,1,1,2-Tetrachloroethane	ND	ug/L	2.0	2		05/26/20 17:3		
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	2		05/26/20 17:3		



Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

Sample: RW-2S	Lab ID: 9247	78023002	Collected: 05/12/2	20 14:40	Received: 0	5/18/20 09:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	2.0	2		05/26/20 17:31	127-18-4	
Toluene	ND	ug/L	2.0	2		05/26/20 17:31	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	2.0	2		05/26/20 17:31	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	2.0	2		05/26/20 17:31	120-82-1	
1,1,1-Trichloroethane	232	ug/L	2.0	2		05/26/20 17:31	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	2.0	2		05/26/20 17:31	79-00-5	
Trichloroethene	ND	ug/L	2.0	2		05/26/20 17:31	79-01-6	
Trichlorofluoromethane	ND	ug/L	2.0	2		05/26/20 17:31	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	2.0	2		05/26/20 17:31	96-18-4	
/inyl acetate	ND	ug/L	4.0	2		05/26/20 17:31	108-05-4	v1
/inyl chloride	ND	ug/L	2.0	2		05/26/20 17:31	75-01-4	
Kylene (Total)	ND	ug/L	2.0	2		05/26/20 17:31	1330-20-7	
n&p-Xylene	ND	ug/L	4.0	2		05/26/20 17:31	179601-23-1	
o-Xylene	ND	ug/L	2.0	2		05/26/20 17:31	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	104	%	70-130	2		05/26/20 17:31	460-00-4	
1,2-Dichloroethane-d4 (S)	118	%	70-130	2		05/26/20 17:31	17060-07-0	
Toluene-d8 (S)	101	%	70-130	2		05/26/20 17:31	2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	99.8	ug/L	2.0	1		05/20/20 18:32	123-91-1	
1,2-Dichloroethane-d4 (S)	115	%	50-150	1		05/20/20 18:32	17060-07-0	
Foluene-d8 (S)	95	%	50-150	1		05/20/20 18:32	2037-26-5	

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

Sample: RW-3S	Lab ID: 9	2478023003	Collected: 05/12/2	20 14:55	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical M	1ethod: EPA 82	260D					
	Pace Analy	tical Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/24/20 04:3	1 67-64-1	
Benzene	ND	ug/L	1.0	1		05/24/20 04:3		
Bromobenzene	ND	ug/L	1.0	1		05/24/20 04:3	1 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		05/24/20 04:3	1 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		05/24/20 04:3		
Bromoform	ND	ug/L	1.0	1		05/24/20 04:3	1 75-25-2	
Bromomethane	ND	ug/L	2.0	1		05/24/20 04:3		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		05/24/20 04:3	1 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		05/24/20 04:3		
Chlorobenzene	ND	ug/L	1.0	1		05/24/20 04:3		
Chloroethane	ND	ug/L	1.0	1		05/24/20 04:3		
Chloroform	ND	ug/L	5.0	1		05/24/20 04:3		
Chloromethane	ND	ug/L	1.0	1		05/24/20 04:3		
2-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 04:3		
4-Chlorotoluene	ND	ug/L	1.0	1		05/24/20 04:3		
1,2-Dibromo-3-chloropropane	ND ND	ug/L	5.0	1		05/24/20 04:3		
Dibromochloromethane	ND ND	ug/L ug/L	1.0	1		05/24/20 04:3		
1,2-Dibromoethane (EDB)	ND ND	ug/L ug/L	1.0	1		05/24/20 04:3		
Dibromomethane	ND ND		1.0	1		05/24/20 04:3		
	ND ND	ug/L	1.0	1		05/24/20 04:3		
1,2-Dichlorobenzene		ug/L		1				
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	ug/L	1.0 1.0	1		05/24/20 04:3° 05/24/20 04:3°		
•		ug/L						
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/24/20 04:31		
1,1-Dichloroethane	3.4	ug/L	1.0	1		05/24/20 04:3		
1,2-Dichloroethane	ND	ug/L	1.0	1		05/24/20 04:3		
1,1-Dichloroethene	5.9	ug/L	1.0	1		05/24/20 04:3		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 04:3		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/24/20 04:3		
1,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 04:3		
1,3-Dichloropropane	ND	ug/L	1.0	1		05/24/20 04:3		
2,2-Dichloropropane	ND	ug/L	1.0	1		05/24/20 04:3		
1,1-Dichloropropene	ND	ug/L	1.0	1		05/24/20 04:3		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 04:3		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/24/20 04:3		
Diisopropyl ether	ND	ug/L	1.0	1		05/24/20 04:3		
Ethylbenzene	ND	ug/L	1.0	1		05/24/20 04:3		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/24/20 04:3		
2-Hexanone	ND	ug/L	5.0	1		05/24/20 04:3		
o-Isopropyltoluene	ND	ug/L	1.0	1		05/24/20 04:3		
Methylene Chloride	ND	ug/L	5.0	1		05/24/20 04:3	1 75-09-2	
1-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/24/20 04:3	1 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/24/20 04:3	1 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		05/24/20 04:3	1 91-20-3	
Styrene	ND	ug/L	1.0	1		05/24/20 04:3	1 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 04:3	1 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/24/20 04:3	1 79-34-5	

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

Sample: RW-3S	Lab ID: 924	78023003	Collected: 05/12/2	14:55	Received: 0	5/18/20 09:12 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/24/20 04:31	127-18-4	
Toluene	ND	ug/L	1.0	1		05/24/20 04:31	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 04:31	87-61-6	IH
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/24/20 04:31	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		05/24/20 04:31	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/24/20 04:31	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/24/20 04:31	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/24/20 04:31	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/24/20 04:31	96-18-4	
√inyl acetate	ND	ug/L	2.0	1		05/24/20 04:31	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		05/24/20 04:31	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/24/20 04:31	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		05/24/20 04:31	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/24/20 04:31	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	101	%	70-130	1		05/24/20 04:31	460-00-4	
1,2-Dichloroethane-d4 (S)	116	%	70-130	1		05/24/20 04:31	17060-07-0	
Toluene-d8 (S)	104	%	70-130	1		05/24/20 04:31	2037-26-5	
8260D MSV SIM	Analytical Meth	nod: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	17.2	ug/L	2.0	1		05/19/20 02:47	123-91-1	
1,2-Dichloroethane-d4 (S)	101	%	50-150	1		05/19/20 02:47	17060-07-0	
Toluene-d8 (S)	100	%	50-150	1		05/19/20 02:47	2037-26-5	

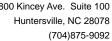
ANALYTICAL RESULTS

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

Sample: RW-1D	Lab ID:	92478023004	Collected: 05/12/2	0 15:30	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical	Method: EPA 82	260D					
	Pace Analy	ytical Services -	Charlotte					
Acetone	NE	ug/L	50.0	2		05/26/20 17:50	0 67-64-1	
Benzene	NE	J	2.0	2		05/26/20 17:50		
Bromobenzene	NE	J	2.0	2		05/26/20 17:50		
Bromochloromethane	NE	0	2.0	2		05/26/20 17:50		
Bromodichloromethane	NE	J	2.0	2		05/26/20 17:50		
Bromoform	NE	0	2.0	2		05/26/20 17:50		
Bromomethane	NE	•	4.0	2		05/26/20 17:50		IH
2-Butanone (MEK)	NE	0	10.0	2		05/26/20 17:50		
Carbon tetrachloride	NE	•	2.0	2		05/26/20 17:50		
Chlorobenzene	NE	•	2.0	2		05/26/20 17:50		
Chloroethane	3.9	J	2.0	2		05/26/20 17:50		
Chloroform	NE NE	0	10.0	2		05/26/20 17:50		
Chloromethane	NE	J	2.0	2		05/26/20 17:50		
2-Chlorotoluene	NE	0	2.0	2		05/26/20 17:50		
4-Chlorotoluene	NE	J	2.0	2		05/26/20 17:50		
1,2-Dibromo-3-chloropropane	NE	0	10.0	2		05/26/20 17:50		
Dibromochloromethane	NE	•	2.0	2		05/26/20 17:50		
1,2-Dibromoethane (EDB)	NE	0	2.0	2		05/26/20 17:50		
Dibromomethane	NE	•	2.0	2		05/26/20 17:50		
1,2-Dichlorobenzene	NE	J	2.0	2		05/26/20 17:50		
,3-Dichlorobenzene	NE	J	2.0	2		05/26/20 17:50		
1,4-Dichlorobenzene	NE	0	2.0	2		05/26/20 17:50		
Dichlorodifluoromethane	NE	J	2.0	2		05/26/20 17:50		
1,1-Dichloroethane	48.4	J	2.0	2		05/26/20 17:50		
1,2-Dichloroethane	NE	J	2.0	2		05/26/20 17:50		
1,1-Dichloroethene	202	J	2.0	2		05/26/20 17:50		
cis-1,2-Dichloroethene	NE NE	0	2.0	2		05/26/20 17:50		
rans-1,2-Dichloroethene	NE	0	2.0	2		05/26/20 17:50		
1,2-Dichloropropane	NE	•	2.0	2		05/26/20 17:50		
1,3-Dichloropropane	NE	•	2.0	2		05/26/20 17:50		
2,2-Dichloropropane	NE	•	2.0	2		05/26/20 17:50		
1,1-Dichloropropene	NE	•	2.0	2		05/26/20 17:50		
cis-1,3-Dichloropropene	NE	0	2.0	2		05/26/20 17:50		
rans-1,3-Dichloropropene	NE	J	2.0	2		05/26/20 17:50		
Diisopropyl ether	NE		2.0	2		05/26/20 17:50		
Ethylbenzene	NE	-	2.0	2		05/26/20 17:50		
Hexachloro-1,3-butadiene	NE	-	2.0	2		05/26/20 17:50		IH
2-Hexanone	NE	•	10.0	2		05/26/20 17:50		v1
p-Isopropyltoluene	NE	•	2.0	2		05/26/20 17:50		• •
Methylene Chloride	NE	•	10.0	2		05/26/20 17:50		v1
4-Methyl-2-pentanone (MIBK)	NE	•	10.0	2		05/26/20 17:50		٧.
Methyl-tert-butyl ether	NE	•	2.0	2		05/26/20 17:50		
Naphthalene	NE	•	2.0	2		05/26/20 17:50		
Styrene	NE	•	2.0	2		05/26/20 17:50		
1,1,1,2-Tetrachloroethane	NE	•	2.0	2		05/26/20 17:50		
1,1,2-Tetrachloroethane	NE	•	2.0	2		05/26/20 17:50		



Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

Sample: RW-1D	Lab ID: 9247	78023004	Collected: 05/12/2	20 15:30	Received: 0	5/18/20 09:12 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	2.0	2		05/26/20 17:50	127-18-4	
Toluene	ND	ug/L	2.0	2		05/26/20 17:50	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	2.0	2		05/26/20 17:50	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	2.0	2		05/26/20 17:50	120-82-1	
1,1,1-Trichloroethane	5.1	ug/L	2.0	2		05/26/20 17:50	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	2.0	2		05/26/20 17:50	79-00-5	
Trichloroethene	ND	ug/L	2.0	2		05/26/20 17:50	79-01-6	
Trichlorofluoromethane	ND	ug/L	2.0	2		05/26/20 17:50	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	2.0	2		05/26/20 17:50	96-18-4	
/inyl acetate	ND	ug/L	4.0	2		05/26/20 17:50	108-05-4	v1
Vinyl chloride	ND	ug/L	2.0	2		05/26/20 17:50	75-01-4	
Xylene (Total)	ND	ug/L	2.0	2		05/26/20 17:50	1330-20-7	
m&p-Xylene	ND	ug/L	4.0	2		05/26/20 17:50	179601-23-1	
o-Xylene	ND	ug/L	2.0	2		05/26/20 17:50	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	100	%	70-130	2		05/26/20 17:50	460-00-4	
1,2-Dichloroethane-d4 (S)	115	%	70-130	2		05/26/20 17:50	17060-07-0	
Toluene-d8 (S)	102	%	70-130	2		05/26/20 17:50	2037-26-5	
3260D MSV SIM	Analytical Meth	nod: EPA 82	60D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	81.8	ug/L	2.0	1		05/19/20 03:07	123-91-1	
1,2-Dichloroethane-d4 (S)	99	%	50-150	1		05/19/20 03:07	17060-07-0	
Foluene-d8 (S)	107	%	50-150	1		05/19/20 03:07	2037-26-5	

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

Sample: RW-2D	Lab ID: 924	78023005	Collected: 05/12/2	20 16:55	Received:	05/18/20 09:12	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		05/26/20 16:5	4 67-64-1	
Benzene	ND	ug/L	1.0	1		05/26/20 16:5		
Bromobenzene	ND	ug/L	1.0	1		05/26/20 16:5		
Bromochloromethane	ND	ug/L	1.0	1		05/26/20 16:5		
Bromodichloromethane	ND	ug/L	1.0	1		05/26/20 16:5		
Bromoform	ND	ug/L	1.0	1		05/26/20 16:5		
Bromomethane	ND	ug/L	2.0	1		05/26/20 16:5		IH
2-Butanone (MEK)	ND	ug/L	5.0	1		05/26/20 16:5	4 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		05/26/20 16:5	4 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		05/26/20 16:5	4 108-90-7	
Chloroethane	ND	ug/L	1.0	1		05/26/20 16:5		
Chloroform	ND	ug/L	5.0	1		05/26/20 16:5		
Chloromethane	ND	ug/L	1.0	1		05/26/20 16:5	4 74-87-3	
2-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 16:5	4 95-49-8	
I-Chlorotoluene	ND	ug/L	1.0	1		05/26/20 16:5	4 106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		05/26/20 16:5	4 96-12-8	
Dibromochloromethane	ND	ug/L	1.0	1		05/26/20 16:5	4 124-48-1	
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		05/26/20 16:5	4 106-93-4	
Dibromomethane	ND	ug/L	1.0	1		05/26/20 16:5	4 74-95-3	
,2-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 16:5	4 95-50-1	
,3-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 16:5	4 541-73-1	
,4-Dichlorobenzene	ND	ug/L	1.0	1		05/26/20 16:5	4 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		05/26/20 16:5	4 75-71-8	
,1-Dichloroethane	21.4	ug/L	1.0	1		05/26/20 16:5	4 75-34-3	
,2-Dichloroethane	1.6	ug/L	1.0	1		05/26/20 16:5	4 107-06-2	
,1-Dichloroethene	145	ug/L	1.0	1		05/26/20 16:5	4 75-35-4	
sis-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 16:5	4 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		05/26/20 16:5	4 156-60-5	
,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 16:5	4 78-87-5	
,3-Dichloropropane	ND	ug/L	1.0	1		05/26/20 16:5	4 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		05/26/20 16:5	4 594-20-7	
,1-Dichloropropene	ND	ug/L	1.0	1		05/26/20 16:5	4 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		05/26/20 16:5	4 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		05/26/20 16:5	4 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		05/26/20 16:5	4 108-20-3	
Ethylbenzene	ND	ug/L	1.0	1		05/26/20 16:5	4 100-41-4	
lexachloro-1,3-butadiene	ND	ug/L	1.0	1		05/26/20 16:5	4 87-68-3	IH
-Hexanone	ND	ug/L	5.0	1		05/26/20 16:5	4 591-78-6	v1
-Isopropyltoluene	ND	ug/L	1.0	1		05/26/20 16:5	4 99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		05/26/20 16:5	4 75-09-2	v1
-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		05/26/20 16:5		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		05/26/20 16:5		
Naphthalene	ND	ug/L	1.0	1		05/26/20 16:5		
Styrene	ND	ug/L	1.0	1		05/26/20 16:5		
,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 16:5		
I,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		05/26/20 16:5		

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

Sample: RW-2D	Lab ID: 924	78023005	Collected: 05/12/2	0 16:55	Received: 0	5/18/20 09:12 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		05/26/20 16:54	127-18-4	
Toluene	ND	ug/L	1.0	1		05/26/20 16:54	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 16:54	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		05/26/20 16:54	120-82-1	
1,1,1-Trichloroethane	5.3	ug/L	1.0	1		05/26/20 16:54	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		05/26/20 16:54	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		05/26/20 16:54	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		05/26/20 16:54	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		05/26/20 16:54	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		05/26/20 16:54	108-05-4	v1
Vinyl chloride	ND	ug/L	1.0	1		05/26/20 16:54	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		05/26/20 16:54	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		05/26/20 16:54	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		05/26/20 16:54	95-47-6	
Surrogates		_						
4-Bromofluorobenzene (S)	100	%	70-130	1		05/26/20 16:54	460-00-4	
1,2-Dichloroethane-d4 (S)	114	%	70-130	1		05/26/20 16:54	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		05/26/20 16:54	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	60D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	78.2	ug/L	2.0	1		05/19/20 03:27	123-91-1	
1,2-Dichloroethane-d4 (S)	100	%	50-150	1		05/19/20 03:27	17060-07-0	
Toluene-d8 (S)	94	%	50-150	1		05/19/20 03:27	2037-26-5	

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

QC Batch: 542927 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92478023003

METHOD BLANK: 2892230 Matrix: Water

Associated Lab Samples: 92478023003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	05/24/20 00:00	
1,1,1-Trichloroethane	ug/L	ND	1.0	05/24/20 00:00	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	05/24/20 00:00	
1,1,2-Trichloroethane	ug/L	ND	1.0	05/24/20 00:00	
1,1-Dichloroethane	ug/L	ND	1.0	05/24/20 00:00	
1,1-Dichloroethene	ug/L	ND	1.0	05/24/20 00:00	
1,1-Dichloropropene	ug/L	ND	1.0	05/24/20 00:00	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	05/24/20 00:00	IH
1,2,3-Trichloropropane	ug/L	ND	1.0	05/24/20 00:00	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	05/24/20 00:00	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	05/24/20 00:00	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	05/24/20 00:00	
1,2-Dichlorobenzene	ug/L	ND	1.0	05/24/20 00:00	
1,2-Dichloroethane	ug/L	ND	1.0	05/24/20 00:00	
1,2-Dichloropropane	ug/L	ND	1.0	05/24/20 00:00	
1,3-Dichlorobenzene	ug/L	ND	1.0	05/24/20 00:00	
1,3-Dichloropropane	ug/L	ND	1.0	05/24/20 00:00	
1,4-Dichlorobenzene	ug/L	ND	1.0	05/24/20 00:00	
2,2-Dichloropropane	ug/L	ND	1.0	05/24/20 00:00	
2-Butanone (MEK)	ug/L	ND	5.0	05/24/20 00:00	
2-Chlorotoluene	ug/L	ND	1.0	05/24/20 00:00	
2-Hexanone	ug/L	ND	5.0	05/24/20 00:00	
4-Chlorotoluene	ug/L	ND	1.0	05/24/20 00:00	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	05/24/20 00:00	
Acetone	ug/L	ND	25.0	05/24/20 00:00	
Benzene	ug/L	ND	1.0	05/24/20 00:00	
Bromobenzene	ug/L	ND	1.0	05/24/20 00:00	
Bromochloromethane	ug/L	ND	1.0	05/24/20 00:00	
Bromodichloromethane	ug/L	ND	1.0	05/24/20 00:00	
Bromoform	ug/L	ND	1.0	05/24/20 00:00	
Bromomethane	ug/L	ND	2.0	05/24/20 00:00	v2
Carbon tetrachloride	ug/L	ND	1.0	05/24/20 00:00	
Chlorobenzene	ug/L	ND	1.0	05/24/20 00:00	
Chloroethane	ug/L	ND	1.0	05/24/20 00:00	
Chloroform	ug/L	ND	5.0	05/24/20 00:00	
Chloromethane	ug/L	ND	1.0	05/24/20 00:00	
cis-1,2-Dichloroethene	ug/L	ND	1.0	05/24/20 00:00	
cis-1,3-Dichloropropene	ug/L	ND	1.0	05/24/20 00:00	
Dibromochloromethane	ug/L	ND	1.0	05/24/20 00:00	
Dibromomethane	ug/L	ND	1.0	05/24/20 00:00	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

METHOD BLANK: 2892230 Matrix: Water

Associated Lab Samples: 92478023003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Dichlorodifluoromethane	ug/L	ND	1.0	05/24/20 00:00	
Diisopropyl ether	ug/L	ND ND	1.0	05/24/20 00:00	
Ethylbenzene	ug/L	ND ND	1.0	05/24/20 00:00	
Hexachloro-1,3-butadiene	•	ND ND	1.0	05/24/20 00:00	
,	ug/L	ND ND		05/24/20 00:00	
m&p-Xylene	ug/L		2.0		
Methylere Chloride	ug/L	ND	1.0	05/24/20 00:00	
Methylene Chloride	ug/L	ND	5.0	05/24/20 00:00	
Naphthalene	ug/L	ND	1.0	05/24/20 00:00	
o-Xylene	ug/L	ND	1.0	05/24/20 00:00	
p-Isopropyltoluene	ug/L	ND	1.0	05/24/20 00:00	
Styrene	ug/L	ND	1.0	05/24/20 00:00	
Tetrachloroethene	ug/L	ND	1.0	05/24/20 00:00	
Toluene	ug/L	ND	1.0	05/24/20 00:00	
trans-1,2-Dichloroethene	ug/L	ND	1.0	05/24/20 00:00	
trans-1,3-Dichloropropene	ug/L	ND	1.0	05/24/20 00:00	
Trichloroethene	ug/L	ND	1.0	05/24/20 00:00	
Trichlorofluoromethane	ug/L	ND	1.0	05/24/20 00:00	
Vinyl acetate	ug/L	ND	2.0	05/24/20 00:00	
Vinyl chloride	ug/L	ND	1.0	05/24/20 00:00	
Xylene (Total)	ug/L	ND	1.0	05/24/20 00:00	
1,2-Dichloroethane-d4 (S)	%	108	70-130	05/24/20 00:00	
4-Bromofluorobenzene (S)	%	99	70-130	05/24/20 00:00	
Toluene-d8 (S)	%	102	70-130	05/24/20 00:00	

LABORATORY CONTROL SAMPLE:	2892231					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	50.5	101	70-130	
1,1,1-Trichloroethane	ug/L	50	54.7	109	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	51.4	103	70-130	
1,1,2-Trichloroethane	ug/L	50	50.9	102	70-130	
1,1-Dichloroethane	ug/L	50	50.3	101	70-130	
1,1-Dichloroethene	ug/L	50	55.0	110	70-130	
1,1-Dichloropropene	ug/L	50	52.5	105	70-130	
1,2,3-Trichlorobenzene	ug/L	50	60.5	121	70-130 II	1
1,2,3-Trichloropropane	ug/L	50	47.6	95	70-130	
1,2,4-Trichlorobenzene	ug/L	50	50.4	101	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	52.0	104	70-130	
1,2-Dibromoethane (EDB)	ug/L	50	52.6	105	70-130	
1,2-Dichlorobenzene	ug/L	50	51.0	102	70-130	
1,2-Dichloroethane	ug/L	50	52.4	105	70-130	
1,2-Dichloropropane	ug/L	50	50.5	101	70-130	
1,3-Dichlorobenzene	ug/L	50	50.2	100	70-130	
1,3-Dichloropropane	ug/L	50	50.7	101	70-131	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

LABORATORY CONTROL SAMPLE:	2892231	Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers
,4-Dichlorobenzene	ug/L		49.3	99	70-130
2,2-Dichloropropane	ug/L	50	44.2	88	69-130
2-Butanone (MEK)	ug/L	100	106	106	64-135
2-Chlorotoluene	ug/L	50	46.8	94	70-130
2-Hexanone	ug/L	100	109	109	66-135
I-Chlorotoluene	ug/L	50	48.7	97	70-130
-Methyl-2-pentanone (MIBK)	ug/L	100	109	109	70-130
Acetone	ug/L	100	106	106	61-157
Benzene	ug/L	50	51.4	103	70-130
Bromobenzene	ug/L	50	46.8	94	70-130
Bromochloromethane	ug/L	50	50.4	101	70-130
Bromodichloromethane	ug/L	50	53.9	108	70-130
Bromoform	ug/L	50	43.8	88	70-130
Bromomethane	ug/L	50	33.3	67	38-130 v3
Carbon tetrachloride	ug/L	50	58.2	116	70-130
Chlorobenzene	ug/L	50	50.6	101	70-130
Chloroethane	ug/L	50	43.6	87	37-142
Chloroform	ug/L	50	52.8	106	70-130
Chloromethane	ug/L	50	34.8	70	48-130
is-1,2-Dichloroethene	ug/L	50	49.8	100	70-130
is-1,3-Dichloropropene	ug/L	50	49.6	99	70-130
ibromochloromethane	ug/L	50	48.7	97	70-130
Dibromomethane	ug/L	50	52.3	105	70-130
Dichlorodifluoromethane	ug/L	50	46.5	93	53-134
Diisopropyl ether	ug/L	50	53.9	108	70-135
Ithylbenzene	ug/L	50	48.1	96	70-130
lexachloro-1,3-butadiene	ug/L	50	50.8	102	68-132
n&p-Xylene	ug/L	100	95.3	95	70-130
Methyl-tert-butyl ether	ug/L	50	52.7	105	70-130
Methylene Chloride	ug/L	50	52.9	106	67-132
laphthalene	ug/L	50	59.5	119	70-130
-Xylene	ug/L	50	49.0	98	70-131
-Isopropyltoluene	ug/L	50	48.1	96	70-130
Styrene	ug/L	50 50	52.3	105	70-130
etrachloroethene	ug/L	50	52.0	104	69-130
oluene	ug/L	50 50	48.4	97	70-130
ans-1,2-Dichloroethene	ug/L	50 50	54.4	109	70-130
ans-1,2-Dichloropropene	- "	50	51.1	109	70-130
richloroethene	ug/L ug/L	50 50	50.5	102	70-130
richlorofluoromethane	ug/L ug/L	50 50	45.7	91	63-130
inyl acetate	ug/L	100	96.7	97	55-143
'inyl acetate 'inyl chloride	ug/L	50	52.3	105	70-131
•	_	150	144	96	70-131
(ylene (Total) ,2-Dichloroethane-d4 (S)	ug/L %	150	144	96 96	70-130 70-130
,2-Dichloroethane-d4 (S) -Bromofluorobenzene (S)	% %			103	70-130 70-130
- DO DO DO DO CONTROLO CONTROLO DE LOS DE LOS DE LOS DE LOS DE LOS DE LOS DE LOS DE LOS DE LOS DE LOS DELOS DE LOS DELOS	70			103	10-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

MATRIX SPIKE SAMPLE:	2892233	92478024015	Spike	MS	MS	% Rec
Parameter	Units	Result	Conc.	Result	% Rec	Limits Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	20	21.5	107	73-134
1,1,1-Trichloroethane	ug/L	ND	20	34.9	175	82-143 M1
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20.3	102	70-136
1,1,2-Trichloroethane	ug/L	ND	20	21.9	109	70-135
1,1-Dichloroethane	ug/L	12.8	20	36.2	117	70-139
1,1-Dichloroethene	ug/L	58.0	20	87.1	146	70-154
1,1-Dichloropropene	ug/L	ND	20	24.0	120	70-149
1,2,3-Trichlorobenzene	ug/L	ND	20	22.7	113	70-135 IH
1,2,3-Trichloropropane	ug/L	ND	20	18.5	93	71-137
1,2,4-Trichlorobenzene	ug/L	ND	20	22.2	111	73-140
1,2-Dibromo-3-chloropropane	ug/L	ND	20	21.0	105	65-134
1,2-Dibromoethane (EDB)	ug/L	ND	20	21.8	109	70-137
1,2-Dichlorobenzene	ug/L	ND	20	20.7	104	70-133
1,2-Dichloroethane	ug/L	ND	20	22.4	108	70-133
1,2-Dichloropropane	ug/L	ND	20	21.6	108	70-140
1,3-Dichlorobenzene	ug/L	ND	20	21.0	105	70-135
1,3-Dichloropropane	ug/L	ND	20	21.3	107	70-133
1,4-Dichlorobenzene	ug/L	ND	20	20.1	100	70-143
2,2-Dichloropropane	-	ND	20	24.6	123	61-148
2-Butanone (MEK)	ug/L ug/L	ND ND	40	48.6	123	60-139
2-Chlorotoluene	-	ND	20	19.4	97	70-144
2-Hexanone	ug/L	ND		44.2		
4-Chlorotoluene	ug/L	ND ND	40		111	65-138 70-137
	ug/L	ND ND	20 40	21.1 44.7	105	65-135
4-Methyl-2-pentanone (MIBK)	ug/L	ND ND	40		112	60-148
Acetone	ug/L	ND ND		45.4	114	
Benzene	ug/L	ND ND	20	21.7	109	70-151
Bromobenzene	ug/L		20	20.1	100	70-136
Bromochloromethane	ug/L	ND	20	22.7	113	70-141
Bromodichloromethane	ug/L	ND	20	23.6	118	70-138
Bromoform	ug/L	ND	20	19.4	97	63-130
Bromomethane	ug/L	ND	20	19.4	97	15-152
Carbon tetrachloride	ug/L	ND	20	25.4	127	70-143
Chlorobenzene	ug/L	ND	20	20.4	102	70-138
Chloroethane	ug/L	ND	20	22.3	111	52-163
Chloroform	ug/L	ND	20	24.2	121	70-139
Chloromethane	ug/L	ND	20	19.8	99	41-139
cis-1,2-Dichloroethene	ug/L	ND	20	22.1	111	70-141
cis-1,3-Dichloropropene	ug/L	ND	20	22.3	112	70-137
Dibromochloromethane	ug/L	ND	20	19.8	99	70-134
Dibromomethane	ug/L	ND	20	21.9	109	70-138
Dichlorodifluoromethane	ug/L	ND	20	24.7	124	47-155
Diisopropyl ether	ug/L	ND	20	24.8	124	63-144
Ethylbenzene	ug/L	ND	20	20.1	101	66-153
Hexachloro-1,3-butadiene	ug/L	ND	20	20.6	103	65-149
m&p-Xylene	ug/L	ND	40	40.0	100	69-152
Methyl-tert-butyl ether	ug/L	1.1	20	24.5	117	54-156
Methylene Chloride	ug/L	ND	20	23.9	120	42-159

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop-Flex Recovery Wells onsite

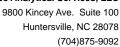
Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

MATRIX SPIKE SAMPLE:	2892233						
		92478024015	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/L	ND	20	22.2	111	61-148	
o-Xylene	ug/L	ND	20	19.8	99	70-148	
p-Isopropyltoluene	ug/L	ND	20	20.9	104	70-146	
Styrene	ug/L	ND	20	20.8	104	70-135	
Tetrachloroethene	ug/L	ND	20	22.2	111	59-143	
Toluene	ug/L	ND	20	21.0	105	59-148	
trans-1,2-Dichloroethene	ug/L	ND	20	23.2	116	70-146	
trans-1,3-Dichloropropene	ug/L	ND	20	22.3	112	70-135	
Trichloroethene	ug/L	ND	20	22.5	113	70-147	
Trichlorofluoromethane	ug/L	ND	20	25.0	125	70-148	
Vinyl acetate	ug/L	ND	40	44.8	112	49-151	
Vinyl chloride	ug/L	ND	20	25.2	126	70-156	
Xylene (Total)	ug/L	ND	60	59.8	100	63-158	
1,2-Dichloroethane-d4 (S)	%				111	70-130	
4-Bromofluorobenzene (S)	%				105	70-130	
Toluene-d8 (S)	%				100	70-130	

SAMPLE DUPLICATE: 2892232						
		92478032010	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	MD	ND		30)
1,1,1-Trichloroethane	ug/L	ND	ND		30)
1,1,2,2-Tetrachloroethane	ug/L	ND	ND		30)
1,1,2-Trichloroethane	ug/L	ND	ND		30)
,1-Dichloroethane	ug/L	ND	ND		30)
,1-Dichloroethene	ug/L	ND	ND		30)
1,1-Dichloropropene	ug/L	ND	ND		30)
1,2,3-Trichlorobenzene	ug/L	ND	ND		30) IH
1,2,3-Trichloropropane	ug/L	ND	ND		30)
,2,4-Trichlorobenzene	ug/L	ND	ND		30)
,2-Dibromo-3-chloropropane	ug/L	ND	ND		30)
,2-Dibromoethane (EDB)	ug/L	ND	ND		30)
1,2-Dichlorobenzene	ug/L	ND	ND		30)
1,2-Dichloroethane	ug/L	ND	ND		30)
,2-Dichloropropane	ug/L	ND	ND		30)
1,3-Dichlorobenzene	ug/L	ND	ND		30)
,3-Dichloropropane	ug/L	ND	ND		30)
I,4-Dichlorobenzene	ug/L	ND	ND		30)
2,2-Dichloropropane	ug/L	ND	ND		30)
2-Butanone (MEK)	ug/L	ND	ND		30)
2-Chlorotoluene	ug/L	ND	ND		30)
-Hexanone	ug/L	ND	ND		30)
I-Chlorotoluene	ug/L	ND	ND		30)
1-Methyl-2-pentanone (MIBK)	ug/L	ND	ND		30)
Acetone	ug/L	ND	ND		30)

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

SAMPLE DUPLICATE: 2892232						
		92478032010	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Benzene	ug/L		ND		30	
Bromobenzene	ug/L	ND	ND		30	
Bromochloromethane	ug/L	ND	ND		30	
Bromodichloromethane	ug/L	ND	ND		30	
Bromoform	ug/L	ND	ND		30	
Bromomethane	ug/L	ND	ND		30	v2
Carbon tetrachloride	ug/L	ND	ND		30	
Chlorobenzene	ug/L	ND	ND		30	
Chloroethane	ug/L	ND	ND		30	
Chloroform	ug/L	ND	ND		30	
Chloromethane	ug/L	ND	ND		30	
cis-1,2-Dichloroethene	ug/L	ND	ND		30	
cis-1,3-Dichloropropene	ug/L	ND	ND		30	
Dibromochloromethane	ug/L	ND	ND		30	
Dibromomethane	ug/L	ND	ND		30	
Dichlorodifluoromethane	ug/L	ND	ND		30	
Diisopropyl ether	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	ND		30	
Hexachloro-1,3-butadiene	ug/L	ND	ND		30	
m&p-Xylene	ug/L	ND	ND		30	
Methyl-tert-butyl ether	ug/L	ND	ND		30	
Methylene Chloride	ug/L	ND	ND		30	
Naphthalene	ug/L	ND	ND		30	
o-Xylene	ug/L	ND	ND		30	
p-Isopropyltoluene	ug/L	ND	ND		30	
Styrene	ug/L	ND	ND		30	
Tetrachloroethene	ug/L	ND	ND		30	
Toluene	ug/L	ND	ND		30	
trans-1,2-Dichloroethene	ug/L	ND	ND		30	
trans-1,3-Dichloropropene	ug/L	ND	ND		30	
Trichloroethene	ug/L	ND	ND		30	
Trichlorofluoromethane	ug/L	ND	ND		30	
Vinyl acetate	ug/L	ND	ND		30	
Vinyl chloride	ug/L	ND	ND		30	
Xylene (Total)	ug/L	ND	ND		30	
1,2-Dichloroethane-d4 (S)	%	118	115			
4-Bromofluorobenzene (S)	%	99	95			
Toluene-d8 (S)	%	100	101			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

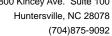
Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

QC Batch: 543382 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level


Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92478023001, 92478023002, 92478023004, 92478023005

METHOD BLANK: 2894165 Matrix: Water
Associated Lab Samples: 92478023001, 92478023002, 92478023004, 92478023005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	05/26/20 12:50	
1,1,1-Trichloroethane	ug/L	ND	1.0	05/26/20 12:50	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	05/26/20 12:50	
1,1,2-Trichloroethane	ug/L	ND	1.0	05/26/20 12:50	
1,1-Dichloroethane	ug/L	ND	1.0	05/26/20 12:50	
1,1-Dichloroethene	ug/L	ND	1.0	05/26/20 12:50	
1,1-Dichloropropene	ug/L	ND	1.0	05/26/20 12:50	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	05/26/20 12:50	
1,2,3-Trichloropropane	ug/L	ND	1.0	05/26/20 12:50	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	05/26/20 12:50	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	05/26/20 12:50	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	05/26/20 12:50	
1,2-Dichlorobenzene	ug/L	ND	1.0	05/26/20 12:50	
1,2-Dichloroethane	ug/L	ND	1.0	05/26/20 12:50	
1,2-Dichloropropane	ug/L	ND	1.0	05/26/20 12:50	
1,3-Dichlorobenzene	ug/L	ND	1.0	05/26/20 12:50	
1,3-Dichloropropane	ug/L	ND	1.0	05/26/20 12:50	
1,4-Dichlorobenzene	ug/L	ND	1.0	05/26/20 12:50	
2,2-Dichloropropane	ug/L	ND	1.0	05/26/20 12:50	
2-Butanone (MEK)	ug/L	ND	5.0	05/26/20 12:50	
2-Chlorotoluene	ug/L	ND	1.0	05/26/20 12:50	
2-Hexanone	ug/L	ND	5.0	05/26/20 12:50	v1
4-Chlorotoluene	ug/L	ND	1.0	05/26/20 12:50	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	05/26/20 12:50	
Acetone	ug/L	ND	25.0	05/26/20 12:50	
Benzene	ug/L	ND	1.0	05/26/20 12:50	
Bromobenzene	ug/L	ND	1.0	05/26/20 12:50	
Bromochloromethane	ug/L	ND	1.0	05/26/20 12:50	
Bromodichloromethane	ug/L	ND	1.0	05/26/20 12:50	
Bromoform	ug/L	ND	1.0	05/26/20 12:50	
Bromomethane	ug/L	ND	2.0	05/26/20 12:50	IH
Carbon tetrachloride	ug/L	ND	1.0	05/26/20 12:50	
Chlorobenzene	ug/L	ND	1.0	05/26/20 12:50	
Chloroethane	ug/L	ND	1.0	05/26/20 12:50	
Chloroform	ug/L	ND	5.0	05/26/20 12:50	
Chloromethane	ug/L	ND	1.0	05/26/20 12:50	
cis-1,2-Dichloroethene	ug/L	ND	1.0	05/26/20 12:50	
cis-1,3-Dichloropropene	ug/L	ND	1.0	05/26/20 12:50	
Dibromochloromethane	ug/L	ND	1.0	05/26/20 12:50	
Dibromomethane	ug/L	ND	1.0	05/26/20 12:50	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

METHOD BLANK: 2894165 Matrix: Water
Associated Lab Samples: 92478023001, 92478023002, 92478023004, 92478023005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dichlorodifluoromethane	ug/L	ND	1.0	05/26/20 12:50	,
Diisopropyl ether	ug/L	ND	1.0	05/26/20 12:50	
Ethylbenzene	ug/L	ND	1.0	05/26/20 12:50	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	05/26/20 12:50	IH
m&p-Xylene	ug/L	ND	2.0	05/26/20 12:50	
Methyl-tert-butyl ether	ug/L	ND	1.0	05/26/20 12:50	
Methylene Chloride	ug/L	ND	5.0	05/26/20 12:50	v1
Naphthalene	ug/L	ND	1.0	05/26/20 12:50	
o-Xylene	ug/L	ND	1.0	05/26/20 12:50	
p-Isopropyltoluene	ug/L	ND	1.0	05/26/20 12:50	
Styrene	ug/L	ND	1.0	05/26/20 12:50	
Tetrachloroethene	ug/L	ND	1.0	05/26/20 12:50	
Toluene	ug/L	ND	1.0	05/26/20 12:50	
trans-1,2-Dichloroethene	ug/L	ND	1.0	05/26/20 12:50	
trans-1,3-Dichloropropene	ug/L	ND	1.0	05/26/20 12:50	
Trichloroethene	ug/L	ND	1.0	05/26/20 12:50	
Trichlorofluoromethane	ug/L	ND	1.0	05/26/20 12:50	
Vinyl acetate	ug/L	ND	2.0	05/26/20 12:50	v1
Vinyl chloride	ug/L	ND	1.0	05/26/20 12:50	
Xylene (Total)	ug/L	ND	1.0	05/26/20 12:50	
1,2-Dichloroethane-d4 (S)	%	115	70-130	05/26/20 12:50	
4-Bromofluorobenzene (S)	%	100	70-130	05/26/20 12:50	
Toluene-d8 (S)	%	98	70-130	05/26/20 12:50	

LABORATORY CONTROL SAMPLE:	2894166					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	54.2	108	70-130	
1,1,1-Trichloroethane	ug/L	50	49.3	99	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	53.0	106	70-130	
1,1,2-Trichloroethane	ug/L	50	47.6	95	70-130	
1,1-Dichloroethane	ug/L	50	51.9	104	70-130	
1,1-Dichloroethene	ug/L	50	56.0	112	70-130	
1,1-Dichloropropene	ug/L	50	50.5	101	70-130	
1,2,3-Trichlorobenzene	ug/L	50	50.1	100	70-130	
1,2,3-Trichloropropane	ug/L	50	51.5	103	70-130	
1,2,4-Trichlorobenzene	ug/L	50	52.4	105	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	44.4	89	70-130	
1,2-Dibromoethane (EDB)	ug/L	50	54.1	108	70-130	
1,2-Dichlorobenzene	ug/L	50	55.5	111	70-130	
1,2-Dichloroethane	ug/L	50	52.3	105	70-130	
1,2-Dichloropropane	ug/L	50	53.1	106	70-130	
1,3-Dichlorobenzene	ug/L	50	55.7	111	70-130	
1,3-Dichloropropane	ug/L	50	56.2	112	70-131	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

LABORATORY CONTROL SAMPLE:	2894166	Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers
1,4-Dichlorobenzene	ug/L		53.8	108	70-130
2,2-Dichloropropane	ug/L	50	48.4	97	69-130
2-Butanone (MEK)	ug/L	100	112	112	64-135
2-Chlorotoluene	ug/L	50	54.3	109	70-130
2-Hexanone	ug/L	100	123	123	66-135 v1
4-Chlorotoluene	ug/L	50	54.8	110	70-130
4-Methyl-2-pentanone (MIBK)	ug/L	100	113	113	70-130
Acetone	ug/L	100	115	115	61-157
Benzene	ug/L	50	52.4	105	70-130
Bromobenzene	ug/L	50	54.5	109	70-130
Bromochloromethane	ug/L	50	45.8	92	70-130
Bromodichloromethane	ug/L	50	49.0	98	70-130
Bromoform	ug/L	50	50.8	102	70-130
3romomethane	ug/L	50	41.8	84	38-130 IH
Carbon tetrachloride	ug/L	50	52.6	105	70-130
Chlorobenzene	ug/L	50	53.6	107	70-130
Chloroethane	ug/L	50	42.2	84	37-142
Chloroform	ug/L	50	49.5	99	70-130
Chloromethane	ug/L	50	49.8	100	48-130
cis-1,2-Dichloroethene	ug/L	50	51.2	102	70-130
cis-1,3-Dichloropropene	ug/L	50	49.5	99	70-130
Dibromochloromethane	ug/L	50	55.7	111	70-130
Dibromomethane	ug/L	50	50.5	101	70-130
Dichlorodifluoromethane	ug/L	50	44.2	88	53-134
Diisopropyl ether	ug/L	50	58.7	117	70-135
Ethylbenzene	ug/L	50	54.9	110	70-130
Hexachloro-1,3-butadiene	ug/L	50	49.7	99	68-132 IH
m&p-Xylene	ug/L	100	109	109	70-130
Methyl-tert-butyl ether	ug/L	50	52.4	105	70-130
Methylene Chloride	ug/L	50	60.8	122	67-132 v1
Naphthalene	ug/L	50	49.2	98	70-130
o-Xylene	ug/L	50	54.1	108	70-131
o-Isopropyltoluene	ug/L	50	56.8	114	70-130
Styrene	ug/L	50	56.9	114	70-130
Tetrachloroethene	ug/L	50 50	53.7	107	69-130
Toluene	ug/L	50 50	46.8	94	70-130
rans-1,2-Dichloroethene	ug/L	50 50	54.4	109	70-130
rans-1,3-Dichloropropene	- "	50	49.1	98	70-130
Frichloroethene	ug/L ug/L	50 50	50.5	101	70-130 70-130
Trichlorofluoromethane	ug/L ug/L	50	43.4	87	63-130
/inyl acetate	ug/L	100	132	132	55-143 v1
/inyl acetate /inyl chloride	ug/L	50	50.9	102	70-131
,	ug/L ug/L	150	163	102	70-131 70-130
Kylene (Total) 1,2-Dichloroethane-d4 (S)	ug/L %	150	103	109	70-130 70-130
1,2-Dichioroethane-d4 (S) 1-Bromofluorobenzene (S)	% %			107	70-130 70-130
+-DIOIIIUUIUUUUUUUUUUUUUUUUUUUUU	70			101	10-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: Kop-Flex Recovery Wells onsite

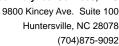
Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

MATRIX SPIKE & MATRIX SF	IKE DUPI	LICATE: 2894	167 MS	MSD	2894168							
Parameter	Units	92478005001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qu
		— — ND	100	100		139	120		73-134			H1,N
I,1,1,2-Tetrachloroethane	ug/L				120			139		15		,
1,1,1-Trichloroethane	ug/L	ND	100	100	122	140	122	140	82-143	14		H1
1,1,2,2-Tetrachloroethane	ug/L	ND	100	100	121	140	121	140	70-136	15		H1,I
1,1,2-Trichloroethane	ug/L	ND	100	100	119	133	119	133	70-135	11		H1
I,1-Dichloroethane	ug/L	ND	100	100	139	149	139	149	70-139	6		H1,
I,1-Dichloroethene	ug/L	ND	100	100	147	164	147	164	70-154	11		H1,
,1-Dichloropropene	ug/L	ND	100	100	131	147	131	147	70-149	11		H1
,2,3-Trichlorobenzene	ug/L	ND	100	100	116	130	116	130	70-135	11		H1
,2,3-Trichloropropane	ug/L	ND	100	100	123	144	123	144	71-137	16		H1,
,2,4-Trichlorobenzene	ug/L	ND	100	100	123	123	123	123	73-140	0		H1
,2-Dibromo-3- hloropropane	ug/L	ND	100	100	109	113	109	113	65-134	3		H1
,2-Dibromoethane (EDB)	ug/L	ND	100	100	125	146	125	146	70-137	15	30	H1,
,2-Dichlorobenzene	ug/L	ND	100	100	139	140	139	140	70-133	1	30	H1,
,2-Dichloroethane	ug/L	ND	100	100	137	148	137	148	70-137	8	30	H1,
,2-Dichloropropane	ug/L	ND	100	100	131	152	131	152	70-140	15	30	H1,
,3-Dichlorobenzene	ug/L	ND	100	100	133	134	133	134	70-135	1	30	H1
,3-Dichloropropane	ug/L	ND	100	100	134	156	134	156	70-143	15	30	H1,
,4-Dichlorobenzene	ug/L	ND	100	100	130	134	130	134	70-133	3	30	H1,
,2-Dichloropropane	ug/L	ND	100	100	128	138	128	138	61-148	7	30	H1
-Butanone (MEK)	ug/L	ND	200	200	274	298	137	149	60-139	8	30	H1,
-Chlorotoluene	ug/L	ND	100	100	145	143	145	143	70-144	1		H1,
-Hexanone	ug/L	ND	200	200	279	324	139	162	65-138	15	30	H1,
-Chlorotoluene	ug/L	ND	100	100	134	136	134	136	70-137	1	30	H1
-Methyl-2-pentanone MIBK)	ug/L	ND	200	200	285	322	139	157	65-135	12	30	H1,
cetone	ug/L	ND	200	200	276	304	138	152	60-148	10	30	H1,
Senzene	ug/L	346	100	100	471	502	126	157	70-151	6	30	H1,
romobenzene	ug/L	ND	100	100	138	138	138	138	70-136	0	30	H1,
romochloromethane	ug/L	ND	100	100	122	135	122	135	70-141	10	30	H1
Bromodichloromethane	ug/L	ND	100	100	118	133	118	133	70-138	12	30	H1
Bromoform	ug/L	ND	100	100	106	117	106	117	63-130	9	30	Н1
romomethane	ug/L	ND	100	100	136	163	136	163	15-152	18	30	H1, M1
Carbon tetrachloride	ug/L	ND	100	100	127	142	127	142	70-143	12	30	H1
Chlorobenzene	ug/L	ND	100	100	134	148	134	148	70-138	10	30	H1,
Chloroethane	ug/L	ND	100	100	129	136	129	136	52-163	5		H1
Chloroform	ug/L	ND	100	100	127	140	127	140	70-139	10		H1,
Chloromethane	ug/L	ND	100	100	132	144	130	143	41-139	9		H1,
is-1,2-Dichloroethene	ug/L	ND	100	100	134	149	134	149	70-141	10		H1,
is-1,3-Dichloropropene	ug/L	ND	100	100	126	135	126	135	70-137	7		H1
Dibromochloromethane	ug/L	ND	100	100	122	131	122	131	70-137	7		H1
Dibromomethane	ug/L ug/L	ND	100	100	126	141	126	141	70-134	12		H1,
Dichlorodifluoromethane		ND ND	100	100	120	131	120	131	47-155	7		П1, Н1
Diisopropyl ether	ug/L											ПI Н1,
JIISODIODAI EILIGI	ug/L	8.9	100	100	158	174	149	165	63-144	10	30	ΠL

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA


Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 2894	167		2894168							
			MS	MSD								
	9	2478005001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Hexachloro-1,3-butadiene	ug/L	ND ND	100	100	132	135	132	135	65-149	2	30	H1,IH
m&p-Xylene	ug/L	719	200	200	969	998	125	140	69-152	3	30	H1
Methyl-tert-butyl ether	ug/L	27.4	100	100	157	168	129	141	54-156	7	30	H1
Methylene Chloride	ug/L	ND	100	100	155	170	155	170	42-159	9	30	H1,M1 v1
Naphthalene	ug/L	110	100	100	230	229	120	120	61-148	0	30	H1
o-Xylene	ug/L	378	100	100	512	521	135	143	70-148	2	30	H1
p-Isopropyltoluene	ug/L	ND	100	100	155	158	155	158	70-146	1	30	H1,M1
Styrene	ug/L	ND	100	100	135	144	132	141	70-135	7	30	H1,M1
Tetrachloroethene	ug/L	ND	100	100	128	147	128	147	59-143	14	30	H1,M1
Toluene	ug/L	644	100	100	747	776	103	133	59-148	4	30	H1
trans-1,2-Dichloroethene	ug/L	ND	100	100	141	154	141	154	70-146	9	30	H1,M1
trans-1,3-Dichloropropene	ug/L	ND	100	100	121	133	121	133	70-135	9	30	H1
Trichloroethene	ug/L	ND	100	100	131	139	131	139	70-147	6	30	H1
Trichlorofluoromethane	ug/L	ND	100	100	114	129	114	129	70-148	13	30	H1
Vinyl acetate	ug/L	ND	200	200	322	367	161	184	49-151	13	30	H1,M1 v1
Vinyl chloride	ug/L	ND	100	100	136	147	136	147	70-156	8	30	H1
Xylene (Total)	ug/L	1100	300	300	1480	1520	128	141	63-158	3	30	
1,2-Dichloroethane-d4 (S)	%						111	113	70-130			
4-Bromofluorobenzene (S)	%						100	102	70-130			
Toluene-d8 (S)	%						100	103	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

LABORATORY CONTROL SAMPLE:

Date: 05/27/2020 03:41 PM

QC Batch: 542210 Analysis Method: EPA 8260D Mod. QC Batch Method: EPA 8260D Mod. Analysis Description: 8260D MSV SIM

> Laboratory: Pace Analytical Services - Charlotte

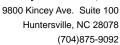
92478023001, 92478023003, 92478023004, 92478023005 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 92478023001, 92478023003, 92478023004, 92478023005

2889138

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	ND ND	2.0	05/19/20 01:48	
1,2-Dichloroethane-d4 (S)	%	94	50-150	05/19/20 01:48	
Toluene-d8 (S)	%	94	50-150	05/19/20 01:48	


Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers ug/L 1,4-Dioxane (p-Dioxane) 20 18.6 93 70-130

1,2-Dichloroethane-d4 (S) 97 50-150 % Toluene-d8 (S) % 95 50-150

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2889140

MS MSD 92478022015 MSD Spike Spike MS MS MSD % Rec Max Units Qual Parameter Conc. Result % Rec % Rec **RPD** RPD Result Conc. Result Limits 30 1,4-Dioxane (p-Dioxane) ug/L ND 20 20 17.6 19.1 86 94 50-150 1,2-Dichloroethane-d4 (S) % 97 110 50-150 30 Toluene-d8 (S) % 93 98 50-150 30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

QC Batch: 542729

QC Batch Method: EPA 8260D Mod.

Analysis Method:

EPA 8260D Mod.

Analysis Description: 82

8260D MSV SIM

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples: 92478023002

METHOD BLANK: 2891387

1,4-Dioxane (p-Dioxane)

Toluene-d8 (S)

1,2-Dichloroethane-d4 (S)

Date: 05/27/2020 03:41 PM

Matrix: Water

Associated Lab Samples: 92478023002

Parameter

5247 0020002

Blank Result	Reporting Limit	Analyzed	Qualifiers
ND ND	2.0	05/20/20 17:52	
98	50-150	05/20/20 17:52	
106	50-150	05/20/20 17:52	

LABORATORY CONTROL SAMPLE: 2891388

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L		19.3	97	70-130	
1,2-Dichloroethane-d4 (S)	%			106	50-150	
Toluene-d8 (S)	%			101	50-150	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2891389 2891390

Units

ug/L

%

%

Parameter	Units	92478023002 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,4-Dioxane (p-Dioxane)	ug/L	99.8	20	20	120	127	99	134	50-150	6	30	E
1,2-Dichloroethane-d4 (S)	%						95	95	50-150		30	
Toluene-d8 (S)	%						99	115	50-150		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALIFIERS

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

ν2

Date: 05/27/2020 03:41 PM

E	Analyte concentration exceeded the calibration range. The reported result is estimated.

H1 Analysis conducted outside the EPA method holding time.

IH This analyte exceeded secondary source verification criteria high for the initial calibration. The reported results should be considered an estimated value.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.

The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.

v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Kop-Flex Recovery Wells onsite

Pace Project No.: 92478023

Date: 05/27/2020 03:41 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92478023001	RW-1S	EPA 8260D	543382		
92478023002	RW-2S	EPA 8260D	543382		
92478023003	RW-3S	EPA 8260D	542927		
92478023004	RW-1D	EPA 8260D	543382		
92478023005	RW-2D	EPA 8260D	543382		
92478023001	RW-1S	EPA 8260D Mod.	542210		
92478023002	RW-2S	EPA 8260D Mod.	542729		
92478023003	RW-3S	EPA 8260D Mod.	542210		
92478023004	RW-1D	EPA 8260D Mod.	542210		
92478023005	RW-2D	EPA 8260D Mod.	542210		

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority: Pace Carolinas Quality Office

Lab	oratory receiving samples: Asheville	enwood		Hur	itersvi	ille 🔽	Raleigh 🗌	Mechanics ville
Cou	rier:	□USPS □Other	·	P Clie	roject _ ent		: 9247 	
	ody Seal Present? Yes Mo Seals Int	tact?	∐Yes	□No		Date/Initia	ls Person Examining	Contents: \$\ 5-18- 70
Coole Coole USD/	Ing Material: Bubble Wrap Bubble mometer: IR Gun ID: 92T061 er Temp (°C): 5.8,6.9,10,7 Correction Factor: Act er Temp Corrected (°C): 5.9,7.0,10.8 A Regulated Soil N/A, water sample) emples originate in a quarantine zone within the United	Type of I	ct (°C) _	Wet □81 +0.1	— т	Samples ou has begun]n/a
	Yes \tag{\text{Ye}	Jidles. CA,	141, 01 30	, juneur map	,,,, i	including Hawall	and Puerto Rico)? 🔲	Yes No
-		W-2 2 1 1 1 2 2 -					Comments/Discrep	ancy:
-	Chain of Custody Present?	Ves	□No	□N/A	1.			
L	Samples Arrived within Hold Time?	Yes	□No	□N/A	2.			5
- -	Short Hold Time Analysis (<72 hr.)?	Yes	ØN ₀	□n/a	3.			
	Rush Turn Around Time Requested?	□Yes	□N ₀	□n/a	4.			9
L	Sufficient Volume?	Ves	□No	□n/A	5.			
	Correct Containers Used? -Pace Containers Used?	√Yes √Yes	□No	□n/a □n/a	6.			
	Containers Intact?	Ves	□No	□N/A	7.			
-	Dissolved analysis: Samples Field Filtered?	□Yes	□No	N/A	8.			
	Sample Labels Match COC?	Yes	□No	□n/a	9.			
	-Includes Date/Time/ID/Analysis Matrix: 1	☐Yes		□N/A	10.			4 ,
	Trip Blank Present? Trip Blank Custody Seals Present?	Yes	□ No	□N/A	11.			
-	DIMMENTS/SAMPLE DISCREPANCY	Yes	□No	□n/a	1		Field Data	Required? Yes No
	tce melter							
-		1 1			Lot	ID of split cont	alners:	
CLIE	NT NOTIFICATION/RESOLUTION							
- Pe	erson contacted:			_ Date/Ti	me: _			
1	Project Manager SCURF Review:					Date:	1	
	Project Manager SRF Review:					Date:		

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.06 Document Revised: February 7, 2018 Page 1 of 2

Issuing Authority:
Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottle

Project #

WO#:92478023

M: PTE

Due Date: 05/26/20

CLIENT: 92-WSP

lfam#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N- 250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HC! (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AG0U-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)	
1																5													-
2														\setminus		5													
3																6													
4	1					1										Q													_
5	7				Z	Z	Z	Z,			Z		7	7	1	0								Z	Z				
6	/				/	/	/	/			/													/					
7			-					-					(/	/			_	_					/	/				
8		_	_			-		-			/		/	/	/	-								/	/				
_					7							_		/		-			_					7	7				
9																													
10						/		/			/		/																
11	1	-			7						1													/					
12					/	/		/					/								10.41								

	pH Adjustment Log for Preserved Samples													
Sample ID	Type of Preservative	pH upon recelpt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#								
V														
	8:													

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

											(C	B	D	0	45				- I	71	7		2
'Use stop time/date for composite and/or air samples; use only start time/date for all other samples.	Relinquished By (Signature)	Relinquished By (Signature)								1	PE-UD	アシーーフ	RW-35	Rw-as	PW-IS	Sample Identification	Ellist M	Molly (Constitution)	31401545.00	Harver, MD	Project Logation	13530 Dulles Tec	WSP USA Office Address	ecovery well
les; use only start t	Date .	Date	7								\$	40	Ag	AS	As	Matrix		Sämpler	T	S C C C C C C C C C C C C C C C C C C C	wsp.usa C)	3		7
ime/date for all	Time	Time									5/11/2020	5/12/2020	SINK	5/12/2	5/13/2	Collection Stark		Sampler(s) Signature(s)	103)70g	$\mathbf{z} \cup \mathbf{z}$	WSP-USA Contact E-mail	WSPUSA Contact Name		
other samples.	Received By (Signature)	Received By (Signature)									070		ROLO	12021	2000	or .	E €		M 6500	のかれらるへ	DAY YOU	Str. 300		
	gnature)	gnature) Dev/Los						1	1		6 55	5 30	14 \$25 14	07 40	= 30	Collection Steps Differ Time			Ö		2	o Fra	CHAI	2
		2					/		1		6	6	5	0	2	0	per of C	ontaine	ers	@wsp.com		clon the	N-01-00	2
	Date	518-70						t	/		×	×	X	×	×	1,	1-5 1-5	$\frac{1}{2}$	Car	2.8	1698 DB	351MS	1_17	7070
Matri	Time	972																					100	<u> </u>
ix: AQ = Aqueous	Number of Packages	Shipment Method			/																		Analyses & Preservatives	
s, S = Soil, SE =	ackages	thod		/																			vatives	
Sediment, A = Ai	Custod	Trackir	/													Sample			Reques -	Labora	J)	No.		
r, W = Wipe, B =	Custody Seal Number(s)	Tracking Number(s)														Sample Comments	LJ L :	Standard	ested Turn Around-Time	Laboratory Project Manager	ice, T	No. UU8 134- Laboratory Name & Location		
Bulk, O = Other (J	(92478023	_	72 HR	i-Time	n ager	SOPRE			J
Matrix: AQ = Aqueous, S = Soil, SE = Sediment, A = Air, W = Wipe, B = Bulk, O = Other (detail in comments)											Cos	004	003	200	001	3			Ce	-	TUROSING NO		geor	
its)										_												Page 32		_

December 04, 2020

Eric Johnson **WSP USA** 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: Kop Flex

Pace Project No.: 92507937

Dear Eric Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory between November 24, 2020 and November 25, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

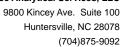
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Bonnie Vang bonnie.vang@pacelabs.com (704)875-9092 Project Manager


Bonnie Vary

Enclosures

cc: Molly Long, WSP

Pam Robertson, WSP USA

CERTIFICATIONS

Project: Kop Flex
Pace Project No.: 92507937

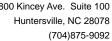
Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project: Kop Flex
Pace Project No.: 92507937

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92507937001	MW-43	Water	11/22/20 11:10	11/24/20 11:00
92507937002	MW-39	Water	11/22/20 11:25	11/24/20 11:00
92507937003	MW-18	Water	11/22/20 11:40	11/24/20 11:00
92507937004	MW-5R	Water	11/22/20 12:50	11/24/20 11:00
92507937005	MW-40D	Water	11/22/20 13:05	11/24/20 11:00
92507937006	MW-1D	Water	11/22/20 15:05	11/24/20 11:00
92507937007	MW-23D	Water	11/22/20 16:55	11/24/20 11:00
92507937008	Trip Blank	Water	11/22/20 00:00	11/24/20 11:00
92507937009	MW-38R	Water	11/22/20 13:20	11/25/20 11:42
92507937010	MW-21D	Water	11/22/20 14:10	11/25/20 11:42
92507937011	MW-22D	Water	11/22/20 15:25	11/25/20 11:42
92507937012	MW-20	Water	11/22/20 15:35	11/25/20 11:42
92507937013	MW-4	Water	11/22/20 15:50	11/25/20 11:42
92507937014	MW-9	Water	11/22/20 16:05	11/25/20 11:42
92507937015	MW-16	Water	11/22/20 17:10	11/25/20 11:42



SAMPLE ANALYTE COUNT

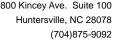
Project: Kop Flex
Pace Project No.: 92507937

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92507937001	MW-43	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92507937002	MW-39	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92507937003	MW-18	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92507937004	MW-5R	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
2507937005	MW-40D	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92507937006	MW-1D	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
2507937007	MW-23D	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92507937008	Trip Blank	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92507937009	MW-38R	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	CL	3	PASI-C
2507937010	MW-21D	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	CL	3	PASI-C
2507937011	MW-22D	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	CL	3	PASI-C
2507937012	MW-20	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	CL	3	PASI-C
92507937013	MW-4	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
2507937014	MW-9	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	CL	3	PASI-C
2507937015	MW-16	EPA 8260D	PM1	63	PASI-C
		EPA 8260D Mod.	CL	3	PASI-C

PASI-C = Pace Analytical Services - Charlotte

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM


Sample: MW-43	Lab ID: 925	07937001	Collected: 11/22/2	20 11:10	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Metl	hod: EPA 82	260D					
	Pace Analytica	al Services -	- Charlotte					
Acetone	ND	ug/L	25.0	1		11/25/20 18:58	3 67-64-1	
Benzene	ND	ug/L	1.0	1		11/25/20 18:58	3 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/25/20 18:58	3 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/25/20 18:58	3 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/25/20 18:58	3 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/25/20 18:58	3 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/25/20 18:58		IK
2-Butanone (MEK)	ND	ug/L	5.0	1		11/25/20 18:58		
Carbon tetrachloride	ND	ug/L	1.0	1		11/25/20 18:58		
Chlorobenzene	ND	ug/L	1.0	1		11/25/20 18:58		
Chloroethane	ND	ug/L	1.0	1		11/25/20 18:58		
Chloroform	ND	ug/L	5.0	1		11/25/20 18:58		
Chloromethane	ND ND	•	1.0	1		11/25/20 18:58		
		ug/L						
2-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 18:58		
4-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 18:58		
,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/25/20 18:58		
Dibromochloromethane	ND	ug/L	1.0	1		11/25/20 18:58	-	
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/25/20 18:58		
Dibromomethane	ND	ug/L	1.0	1		11/25/20 18:58		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 18:58	3 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 18:58	3 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 18:58	3 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		11/25/20 18:58	3 75-71-8	
1,1-Dichloroethane	2.9	ug/L	1.0	1		11/25/20 18:58	3 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		11/25/20 18:58	3 107-06-2	
1,1-Dichloroethene	31.8	ug/L	1.0	1		11/25/20 18:58	3 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 18:58	3 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 18:58	3 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 18:58	3 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		11/25/20 18:58	3 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 18:58	3 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		11/25/20 18:58	3 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		11/25/20 18:58	3 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		11/25/20 18:58		
Diisopropyl ether	ND	ug/L	1.0	1		11/25/20 18:58		
Ethylbenzene	ND	ug/L	1.0	1		11/25/20 18:58		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		11/25/20 18:58		
2-Hexanone	ND	ug/L	5.0	1		11/25/20 18:58		
	ND ND	_	1.0	1		11/25/20 18:58		
o-Isopropyltoluene	ND ND	ug/L	5.0	1		11/25/20 18:58		
Methylene Chloride		ug/L						
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/25/20 18:58		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/25/20 18:58		
Naphthalene	ND	ug/L	1.0	1		11/25/20 18:58		
Styrene	ND	ug/L	1.0	1		11/25/20 18:58		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 18:58		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 18:58	3 79-34-5	

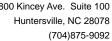
Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

			0 11:10	110001100.	1/24/20 11:00 I	Matrix: Water	
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Analytical Meth	od: EPA 82	260D					
Pace Analytical	Services -	Charlotte					
ND	ug/L	1.0	1		11/25/20 18:58	127-18-4	
ND	ug/L	1.0	1		11/25/20 18:58	108-88-3	
ND	ug/L	1.0	1		11/25/20 18:58	87-61-6	
ND	ug/L	1.0	1		11/25/20 18:58	120-82-1	
ND	ug/L	1.0	1		11/25/20 18:58	71-55-6	
ND	ug/L	1.0	1		11/25/20 18:58	79-00-5	
ND	ug/L	1.0	1		11/25/20 18:58	79-01-6	
ND	ug/L	1.0	1		11/25/20 18:58	75-69-4	
ND	ug/L	1.0	1		11/25/20 18:58	96-18-4	
ND	ug/L	2.0	1		11/25/20 18:58	108-05-4	
ND	ug/L	1.0	1		11/25/20 18:58	75-01-4	
ND	ug/L	1.0	1		11/25/20 18:58	1330-20-7	
ND	ug/L	2.0	1		11/25/20 18:58	179601-23-1	
ND	ug/L	1.0	1		11/25/20 18:58	95-47-6	
	•						
102	%	70-130	1		11/25/20 18:58	460-00-4	
96	%	70-130	1		11/25/20 18:58	17060-07-0	
100	%	70-130	1		11/25/20 18:58	2037-26-5	
Analytical Meth	od: EPA 82	260D Mod.					
Pace Analytical	Services -	Charlotte					
42.7	ug/L	2.0	1		11/25/20 00:43	123-91-1	
103	%	70-130	1		11/25/20 00:43	17060-07-0	
92	%	66-133	1		11/25/20 00:43	2037-26-5	
	Analytical Meth Pace Analytical ND ND ND ND ND ND ND ND ND ND ND ND ND	Analytical Method: EPA 82 Pace Analytical Services - ND ug/L	Analytical Method: EPA 8260D Pace Analytical Services - Charlotte ND ug/L 1.0 ND ug/L 2.0 ND ug/L 1.0 ND ug/L 2.0	Analytical Method: EPA 8260D Pace Analytical Services - Charlotte ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 2.0 1 ND ug/L 1.0 1 ND ug/L 2.0 1 ND ug/L 1.0 1 Analytical Method: EPA 8260D Mod. Pace Analytical Services - Charlotte	Analytical Method: EPA 8260D Pace Analytical Services - Charlotte ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 1.0 1 ND ug/L 2.0 1 ND ug/L 1.0 1 ND ug/L 2.0 1 ND ug/L 1.0 1 ND ug/L 2.0 1	Analytical Method: EPA 8260D Pace Analytical Services - Charlotte ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58 ND ug/L 2.0 1 11/25/20 18:58 ND ug/L 1.0 1 11/25/20 18:58	Analytical Method: EPA 8260D Pace Analytical Services - Charlotte ND ug/L 1.0 1 11/25/20 18:58 127-18-4 ND ug/L 1.0 1 11/25/20 18:58 108-88-3 ND ug/L 1.0 1 11/25/20 18:58 87-61-6 ND ug/L 1.0 1 11/25/20 18:58 77-61-6 ND ug/L 1.0 1 11/25/20 18:58 77-61-6 ND ug/L 1.0 1 11/25/20 18:58 79-00-5 ND ug/L 1.0 1 11/25/20 18:58 79-00-5 ND ug/L 1.0 1 11/25/20 18:58 79-01-6 ND ug/L 1.0 1 11/25/20 18:58 79-01-6 ND ug/L 1.0 1 11/25/20 18:58 75-69-4 ND ug/L 1.0 1 11/25/20 18:58 75-69-4 ND ug/L 1.0 1 11/25/20 18:58 96-18-4 ND ug/L 2.0 1 11/25/20 18:58 108-05-4 ND ug/L 1.0 1 11/25/20 18:58 108-05-4 ND ug/L 1.0 1 11/25/20 18:58 1030-20-7 ND ug/L 1.0 1 11/25/20 18:58 1330-20-7 ND ug/L 2.0 1 11/25/20 18:58 1330-20-7 ND ug/L 1.0 1 11/25/20 18:58 1330-20-7 ND ug/L 1.0 1 11/25/20 18:58 179601-23-1 ND ug/L 1.0 1 11/25/20 18:58 17060-07-0 100 % 70-130 1 11/25/20 18:58 2037-26-5 Analytical Method: EPA 8260D Mod. Pace Analytical Services - Charlotte 42.7 ug/L 2.0 1 11/25/20 00:43 123-91-1

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM


Sample: MW-39	Lab ID: 925	07937002	Collected: 11/22/2	0 11:25	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/25/20 16:3	6 67-64-1	
Benzene	ND	ug/L	1.0	1		11/25/20 16:3	6 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/25/20 16:3	6 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/25/20 16:3	6 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/25/20 16:3	6 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/25/20 16:3	6 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/25/20 16:3	6 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		11/25/20 16:3	6 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		11/25/20 16:3	6 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		11/25/20 16:3	6 108-90-7	
Chloroethane	ND	ug/L	1.0	1		11/25/20 16:3		
Chloroform	ND	ug/L	5.0	1		11/25/20 16:3		
Chloromethane	ND	ug/L	1.0	1		11/25/20 16:3		
2-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 16:3		
4-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 16:3		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/25/20 16:3		
Dibromochloromethane	ND	ug/L	1.0	1		11/25/20 16:3		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/25/20 16:3		
Dibromomethane	ND	ug/L	1.0	1		11/25/20 16:3		
1,2-Dichlorobenzene	ND	ug/L ug/L	1.0	1		11/25/20 16:3		
1,3-Dichlorobenzene	ND	-	1.0	1		11/25/20 16:3		
1,4-Dichlorobenzene	ND ND	ug/L	1.0	1		11/25/20 16:3		
Dichlorodifluoromethane	ND ND	ug/L	1.0	1		11/25/20 16:3		
		ug/L						
1,1-Dichloroethane	ND	ug/L	1.0	1		11/25/20 16:3		
1,2-Dichloroethane	ND	ug/L	1.0	1		11/25/20 16:3		
1,1-Dichloroethene	ND	ug/L	1.0	1		11/25/20 16:3		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 16:3		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 16:3		
1,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 16:3		
1,3-Dichloropropane	ND	ug/L	1.0	1		11/25/20 16:3		
2,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 16:3		
1,1-Dichloropropene	ND	ug/L	1.0	1		11/25/20 16:3		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			6 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			6 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		11/25/20 16:3		
Ethylbenzene	ND	ug/L	1.0	1		11/25/20 16:3		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		11/25/20 16:3		
2-Hexanone	ND	ug/L	5.0	1		11/25/20 16:3		
p-Isopropyltoluene	ND	ug/L	1.0	1		11/25/20 16:3		
Methylene Chloride	ND	ug/L	5.0	1		11/25/20 16:3	6 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/25/20 16:3		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/25/20 16:3	6 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		11/25/20 16:3	6 91-20-3	
Styrene	ND	ug/L	1.0	1		11/25/20 16:3	6 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 16:3	6 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 16:3	6 79-34-5	

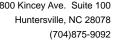
Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Sample: MW-39	Lab ID: 925	07937002	Collected: 11/22/2	0 11:25	Received: 1	1/24/20 11:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/25/20 16:36	127-18-4	
Toluene	ND	ug/L	1.0	1		11/25/20 16:36	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 16:36	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 16:36	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/25/20 16:36	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/25/20 16:36	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/25/20 16:36	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/25/20 16:36	75-69-4	
,2,3-Trichloropropane	ND	ug/L	1.0	1		11/25/20 16:36	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		11/25/20 16:36	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		11/25/20 16:36	75-01-4	
(ylene (Total)	ND	ug/L	1.0	1		11/25/20 16:36	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		11/25/20 16:36	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/25/20 16:36	95-47-6	
Surrogates		-						
I-Bromofluorobenzene (S)	100	%	70-130	1		11/25/20 16:36	460-00-4	
,2-Dichloroethane-d4 (S)	94	%	70-130	1		11/25/20 16:36	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		11/25/20 16:36	2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
l,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		11/24/20 19:35	123-91-1	
1,2-Dichloroethane-d4 (S)	99	%	70-130	1		11/24/20 19:35	17060-07-0	
Toluene-d8 (S)	93	%	66-133	1		11/24/20 19:35	2037-26-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM


Sample: MW-18	Lab ID: 925	07937003	Collected: 11/22/2	20 11:40	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/25/20 15:2	5 67-64-1	
Benzene	ND	ug/L	1.0	1		11/25/20 15:29	5 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/25/20 15:29	5 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/25/20 15:29	5 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/25/20 15:29	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/25/20 15:2	5 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/25/20 15:2		IK
2-Butanone (MEK)	ND	ug/L	5.0	1		11/25/20 15:2		
Carbon tetrachloride	ND	ug/L	1.0	1		11/25/20 15:2		
Chlorobenzene	ND	ug/L	1.0	1		11/25/20 15:29		
Chloroethane	ND	ug/L	1.0	1		11/25/20 15:2		
Chloroform	ND ND	ug/L ug/L	5.0	1		11/25/20 15:2		
Chloromethane	ND ND	-	1.0	1		11/25/20 15:2		
		ug/L						
2-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 15:25		
4-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 15:2		
I,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/25/20 15:2		
Dibromochloromethane	ND	ug/L	1.0	1		11/25/20 15:2	_	
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/25/20 15:2		
Dibromomethane	ND	ug/L	1.0	1		11/25/20 15:2		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 15:2	5 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 15:2	5 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 15:2	5 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		11/25/20 15:2	5 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		11/25/20 15:2	5 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		11/25/20 15:2	5 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		11/25/20 15:29	5 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 15:29	5 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 15:29	5 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 15:25	5 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		11/25/20 15:29	5 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 15:29	5 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		11/25/20 15:29	5 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		11/25/20 15:29		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		11/25/20 15:29		
Diisopropyl ether	ND	ug/L	1.0	1		11/25/20 15:2		
Ethylbenzene	ND	ug/L	1.0	1		11/25/20 15:29		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		11/25/20 15:29		
2-Hexanone	ND	ug/L	5.0	1		11/25/20 15:2		
	ND ND	-	1.0	1		11/25/20 15:2		
o-Isopropyltoluene	ND ND	ug/L	5.0	1		11/25/20 15:2		
Methylene Chloride		ug/L				11/25/20 15:2		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1				
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/25/20 15:25		
Naphthalene	ND	ug/L	1.0	1		11/25/20 15:29		
Styrene	ND	ug/L	1.0	1		11/25/20 15:2		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 15:2		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 15:2	5 79-34-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Sample: MW-18	Lab ID: 925	07937003	Collected: 11/22/2	0 11:40	Received: 1	1/24/20 11:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/25/20 15:25	127-18-4	
Toluene	ND	ug/L	1.0	1		11/25/20 15:25	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 15:25	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 15:25	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/25/20 15:25	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/25/20 15:25	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/25/20 15:25	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/25/20 15:25	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/25/20 15:25	96-18-4	
√inyl acetate	ND	ug/L	2.0	1		11/25/20 15:25	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		11/25/20 15:25	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		11/25/20 15:25	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		11/25/20 15:25	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/25/20 15:25	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	100	%	70-130	1		11/25/20 15:25	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-130	1		11/25/20 15:25	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		11/25/20 15:25	2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		11/24/20 19:54	123-91-1	
1,2-Dichloroethane-d4 (S)	98	%	70-130	1		11/24/20 19:54	17060-07-0	
Toluene-d8 (S)	92	%	66-133	1		11/24/20 19:54	2037-26-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM


Sample: MW-5R	Lab ID: 925	07937004	Collected: 11/22/2	0 12:50	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/25/20 17:3	0 67-64-1	
Benzene	ND	ug/L	1.0	1		11/25/20 17:3	0 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/25/20 17:3	0 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/25/20 17:3	0 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/25/20 17:3	0 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/25/20 17:3	0 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/25/20 17:3	0 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		11/25/20 17:3	0 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		11/25/20 17:3	0 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		11/25/20 17:30	0 108-90-7	
Chloroethane	ND	ug/L	1.0	1		11/25/20 17:30	0 75-00-3	
Chloroform	ND	ug/L	5.0	1		11/25/20 17:3		
Chloromethane	ND	ug/L	1.0	1		11/25/20 17:30		
2-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 17:3		
4-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 17:3		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/25/20 17:3		
Dibromochloromethane	ND	ug/L	1.0	1		11/25/20 17:3		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/25/20 17:3	-	
Dibromomethane	ND	ug/L	1.0	1		11/25/20 17:3		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 17:3		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 17:30		
1,4-Dichlorobenzene	ND ND	ug/L	1.0	1		11/25/20 17:3		
Dichlorodifluoromethane	ND ND	ug/L	1.0	1		11/25/20 17:30		
1,1-Dichloroethane	ND ND	•	1.0	1		11/25/20 17:3		
,	ND ND	ug/L		1		11/25/20 17:3		
1,2-Dichloroethane		ug/L	1.0					
1,1-Dichloroethene	ND	ug/L	1.0	1 1		11/25/20 17:3		
cis-1,2-Dichloroethene	ND	ug/L	1.0			11/25/20 17:30		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 17:30		
1,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 17:3		
1,3-Dichloropropane	ND	ug/L	1.0	1		11/25/20 17:30		
2,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 17:30		
1,1-Dichloropropene	ND	ug/L	1.0	1		11/25/20 17:3		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		11/25/20 17:30		
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			0 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		11/25/20 17:3		
Ethylbenzene	ND	ug/L	1.0	1		11/25/20 17:3		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		11/25/20 17:3		
2-Hexanone	ND	ug/L	5.0	1		11/25/20 17:3		
p-Isopropyltoluene	ND	ug/L	1.0	1		11/25/20 17:3		
Methylene Chloride	ND	ug/L	5.0	1		11/25/20 17:3	0 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/25/20 17:3		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/25/20 17:3	0 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		11/25/20 17:3	0 91-20-3	
Styrene	ND	ug/L	1.0	1		11/25/20 17:3	0 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 17:3	0 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 17:30	0 79-34-5	

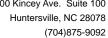
Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Sample: MW-5R	Lab ID: 9250	07937004	Collected: 11/22/2	0 12:50	Received: 1	1/24/20 11:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/25/20 17:30	127-18-4	
Toluene	ND	ug/L	1.0	1		11/25/20 17:30	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 17:30	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 17:30	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/25/20 17:30	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/25/20 17:30	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/25/20 17:30	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/25/20 17:30	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/25/20 17:30	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		11/25/20 17:30	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		11/25/20 17:30	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		11/25/20 17:30	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		11/25/20 17:30	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/25/20 17:30	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	100	%	70-130	1		11/25/20 17:30	460-00-4	
1,2-Dichloroethane-d4 (S)	96	%	70-130	1		11/25/20 17:30	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		11/25/20 17:30	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	2.2	ug/L	2.0	1		11/24/20 20:14	123-91-1	
1,2-Dichloroethane-d4 (S)	101	%	70-130	1		11/24/20 20:14	17060-07-0	
Toluene-d8 (S)	93	%	66-133	1		11/24/20 20:14	2037-26-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM


Sample: MW-40D	Lab ID: 925	07937005	Collected: 11/22/2	0 13:05	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	nod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/25/20 17:4	7 67-64-1	
Benzene	ND	ug/L	1.0	1		11/25/20 17:4	7 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/25/20 17:4	7 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/25/20 17:4	7 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/25/20 17:4	7 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/25/20 17:4	7 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/25/20 17:4	7 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		11/25/20 17:4	7 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		11/25/20 17:4		
Chlorobenzene	ND	ug/L	1.0	1		11/25/20 17:4	7 108-90-7	
Chloroethane	ND	ug/L	1.0	1		11/25/20 17:4		
Chloroform	ND	ug/L	5.0	1		11/25/20 17:4		
Chloromethane	ND	ug/L	1.0	1		11/25/20 17:4		
2-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 17:4		
4-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 17:4		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/25/20 17:4		
Dibromochloromethane	ND	ug/L	1.0	1		11/25/20 17:4		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/25/20 17:4		
Dibromomethane	ND	ug/L	1.0	1		11/25/20 17:4		
1,2-Dichlorobenzene	ND	ug/L ug/L	1.0	1		11/25/20 17:4		
1,3-Dichlorobenzene	ND	-	1.0	1		11/25/20 17:4		
1,4-Dichlorobenzene	ND ND	ug/L	1.0	1		11/25/20 17:4		
Dichlorodifluoromethane	ND ND	ug/L	1.0	1		11/25/20 17:4		
		ug/L						
1,1-Dichloroethane	ND	ug/L	1.0	1		11/25/20 17:4		
1,2-Dichloroethane	ND	ug/L	1.0	1		11/25/20 17:4		
1,1-Dichloroethene	ND	ug/L	1.0	1		11/25/20 17:4		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 17:4		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 17:4		
1,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 17:4		
1,3-Dichloropropane	ND	ug/L	1.0	1		11/25/20 17:4		
2,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 17:4		
1,1-Dichloropropene	ND	ug/L	1.0	1		11/25/20 17:4		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			7 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			7 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		11/25/20 17:4		
Ethylbenzene	ND	ug/L	1.0	1		11/25/20 17:4		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		11/25/20 17:4		
2-Hexanone	ND	ug/L	5.0	1		11/25/20 17:4	7 591-78-6	
p-Isopropyltoluene	ND	ug/L	1.0	1		11/25/20 17:4		
Methylene Chloride	ND	ug/L	5.0	1		11/25/20 17:4	7 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/25/20 17:4	7 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/25/20 17:4	7 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		11/25/20 17:4	7 91-20-3	
Styrene	ND	ug/L	1.0	1		11/25/20 17:4	7 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 17:4	7 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 17:4	7 79-34-5	

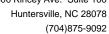
Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Sample: MW-40D	Lab ID: 9250	7937005	Collected: 11/22/2	0 13:05	Received: 1	1/24/20 11:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260D MSV Low Level	Analytical Meth	od: EPA 82	60D					
	Pace Analytica	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/25/20 17:47	127-18-4	
Toluene Toluene	ND	ug/L	1.0	1		11/25/20 17:47	108-88-3	
,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 17:47	87-61-6	
,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 17:47	120-82-1	
,1,1-Trichloroethane	ND	ug/L	1.0	1		11/25/20 17:47	71-55-6	
,1,2-Trichloroethane	ND	ug/L	1.0	1		11/25/20 17:47	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/25/20 17:47	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/25/20 17:47	75-69-4	
,2,3-Trichloropropane	ND	ug/L	1.0	1		11/25/20 17:47	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		11/25/20 17:47	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		11/25/20 17:47	75-01-4	
(ylene (Total)	ND	ug/L	1.0	1		11/25/20 17:47	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		11/25/20 17:47	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/25/20 17:47	95-47-6	
Surrogates		Ū						
I-Bromofluorobenzene (S)	101	%	70-130	1		11/25/20 17:47	460-00-4	
,2-Dichloroethane-d4 (S)	96	%	70-130	1		11/25/20 17:47	17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		11/25/20 17:47	2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	60D Mod.					
	Pace Analytica	Services -	Charlotte					
,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		11/24/20 20:33	123-91-1	
,2-Dichloroethane-d4 (S)	100	%	70-130	1		11/24/20 20:33	17060-07-0	
Toluene-d8 (S)	92	%	66-133	1		11/24/20 20:33	2037-26-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM


Sample: MW-1D	Lab ID: 925	07937006	Collected: 11/22/2	0 15:05	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/25/20 18:0	5 67-64-1	
Benzene	ND	ug/L	1.0	1		11/25/20 18:0	5 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/25/20 18:0	5 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/25/20 18:0	5 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/25/20 18:0	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/25/20 18:0	5 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/25/20 18:0	5 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		11/25/20 18:0	5 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		11/25/20 18:0	5 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		11/25/20 18:0	5 108-90-7	
Chloroethane	ND	ug/L	1.0	1		11/25/20 18:0		
Chloroform	ND	ug/L	5.0	1		11/25/20 18:0		
Chloromethane	ND	ug/L	1.0	1		11/25/20 18:0		
2-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 18:0		
4-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 18:0		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/25/20 18:0		
Dibromochloromethane	ND	ug/L	1.0	1		11/25/20 18:0		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/25/20 18:0		
Dibromomethane	ND ND	ug/L	1.0	1		11/25/20 18:0		
1,2-Dichlorobenzene	ND ND	ug/L	1.0	1		11/25/20 18:0		
1,3-Dichlorobenzene	ND ND	-	1.0	1		11/25/20 18:0		
•	ND ND	ug/L		1		11/25/20 18:0		
1,4-Dichlorobenzene		ug/L	1.0					
Dichlorodifluoromethane	ND	ug/L	1.0	1		11/25/20 18:0		
1,1-Dichloroethane	3.1	ug/L	1.0	1		11/25/20 18:0		
1,2-Dichloroethane	ND	ug/L	1.0	1		11/25/20 18:0		
1,1-Dichloroethene	17.6	ug/L	1.0	1		11/25/20 18:0		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 18:0		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 18:0		
1,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 18:0		
1,3-Dichloropropane	ND	ug/L	1.0	1		11/25/20 18:0		
2,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 18:0		
1,1-Dichloropropene	ND	ug/L	1.0	1		11/25/20 18:0		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1		11/25/20 18:0	5 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		11/25/20 18:0	5 108-20-3	
Ethylbenzene	ND	ug/L	1.0	1		11/25/20 18:0	5 100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		11/25/20 18:0	5 87-68-3	
2-Hexanone	ND	ug/L	5.0	1		11/25/20 18:0	5 591-78-6	
p-Isopropyltoluene	ND	ug/L	1.0	1		11/25/20 18:0	5 99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		11/25/20 18:0	5 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/25/20 18:0	5 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/25/20 18:0	5 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		11/25/20 18:0	5 91-20-3	
Styrene	ND	ug/L	1.0	1		11/25/20 18:0	5 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 18:0		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 18:0		

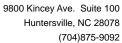
Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Sample: MW-1D	Lab ID: 9250	7937006	Collected: 11/22/2	0 15:05	Received: 1	1/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/25/20 18:05	127-18-4	
Toluene	ND	ug/L	1.0	1		11/25/20 18:05	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 18:05	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 18:05	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/25/20 18:05	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/25/20 18:05	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/25/20 18:05	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/25/20 18:05	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/25/20 18:05	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		11/25/20 18:05	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		11/25/20 18:05	75-01-4	
Kylene (Total)	ND	ug/L	1.0	1		11/25/20 18:05	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		11/25/20 18:05	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/25/20 18:05	95-47-6	
Surrogates		•						
1-Bromofluorobenzene (S)	102	%	70-130	1		11/25/20 18:05	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	70-130	1		11/25/20 18:05	17060-07-0	
Toluene-d8 (S)	99	%	70-130	1		11/25/20 18:05	2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	16.9	ug/L	2.0	1		11/24/20 20:52	2 123-91-1	
1,2-Dichloroethane-d4 (S)	101	%	70-130	1		11/24/20 20:52	2 17060-07-0	
Foluene-d8 (S)	92	%	66-133	1		11/24/20 20:52	2 2037-26-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM


Sample: MW-23D	Lab ID: 925	07937007	Collected: 11/22/2	20 16:55	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/25/20 19:34	4 67-64-1	
Benzene	ND	ug/L	1.0	1		11/25/20 19:34	1 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/25/20 19:34	1 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/25/20 19:34	1 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/25/20 19:34	1 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/25/20 19:34	1 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/25/20 19:34		IK
2-Butanone (MEK)	ND	ug/L	5.0	1		11/25/20 19:34		
Carbon tetrachloride	ND	ug/L	1.0	1		11/25/20 19:34		
Chlorobenzene	ND	ug/L	1.0	1		11/25/20 19:34		
Chloroethane	ND	ug/L	1.0	1		11/25/20 19:34		
Chloroform	ND ND	-	5.0	1		11/25/20 19:34		
		ug/L						
Chloromethane	ND	ug/L	1.0	1		11/25/20 19:34		
2-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 19:34		
4-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 19:34		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/25/20 19:34		
Dibromochloromethane	ND	ug/L	1.0	1		11/25/20 19:34	-	
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/25/20 19:34		
Dibromomethane	ND	ug/L	1.0	1		11/25/20 19:34	1 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 19:34	1 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 19:34	1 541-73-1	
,4-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 19:34	1 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		11/25/20 19:34	1 75-71-8	
1,1-Dichloroethane	26.3	ug/L	1.0	1		11/25/20 19:34	1 75-34-3	
1,2-Dichloroethane	1.2	ug/L	1.0	1		11/25/20 19:34		
1,1-Dichloroethene	106	ug/L	1.0	1		11/25/20 19:34		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 19:34		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 19:34		
1,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 19:34		
1,3-Dichloropropane	ND	ug/L	1.0	1		11/25/20 19:34		
2,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 19:34		
1,1-Dichloropropane	ND ND	-	1.0	1		11/25/20 19:34		
• •		ug/L						
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		11/25/20 19:34		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		11/25/20 19:34		
Diisopropyl ether	ND	ug/L	1.0	1		11/25/20 19:34		
Ethylbenzene	ND	ug/L	1.0	1		11/25/20 19:34		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		11/25/20 19:34		
2-Hexanone	ND	ug/L	5.0	1		11/25/20 19:34		
o-Isopropyltoluene	ND	ug/L	1.0	1		11/25/20 19:34	1 99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		11/25/20 19:34	1 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/25/20 19:34	1 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/25/20 19:34	1 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		11/25/20 19:34	1 91-20-3	
Styrene	ND	ug/L	1.0	1		11/25/20 19:34		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 19:34		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 19:34		

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

		7937007	Collected: 11/22/2	U 16:55	Received: 1	1/24/20 11:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/25/20 19:34	127-18-4	
Toluene	ND	ug/L	1.0	1		11/25/20 19:34	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 19:34	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 19:34	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/25/20 19:34	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/25/20 19:34	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/25/20 19:34	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/25/20 19:34	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/25/20 19:34	96-18-4	
√inyl acetate	ND	ug/L	2.0	1		11/25/20 19:34	108-05-4	
√inyl chloride	ND	ug/L	1.0	1		11/25/20 19:34	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		11/25/20 19:34	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		11/25/20 19:34	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/25/20 19:34	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	103	%	70-130	1		11/25/20 19:34	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	70-130	1		11/25/20 19:34	17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		11/25/20 19:34	2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	96.7	ug/L	4.0	2		11/25/20 07:30	123-91-1	
1,2-Dichloroethane-d4 (S)	99	%	70-130	2		11/25/20 07:30	17060-07-0	
Toluene-d8 (S)	91	%	66-133	2		11/25/20 07:30	2037-26-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM


Sample: Trip Blank	Lab ID: 925	07937008	Collected: 11/22/2	20 00:00	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/25/20 13:03	3 67-64-1	
Benzene	ND	ug/L	1.0	1		11/25/20 13:03	3 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/25/20 13:03	3 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/25/20 13:03	3 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/25/20 13:03	3 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/25/20 13:03	3 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/25/20 13:03	3 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		11/25/20 13:03		
Carbon tetrachloride	ND	ug/L	1.0	1		11/25/20 13:0		
Chlorobenzene	ND	ug/L	1.0	1		11/25/20 13:0		
Chloroethane	ND	ug/L	1.0	1		11/25/20 13:0		
Chloroform	ND	ug/L	5.0	1		11/25/20 13:0		
Chloromethane	ND ND	•	1.0	1		11/25/20 13:0		
		ug/L						
2-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 13:03		
4-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 13:03		
I,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/25/20 13:03		
Dibromochloromethane	ND	ug/L	1.0	1		11/25/20 13:03	-	
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/25/20 13:03		
Dibromomethane	ND	ug/L	1.0	1		11/25/20 13:03	3 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 13:03	3 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 13:03	3 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 13:03	3 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		11/25/20 13:03	3 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		11/25/20 13:03	3 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		11/25/20 13:03	3 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		11/25/20 13:03	3 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 13:03	3 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 13:03	3 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 13:03		
1,3-Dichloropropane	ND	ug/L	1.0	1		11/25/20 13:0		
2,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 13:0		
1,1-Dichloropropene	ND	ug/L	1.0	1		11/25/20 13:03		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		11/25/20 13:0		
	ND ND	•	1.0	•				
Diisopropyl ether		ug/L		1		11/25/20 13:03		
Ethylbenzene	ND	ug/L	1.0	1		11/25/20 13:03		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		11/25/20 13:03		
2-Hexanone	ND	ug/L	5.0	1		11/25/20 13:0		
p-Isopropyltoluene	ND	ug/L	1.0	1		11/25/20 13:0		
Methylene Chloride	ND	ug/L	5.0	1		11/25/20 13:03		
1-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/25/20 13:03		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/25/20 13:03		
Naphthalene	ND	ug/L	1.0	1		11/25/20 13:03	3 91-20-3	
Styrene	ND	ug/L	1.0	1		11/25/20 13:03	3 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 13:03	3 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 13:03	3 79-34-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Sample: Trip Blank	Lab ID: 9250	7937008	Collected: 11/22/2	0 00:00	Received: 1	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/25/20 13:03	3 127-18-4	
Toluene	ND	ug/L	1.0	1		11/25/20 13:03	3 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 13:03	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 13:03	3 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/25/20 13:03	3 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/25/20 13:03	3 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/25/20 13:03	3 79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/25/20 13:03	3 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/25/20 13:03	3 96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		11/25/20 13:03	3 108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		11/25/20 13:03	3 75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		11/25/20 13:03	3 1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		11/25/20 13:03	3 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/25/20 13:03	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	102	%	70-130	1		11/25/20 13:03	3 460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130	1		11/25/20 13:03	3 17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		11/25/20 13:03	3 2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		11/24/20 16:58	3 123-91-1	
1,2-Dichloroethane-d4 (S)	97	%	70-130	1		11/24/20 16:58	3 17060-07-0	
Toluene-d8 (S)	92	%	66-133	1		11/24/20 16:58	3 2037-26-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Sample: MW-38R	Lab ID: 925	07937009	Collected: 11/22/2	20 13:20	Received:	11/25/20 11:42	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/26/20 04:0	2 67-64-1	
Benzene	ND	ug/L	1.0	1		11/26/20 04:0	2 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/26/20 04:0	2 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/26/20 04:0	2 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/26/20 04:0	2 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/26/20 04:0	2 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/26/20 04:0	2 74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		11/26/20 04:0	2 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		11/26/20 04:0	2 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		11/26/20 04:0		
Chloroethane	ND	ug/L	1.0	1		11/26/20 04:0		
Chloroform	ND	ug/L	5.0	1		11/26/20 04:0		
Chloromethane	ND	ug/L	1.0	1		11/26/20 04:0		
2-Chlorotoluene	ND	ug/L	1.0	1		11/26/20 04:0		
4-Chlorotoluene	ND	ug/L	1.0	1		11/26/20 04:0		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/26/20 04:0		
Dibromochloromethane	ND ND	ug/L	1.0	1		11/26/20 04:0		
	ND ND	•	1.0	1		11/26/20 04:0		
1,2-Dibromoethane (EDB)		ug/L		1				
Dibromomethane	ND	ug/L	1.0			11/26/20 04:0		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		11/26/20 04:0		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		11/26/20 04:0		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		11/26/20 04:0		
Dichlorodifluoromethane	ND	ug/L	1.0	1		11/26/20 04:0		
1,1-Dichloroethane	6.5	ug/L	1.0	1		11/26/20 04:0		
1,2-Dichloroethane	ND	ug/L	1.0	1		11/26/20 04:0		
1,1-Dichloroethene	ND	ug/L	1.0	1		11/26/20 04:0		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/26/20 04:0		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/26/20 04:0	2 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		11/26/20 04:0	2 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		11/26/20 04:0	2 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		11/26/20 04:0	2 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		11/26/20 04:0	2 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		11/26/20 04:0	2 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		11/26/20 04:0	2 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		11/26/20 04:0	2 108-20-3	
Ethylbenzene	ND	ug/L	1.0	1		11/26/20 04:0	2 100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		11/26/20 04:0		
2-Hexanone	ND	ug/L	5.0	1		11/26/20 04:0		
o-Isopropyltoluene	ND	ug/L	1.0	1		11/26/20 04:0		
Methylene Chloride	ND	ug/L	5.0	1		11/26/20 04:0		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/26/20 04:0		
Methyl-tert-butyl ether	ND ND	-	1.0	1		11/26/20 04:0		
	ND ND	ug/L	1.0			11/26/20 04:0		
Naphthalene Sturene		ug/L		1				
Styrene 1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/26/20 04:0		
	ND	ug/L	1.0	1		11/26/20 04:0	/ h3U-20-6	

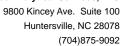
Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Results —	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Analytical Meth	od: EPA 82	260D					
Pace Analytical	Services -	Charlotte					
ND	ug/L	1.0	1		11/26/20 04:02	127-18-4	
ND	ug/L	1.0	1		11/26/20 04:02	108-88-3	
ND	ug/L	1.0	1		11/26/20 04:02	87-61-6	
ND	ug/L	1.0	1		11/26/20 04:02	120-82-1	
ND	ug/L	1.0	1		11/26/20 04:02	71-55-6	
ND	ug/L	1.0	1		11/26/20 04:02	79-00-5	
ND	ug/L	1.0	1		11/26/20 04:02	79-01-6	
ND	ug/L	1.0	1		11/26/20 04:02	75-69-4	v1
ND	ug/L	1.0	1		11/26/20 04:02	96-18-4	
ND	ug/L	2.0	1		11/26/20 04:02	108-05-4	
ND	ug/L	1.0	1		11/26/20 04:02	75-01-4	
ND	ug/L	1.0	1		11/26/20 04:02	1330-20-7	
ND	ug/L	2.0	1		11/26/20 04:02	179601-23-1	
ND	ug/L	1.0	1		11/26/20 04:02	95-47-6	
	•						
105	%	70-130	1		11/26/20 04:02	460-00-4	
124	%	70-130	1		11/26/20 04:02	17060-07-0	
101	%	70-130	1		11/26/20 04:02	2037-26-5	
Analytical Meth	od: EPA 82	260D Mod.					
Pace Analytical	Services -	Charlotte					
40.9	ug/L	2.0	1		11/25/20 21:50	123-91-1	
93	%	70-130	1		11/25/20 21:50	17060-07-0	
92	%	66-133	1		11/25/20 21:50	2037-26-5	
	Pace Analytical ND ND ND ND ND ND ND ND ND N	Pace Analytical Services - ND ug/L 105 % 124 % 101 % Analytical Method: EPA 82 Pace Analytical Services - 40.9 ug/L	ND ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 1.0 ND ug/L 2.0 ND ug/L 1.0 ND ug/L 2.0 ND ug/L 1.0 Analytical Services - Charlotte 40.9 ug/L 2.0	Pace Analytical Services - Charlotte ND	Pace Analytical Services - Charlotte ND	Pace Analytical Services - Charlotte ND ug/L 1.0 1 11/26/20 04:02	Pace Analytical Services - Charlotte ND ug/L 1.0 1 11/26/20 04:02 127-18-4 ND ug/L 1.0 1 11/26/20 04:02 108-88-3 ND ug/L 1.0 1 11/26/20 04:02 87-61-6 ND ug/L 1.0 1 11/26/20 04:02 120-82-1 ND ug/L 1.0 1 11/26/20 04:02 71-55-6 ND ug/L 1.0 1 11/26/20 04:02 79-00-5 ND ug/L 1.0 1 11/26/20 04:02 79-00-5 ND ug/L 1.0 1 11/26/20 04:02 79-01-6 ND ug/L 1.0 1 11/26/20 04:02 79-01-6 ND ug/L 1.0 1 11/26/20 04:02 75-69-4 ND ug/L 1.0 1 11/26/20 04:02 75-69-4 ND ug/L 2.0 1 11/26/20 04:02 96-18-4 ND ug/L 1.0 1 11/26/20 04:02 108-05-4 ND ug/L 1.0 1 11/26/20 04:02 108-05-4 ND ug/L 1.0 1 11/26/20 04:02 1330-20-7 ND ug/L 1.0 1 11/26/20 04:02 1330-20-7 ND ug/L 2.0 1 11/26/20 04:02 1330-20-7 ND ug/L 1.0 1 11/26/20 04:02 1330-20-7 ND ug/L 1.0 1 11/26/20 04:02 179601-23-1 ND ug/L 1.0 1 11/26/20 04:02 95-47-6 105 % 70-130 1 11/26/20 04:02 95-47-6 Analytical Method: EPA 8260D Mod. Pace Analytical Services - Charlotte 40.9 ug/L 2.0 1 11/25/20 21:50 123-91-1

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM


Sample: MW-21D	Lab ID: 925	07937010	Collected: 11/22/2	20 14:10	Received:	11/25/20 11:42	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/26/20 02:49	9 67-64-1	
Benzene	ND	ug/L	1.0	1		11/26/20 02:49	9 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/26/20 02:49	9 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/26/20 02:49	9 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/26/20 02:49	9 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/26/20 02:49		
Bromomethane	ND	ug/L	2.0	1		11/26/20 02:49	9 74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		11/26/20 02:49		
Carbon tetrachloride	ND	ug/L	1.0	1		11/26/20 02:49		
Chlorobenzene	ND	ug/L	1.0	1		11/26/20 02:49		
Chloroethane	ND	-	1.0	1		11/26/20 02:4		
Chloroform	ND ND	ug/L	5.0	1		11/26/20 02:49		
		ug/L						
Chloromethane	ND	ug/L	1.0	1		11/26/20 02:49		
2-Chlorotoluene	ND	ug/L	1.0	1		11/26/20 02:49		
4-Chlorotoluene	ND	ug/L	1.0	1		11/26/20 02:49		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/26/20 02:49		
Dibromochloromethane	ND	ug/L	1.0	1		11/26/20 02:49		
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/26/20 02:49	9 106-93-4	
Dibromomethane	ND	ug/L	1.0	1		11/26/20 02:49	9 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		11/26/20 02:49	9 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		11/26/20 02:49	9 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		11/26/20 02:49	9 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		11/26/20 02:49	9 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		11/26/20 02:49	9 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		11/26/20 02:49	9 107-06-2	
1,1-Dichloroethene	7.8	ug/L	1.0	1		11/26/20 02:49	9 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/26/20 02:49	9 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/26/20 02:49		
1,2-Dichloropropane	ND	ug/L	1.0	1		11/26/20 02:49		
1,3-Dichloropropane	ND	ug/L	1.0	1		11/26/20 02:49		
2,2-Dichloropropane	ND	ug/L	1.0	1		11/26/20 02:49		
1,1-Dichloropropene	ND	ug/L	1.0	1		11/26/20 02:49		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			9 10061-01-5	
	ND	•	1.0	1			9 10061-01-3	
rans-1,3-Dichloropropene		ug/L	_					
Diisopropyl ether	ND	ug/L	1.0	1		11/26/20 02:49		
Ethylbenzene	ND	ug/L	1.0	1		11/26/20 02:49		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		11/26/20 02:49		
2-Hexanone	ND	ug/L	5.0	1		11/26/20 02:49		
p-Isopropyltoluene	ND	ug/L	1.0	1		11/26/20 02:49		
Methylene Chloride	ND	ug/L	5.0	1		11/26/20 02:49	9 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/26/20 02:49	9 108-10-1	
Methyl-tert-butyl ether	3.0	ug/L	1.0	1		11/26/20 02:49	9 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		11/26/20 02:49	9 91-20-3	
Styrene	ND	ug/L	1.0	1		11/26/20 02:49	9 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/26/20 02:49	9 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/26/20 02:49		

Project: Kop Flex
Pace Project No.: 92507937

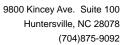
Date: 12/04/2020 04:29 PM

Sample: MW-21D	Lab ID: 9250	7937010	Collected: 11/22/2	0 14:10	Received: 1	11/25/20 11:42	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	od: EPA 82	60D					
	Pace Analytica	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/26/20 02:49	127-18-4	
Toluene	ND	ug/L	1.0	1		11/26/20 02:49	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/26/20 02:49	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/26/20 02:49	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/26/20 02:49	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/26/20 02:49	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/26/20 02:49	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/26/20 02:49	75-69-4	v1
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/26/20 02:49	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		11/26/20 02:49	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		11/26/20 02:49	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		11/26/20 02:49	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		11/26/20 02:49	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/26/20 02:49	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	101	%	70-130	1		11/26/20 02:49	460-00-4	
1,2-Dichloroethane-d4 (S)	120	%	70-130	1		11/26/20 02:49	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		11/26/20 02:49	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	60D Mod.					
	Pace Analytica	Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	5.1	ug/L	2.0	1		11/25/20 19:53	123-91-1	
1,2-Dichloroethane-d4 (S)	95	%	70-130	1		11/25/20 19:53	17060-07-0	
Toluene-d8 (S)	91	%	66-133	1		11/25/20 19:53	2037-26-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Sample: MW-22D	Lab ID: 925	07937011	Collected: 11/22/2	20 15:25	Received:	11/25/20 11:42	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/26/20 03:20	6 67-64-1	
Benzene	ND	ug/L	1.0	1		11/26/20 03:20	6 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/26/20 03:20	6 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/26/20 03:20	6 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/26/20 03:20	6 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/26/20 03:20	6 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/26/20 03:20	6 74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		11/26/20 03:20		
Carbon tetrachloride	ND	ug/L	1.0	1		11/26/20 03:20		
Chlorobenzene	ND	ug/L	1.0	1		11/26/20 03:20		
Chloroethane	ND	ug/L	1.0	1		11/26/20 03:20		
Chloroform	ND	ug/L ug/L	5.0	1		11/26/20 03:20		
Chloromethane	ND ND	•	1.0	1		11/26/20 03:20		
		ug/L						
2-Chlorotoluene	ND	ug/L	1.0	1		11/26/20 03:20		
4-Chlorotoluene	ND	ug/L	1.0	1		11/26/20 03:20		
,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/26/20 03:20		
Dibromochloromethane	ND	ug/L	1.0	1		11/26/20 03:20		
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/26/20 03:20		
Dibromomethane	ND	ug/L	1.0	1		11/26/20 03:20		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		11/26/20 03:20	6 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		11/26/20 03:20		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		11/26/20 03:20	6 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		11/26/20 03:20	6 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		11/26/20 03:20	6 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		11/26/20 03:20	6 107-06-2	
1,1-Dichloroethene	7.1	ug/L	1.0	1		11/26/20 03:20	6 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/26/20 03:20	6 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/26/20 03:20	6 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		11/26/20 03:20	6 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		11/26/20 03:20	6 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		11/26/20 03:20	5 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		11/26/20 03:20		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		11/26/20 03:20		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		11/26/20 03:20		
Diisopropyl ether	ND	ug/L	1.0	1		11/26/20 03:20		
Ethylbenzene	ND	ug/L	1.0	1		11/26/20 03:20		
Hexachloro-1,3-butadiene	ND	ug/L ug/L	1.0	1		11/26/20 03:20		
2-Hexanone	ND	ug/L	5.0	1		11/26/20 03:20		
		_		1				
o-Isopropyltoluene	ND ND	ug/L	1.0			11/26/20 03:20 11/26/20 03:20		
Methylene Chloride	ND	ug/L	5.0	1				
1-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/26/20 03:20		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/26/20 03:20		
Naphthalene	ND	ug/L	1.0	1		11/26/20 03:20		
Styrene	ND	ug/L	1.0	1		11/26/20 03:20		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/26/20 03:20		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/26/20 03:20	6 79-34-5	



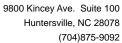
Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Sample: MW-22D	Lab ID: 92507937011		Collected: 11/22/20 15:25		Received: 1	11/25/20 11:42 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Method: EPA 8260D							
	Pace Analytical	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/26/20 03:26	127-18-4	
Toluene	ND	ug/L	1.0	1		11/26/20 03:26	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/26/20 03:26	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/26/20 03:26	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/26/20 03:26	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/26/20 03:26	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/26/20 03:26	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/26/20 03:26	75-69-4	v1
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/26/20 03:26	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		11/26/20 03:26	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		11/26/20 03:26	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		11/26/20 03:26	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		11/26/20 03:26	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/26/20 03:26	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	102	%	70-130	1		11/26/20 03:26	460-00-4	
1,2-Dichloroethane-d4 (S)	121	%	70-130	1		11/26/20 03:26	17060-07-0	
Toluene-d8 (S)	102	%	70-130	1		11/26/20 03:26	2037-26-5	
8260D MSV SIM	Analytical Method: EPA 8260D Mod.							
	Pace Analytical	Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	4.9	ug/L	2.0	1		11/25/20 19:34	123-91-1	
1,2-Dichloroethane-d4 (S)	94	%	70-130	1		11/25/20 19:34	17060-07-0	
Toluene-d8 (S)	91	%	66-133	1		11/25/20 19:34	2037-26-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM


Sample: MW-20	Lab ID: 925	507937012	Collected: 11/22/2	20 15:35	Received:	11/25/20 11:42	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Me	thod: EPA 82	260D					
	Pace Analytic	al Services -	Charlotte					
Acetone	ND	ug/L	50.0	2		12/03/20 01:4	7 67-64-1	
Benzene	ND	ug/L	2.0	2		12/03/20 01:4	7 71-43-2	
Bromobenzene	ND	ug/L	2.0	2		12/03/20 01:4	7 108-86-1	
Bromochloromethane	ND	ug/L	2.0	2		12/03/20 01:4	7 74-97-5	
Bromodichloromethane	ND	ug/L	2.0	2		12/03/20 01:4	7 75-27-4	
Bromoform	ND	ug/L	2.0	2		12/03/20 01:4	7 75-25-2	
Bromomethane	ND	ug/L	4.0	2		12/03/20 01:4	7 74-83-9	v2
2-Butanone (MEK)	ND	ug/L	10.0	2		12/03/20 01:4	7 78-93-3	
Carbon tetrachloride	ND	ug/L	2.0	2		12/03/20 01:4		
Chlorobenzene	ND	ug/L	2.0	2		12/03/20 01:4		
Chloroethane	ND	ug/L	2.0	2		12/03/20 01:4		v2
Chloroform	ND	ug/L	10.0	2		12/03/20 01:4		
Chloromethane	ND	ug/L	2.0	2		12/03/20 01:4		
2-Chlorotoluene	ND	ug/L	2.0	2		12/03/20 01:4		
4-Chlorotoluene	ND	ug/L	2.0	2		12/03/20 01:4		
1,2-Dibromo-3-chloropropane	ND	ug/L	10.0	2		12/03/20 01:4		
Dibromochloromethane	ND	ug/L	2.0	2		12/03/20 01:4		
,2-Dibromoethane (EDB)	ND	ug/L	2.0	2		12/03/20 01:4		
Dibromomethane	ND ND	ug/L	2.0	2		12/03/20 01:4		
,2-Dichlorobenzene	ND ND	ug/L	2.0	2		12/03/20 01:4		
,3-Dichlorobenzene	ND ND	_	2.0	2		12/03/20 01:4		
1,4-Dichlorobenzene	ND ND	ug/L ug/L	2.0	2		12/03/20 01:4		
Dichlorodifluoromethane	ND ND	ug/L ug/L	2.0	2		12/03/20 01:4		
1,1-Dichloroethane	205	_	2.0	2		12/03/20 01:4		
<i>'</i>		ug/L						
1,2-Dichloroethane	7.5	ug/L	2.0	2		12/03/20 01:4		
1,1-Dichloroethene	272	ug/L	2.0	2		12/03/20 01:4		
cis-1,2-Dichloroethene	ND	ug/L	2.0	2		12/03/20 01:4		
rans-1,2-Dichloroethene	ND	ug/L	2.0	2		12/03/20 01:4		
I,2-Dichloropropane	ND	ug/L	2.0	2		12/03/20 01:4		
I,3-Dichloropropane	ND	ug/L	2.0	2		12/03/20 01:4		
2,2-Dichloropropane	ND	ug/L	2.0	2		12/03/20 01:4		
I,1-Dichloropropene	ND	ug/L	2.0	2		12/03/20 01:4		
cis-1,3-Dichloropropene	ND	ug/L	2.0	2			7 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	2.0	2			7 10061-02-6	
Diisopropyl ether	ND	ug/L	2.0	2		12/03/20 01:4		
Ethylbenzene	ND	ug/L	2.0	2		12/03/20 01:4		
Hexachloro-1,3-butadiene	ND	ug/L	2.0	2		12/03/20 01:4		
2-Hexanone	ND	ug/L	10.0	2		12/03/20 01:4		
o-Isopropyltoluene	ND	ug/L	2.0	2		12/03/20 01:4		
Methylene Chloride	ND	ug/L	10.0	2		12/03/20 01:4		v2
I-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	2		12/03/20 01:4	7 108-10-1	v2
Methyl-tert-butyl ether	ND	ug/L	2.0	2		12/03/20 01:4		
Naphthalene	ND	ug/L	2.0	2		12/03/20 01:4	7 91-20-3	
Styrene	ND	ug/L	2.0	2		12/03/20 01:4	7 100-42-5	
,1,1,2-Tetrachloroethane	ND	ug/L	2.0	2		12/03/20 01:4	7 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	2		12/03/20 01:4	7 79-34-5	

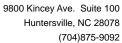
Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Sample: MW-20	Lab ID: 9250	07937012	Collected: 11/22/2	0 15:35	Received: 1	1/25/20 11:42	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	2.0	2		12/03/20 01:47	7 127-18-4	
Toluene	ND	ug/L	2.0	2		12/03/20 01:47	7 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	2.0	2		12/03/20 01:47	7 87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	2.0	2		12/03/20 01:47	7 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	2.0	2		12/03/20 01:47	7 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	2.0	2		12/03/20 01:47	7 79-00-5	
Trichloroethene	ND	ug/L	2.0	2		12/03/20 01:47	7 79-01-6	
Trichlorofluoromethane	ND	ug/L	2.0	2		12/03/20 01:47	7 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	2.0	2		12/03/20 01:47	7 96-18-4	
Vinyl acetate	ND	ug/L	4.0	2		12/03/20 01:47	7 108-05-4	
Vinyl chloride	ND	ug/L	2.0	2		12/03/20 01:47	7 75-01-4	
Xylene (Total)	ND	ug/L	2.0	2		12/03/20 01:47	7 1330-20-7	
m&p-Xylene	ND	ug/L	4.0	2		12/03/20 01:47	7 179601-23-1	
o-Xylene	ND	ug/L	2.0	2		12/03/20 01:47	7 95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	100	%	70-130	2		12/03/20 01:47	7 460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-130	2		12/03/20 01:47	7 17060-07-0	
Toluene-d8 (S)	104	%	70-130	2		12/03/20 01:47	7 2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	1260	ug/L	40.0	20		11/25/20 23:08	3 123-91-1	
1,2-Dichloroethane-d4 (S)	96	%	70-130	20		11/25/20 23:08	3 17060-07-0	
Toluene-d8 (S)	94	%	66-133	20		11/25/20 23:08	3 2037-26-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM


Sample: MW-4	Lab ID:	92507937013	Collected: 11/22/2	20 15:50	Received:	11/25/20 11:42	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical	Method: EPA 82	260D					
	Pace Anal	ytical Services -	Charlotte					
Acetone	NI	D ug/L	25.0	1		11/26/20 05:1	5 67-64-1	
Benzene	NI	J	1.0	1		11/26/20 05:1		
Bromobenzene	NI	_	1.0	1		11/26/20 05:1	5 108-86-1	
Bromochloromethane	NI	_	1.0	1		11/26/20 05:1	5 74-97-5	
Bromodichloromethane	NI	•	1.0	1		11/26/20 05:1	5 75-27-4	
Bromoform	NI	•	1.0	1		11/26/20 05:1		
Bromomethane	NI	_	2.0	1		11/26/20 05:1		v2
2-Butanone (MEK)	NI		5.0	1		11/26/20 05:1	5 78-93-3	
Carbon tetrachloride	NI	_	1.0	1		11/26/20 05:1	5 56-23-5	
Chlorobenzene	NI	_	1.0	1		11/26/20 05:1		
Chloroethane	NI	J	1.0	1		11/26/20 05:1		
Chloroform	NI	_	5.0	1		11/26/20 05:1		
Chloromethane	NI	_	1.0	1		11/26/20 05:1		
2-Chlorotoluene	NI	_	1.0	1		11/26/20 05:1		
4-Chlorotoluene	NI	J	1.0	1		11/26/20 05:1		
1,2-Dibromo-3-chloropropane	NI	J	5.0	1		11/26/20 05:1		
Dibromochloromethane	NI	•	1.0	1		11/26/20 05:1		
1,2-Dibromoethane (EDB)	NI		1.0	1		11/26/20 05:1		
Dibromomethane	NI	_	1.0	1		11/26/20 05:1		
1,2-Dichlorobenzene	NI	_	1.0	1		11/26/20 05:1		
1,3-Dichlorobenzene	NI	J	1.0	1		11/26/20 05:1		
1,4-Dichlorobenzene	NI	_	1.0	1		11/26/20 05:1		
Dichlorodifluoromethane	NI	_	1.0	1		11/26/20 05:1		
1,1-Dichloroethane	62.	J	1.0	1		11/26/20 05:1		
1,2-Dichloroethane	1.	J	1.0	1		11/26/20 05:1		
1,1-Dichloroethene	14	J	1.0	1		11/26/20 05:1		
cis-1,2-Dichloroethene	NI	_	1.0	1		11/26/20 05:1		
trans-1,2-Dichloroethene	NI		1.0	1		11/26/20 05:1		
1,2-Dichloropropane	NI	_	1.0	1		11/26/20 05:1		
1,3-Dichloropropane	NI	J	1.0	1		11/26/20 05:1		
2,2-Dichloropropane	NI	J	1.0	1		11/26/20 05:1		
1,1-Dichloropropene	NI	_	1.0	1		11/26/20 05:1		
cis-1,3-Dichloropropene	NI		1.0	1			5 10061-01-5	
trans-1,3-Dichloropropene	NI	J	1.0	1			5 10061-01-5	
				1				
Diisopropyl ether Ethylbenzene	NI NI	-	1.0 1.0	1		11/26/20 05:1 11/26/20 05:1		
Hexachloro-1,3-butadiene	NI NI	•	1.0	1		11/26/20 05:1		
2-Hexanone	NI NI		5.0	1		11/26/20 05:1		
		Ū						
p-Isopropyltoluene Mothylona Chlorida	NI NI	•	1.0	1 1		11/26/20 05:1		
Methylene Chloride	NI	•	5.0			11/26/20 05:1		
4-Methyl-2-pentanone (MIBK)	NI	•	5.0	1		11/26/20 05:1		
Methyl-tert-butyl ether	NI	•	1.0	1			5 1634-04-4	
Naphthalene	NI	Ū	1.0	1		11/26/20 05:1		
Styrene	NI NI	Ū	1.0	1		11/26/20 05:1		
1,1,1,2-Tetrachloroethane	NI	Ū	1.0	1		11/26/20 05:1		
1,1,2,2-Tetrachloroethane	NI	D ug/L	1.0	1		11/26/20 05:1	5 79-34-5	

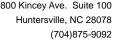
Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Sample: MW-4	Lab ID: 9250	7937013	Collected: 11/22/2	0 15:50	Received:	11/25/20 11:42	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/26/20 05:15	127-18-4	
Toluene	ND	ug/L	1.0	1		11/26/20 05:15	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/26/20 05:15	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/26/20 05:15	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/26/20 05:15	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/26/20 05:15	79-00-5	
Trichloroethene	1.2	ug/L	1.0	1		11/26/20 05:15	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/26/20 05:15	75-69-4	v1
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/26/20 05:15	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		11/26/20 05:15	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		11/26/20 05:15	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		11/26/20 05:15	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		11/26/20 05:15	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/26/20 05:15	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	104	%	70-130	1		11/26/20 05:15	460-00-4	
1,2-Dichloroethane-d4 (S)	122	%	70-130	1		11/26/20 05:15	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		11/26/20 05:15	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	151	ug/L	5.0	2.5		12/01/20 15:26	5 123-91-1	
1,2-Dichloroethane-d4 (S)	105	%	70-130	2.5		12/01/20 15:26	17060-07-0	
Toluene-d8 (S)	107	%	66-133	2.5		12/01/20 15:26	6 2037-26-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM


Sample: MW-9	Lab ID: 925	07937014	Collected: 11/22/2	0 16:05	Received:	11/25/20 11:42	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	nod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/26/20 03:0	7 67-64-1	
Benzene	ND	ug/L	1.0	1		11/26/20 03:0	7 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/26/20 03:0	7 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/26/20 03:0	7 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/26/20 03:0	7 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/26/20 03:0	7 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/26/20 03:0	7 74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		11/26/20 03:0	7 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		11/26/20 03:0		
Chlorobenzene	ND	ug/L	1.0	1		11/26/20 03:0		
Chloroethane	ND	ug/L	1.0	1		11/26/20 03:0		
Chloroform	ND	ug/L	5.0	1		11/26/20 03:0		
Chloromethane	ND	ug/L	1.0	1		11/26/20 03:0		
2-Chlorotoluene	ND	ug/L	1.0	1		11/26/20 03:0		
4-Chlorotoluene	ND	ug/L	1.0	1		11/26/20 03:0		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/26/20 03:0		
Dibromochloromethane	ND	ug/L	1.0	1		11/26/20 03:0		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/26/20 03:0		
Dibromomethane	ND	ug/L	1.0	1		11/26/20 03:0		
1,2-Dichlorobenzene	ND ND	ug/L ug/L	1.0	1		11/26/20 03:0		
1,3-Dichlorobenzene	ND ND	-	1.0	1		11/26/20 03:0		
1,4-Dichlorobenzene	ND ND	ug/L	1.0	1		11/26/20 03:0		
Dichlorodifluoromethane	ND ND	ug/L	1.0	1		11/26/20 03:0		
	2.5	ug/L						
1,1-Dichloroethane		ug/L	1.0	1		11/26/20 03:0		
1,2-Dichloroethane	ND	ug/L	1.0	1		11/26/20 03:0		
1,1-Dichloroethene	56.4	ug/L	1.0	1		11/26/20 03:0		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/26/20 03:0		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/26/20 03:0		
1,2-Dichloropropane	ND	ug/L	1.0	1		11/26/20 03:0		
1,3-Dichloropropane	ND	ug/L	1.0	1		11/26/20 03:0		
2,2-Dichloropropane	ND	ug/L	1.0	1		11/26/20 03:0		
1,1-Dichloropropene	ND	ug/L	1.0	1		11/26/20 03:0		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			7 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			7 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		11/26/20 03:0		
Ethylbenzene	ND	ug/L	1.0	1		11/26/20 03:0		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		11/26/20 03:0		
2-Hexanone	ND	ug/L	5.0	1		11/26/20 03:0		
p-Isopropyltoluene	ND	ug/L	1.0	1		11/26/20 03:0		
Methylene Chloride	ND	ug/L	5.0	1		11/26/20 03:0	7 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/26/20 03:0	7 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/26/20 03:0	7 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		11/26/20 03:0	7 91-20-3	
Styrene	ND	ug/L	1.0	1		11/26/20 03:0	7 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/26/20 03:0	7 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/26/20 03:0	7 79-34-5	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Sample: MW-9	Lab ID: 9250	7937014	Collected: 11/22/2	20 16:05	Received:	11/25/20 11:42	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/26/20 03:07	7 127-18-4	
Toluene	ND	ug/L	1.0	1		11/26/20 03:07	7 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/26/20 03:07	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/26/20 03:07	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/26/20 03:07	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/26/20 03:07	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/26/20 03:07	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/26/20 03:07	75-69-4	v1
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/26/20 03:07	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		11/26/20 03:07	7 108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		11/26/20 03:07	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		11/26/20 03:07	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		11/26/20 03:07	7 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/26/20 03:07	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	103	%	70-130	1		11/26/20 03:07	7 460-00-4	
1,2-Dichloroethane-d4 (S)	121	%	70-130	1		11/26/20 03:07	7 17060-07-0	
Toluene-d8 (S)	99	%	70-130	1		11/26/20 03:07	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	25.7	ug/L	2.0	1		11/25/20 20:13	3 123-91-1	
1,2-Dichloroethane-d4 (S)	95	%	70-130	1		11/25/20 20:13	3 17060-07-0	
Toluene-d8 (S)	92	%	66-133	1		11/25/20 20:13	3 2037-26-5	
Tolderic do (o)	32	70	00-100			11/25/20 20.10	2001-20-0	

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Sample: MW-16	Lab ID: 925	07937015	Collected: 11/22/2	20 17:10	Received:	11/25/20 11:42	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Meth	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	500	20		12/04/20 13:4	3 67-64-1	
Benzene	ND	ug/L	20.0	20		12/04/20 13:4	3 71-43-2	
Bromobenzene	ND	ug/L	20.0	20		12/04/20 13:4	3 108-86-1	
Bromochloromethane	ND	ug/L	20.0	20		12/04/20 13:4	3 74-97-5	
Bromodichloromethane	ND	ug/L	20.0	20		12/04/20 13:4	3 75-27-4	
Bromoform	ND	ug/L	20.0	20		12/04/20 13:4	3 75-25-2	
Bromomethane	ND	ug/L	40.0	20		12/04/20 13:4		
2-Butanone (MEK)	ND	ug/L	100	20		12/04/20 13:4		
Carbon tetrachloride	ND	ug/L	20.0	20		12/04/20 13:4		
Chlorobenzene	ND	ug/L	20.0	20		12/04/20 13:4		
Chloroethane	ND	ug/L	20.0	20		12/04/20 13:4		IK,v1
Chloroform	ND ND	ug/L	100	20		12/04/20 13:4		111, V 1
Chloromethane	ND ND	ug/L	20.0	20		12/04/20 13:4		IK
2-Chlorotoluene	ND ND	•	20.0	20		12/04/20 13:4		IIX
		ug/L						
I-Chlorotoluene	ND	ug/L	20.0	20		12/04/20 13:4		
,2-Dibromo-3-chloropropane	ND	ug/L	100	20		12/04/20 13:4		
Dibromochloromethane	ND	ug/L	20.0	20		12/04/20 13:4		
,2-Dibromoethane (EDB)	ND	ug/L	20.0	20		12/04/20 13:4		
Dibromomethane	ND	ug/L	20.0	20		12/04/20 13:4		
,2-Dichlorobenzene	ND	ug/L	20.0	20		12/04/20 13:4		
1,3-Dichlorobenzene	ND	ug/L	20.0	20		12/04/20 13:4		
1,4-Dichlorobenzene	ND	ug/L	20.0	20		12/04/20 13:4		
Dichlorodifluoromethane	ND	ug/L	20.0	20		12/04/20 13:4		
I,1-Dichloroethane	1560	ug/L	20.0	20		12/04/20 13:4	3 75-34-3	M1
1,2-Dichloroethane	ND	ug/L	20.0	20		12/04/20 13:4	3 107-06-2	
1,1-Dichloroethene	1130	ug/L	20.0	20		12/04/20 13:4	3 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	20.0	20		12/04/20 13:4	3 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	20.0	20		12/04/20 13:4	3 156-60-5	
1,2-Dichloropropane	ND	ug/L	20.0	20		12/04/20 13:4	3 78-87-5	
1,3-Dichloropropane	ND	ug/L	20.0	20		12/04/20 13:4	3 142-28-9	
2,2-Dichloropropane	ND	ug/L	20.0	20		12/04/20 13:4	3 594-20-7	
1,1-Dichloropropene	ND	ug/L	20.0	20		12/04/20 13:4	3 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	20.0	20		12/04/20 13:4	3 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	20.0	20		12/04/20 13:4	3 10061-02-6	
Diisopropyl ether	ND	ug/L	20.0	20		12/04/20 13:4	3 108-20-3	
Ethylbenzene	ND	ug/L	20.0	20		12/04/20 13:4		
Hexachloro-1,3-butadiene	ND	ug/L	20.0	20		12/04/20 13:4		
2-Hexanone	ND	ug/L	100	20		12/04/20 13:4		
o-Isopropyltoluene	ND	ug/L	20.0	20		12/04/20 13:4		
Methylene Chloride	ND	ug/L	100	20		12/04/20 13:4		
4-Methyl-2-pentanone (MIBK)	ND ND	ug/L ug/L	100	20		12/04/20 13:4		
Methyl-tert-butyl ether	ND ND	-	20.0	20		12/04/20 13:4		
,		ug/L						
Naphthalene	ND	ug/L	20.0	20		12/04/20 13:4		
Styrene 1,1,1,2-Tetrachloroethane	ND ND	ug/L ug/L	20.0 20.0	20 20		12/04/20 13:4 12/04/20 13:4		

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

	200 101 0200	7937015	Collected: 11/22/2	U 17:10	Received: 1	11/25/20 11:42 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
etrachloroethene	ND	ug/L	20.0	20		12/04/20 13:43	127-18-4	
oluene	ND	ug/L	20.0	20		12/04/20 13:43	108-88-3	
,2,3-Trichlorobenzene	ND	ug/L	20.0	20		12/04/20 13:43	87-61-6	
,2,4-Trichlorobenzene	ND	ug/L	20.0	20		12/04/20 13:43	120-82-1	
,1,1-Trichloroethane	2060	ug/L	20.0	20		12/04/20 13:43	71-55-6	M1
,1,2-Trichloroethane	ND	ug/L	20.0	20		12/04/20 13:43	79-00-5	
richloroethene	ND	ug/L	20.0	20		12/04/20 13:43	79-01-6	
richlorofluoromethane	ND	ug/L	20.0	20		12/04/20 13:43	75-69-4	
,2,3-Trichloropropane	ND	ug/L	20.0	20		12/04/20 13:43	96-18-4	
/inyl acetate	ND	ug/L	40.0	20		12/04/20 13:43	108-05-4	
/inyl chloride	ND	ug/L	20.0	20		12/04/20 13:43	75-01-4	
(ylene (Total)	ND	ug/L	20.0	20		12/04/20 13:43	1330-20-7	
n&p-Xylene	ND	ug/L	40.0	20		12/04/20 13:43	179601-23-1	
-Xylene	ND	ug/L	20.0	20		12/04/20 13:43	95-47-6	
Surrogates		•						
-Bromofluorobenzene (S)	97	%	70-130	20		12/04/20 13:43	460-00-4	
,2-Dichloroethane-d4 (S)	114	%	70-130	20		12/04/20 13:43	17060-07-0	
oluene-d8 (S)	104	%	70-130	20		12/04/20 13:43	2037-26-5	
260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	Services -	Charlotte					
,4-Dioxane (p-Dioxane) Surrogates	84.2	ug/L	2.0	1		11/25/20 20:32	123-91-1	
,2-Dichloroethane-d4 (S)	98	%	70-130	1		11/25/20 20:32	17060-07-0	
oluene-d8 (S)	91	%	66-133	1		11/25/20 20:32	2037-26-5	

(704)875-9092

QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

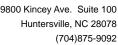
QC Batch: 582948 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92507937001, 92507937002, 92507937003, 92507937004, 92507937005, 92507937006, 92507937007,

92507937008


METHOD BLANK: 3082529 Matrix: Water

Associated Lab Samples: 92507937001, 92507937002, 92507937003, 92507937004, 92507937005, 92507937006, 92507937007,

92507937008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	11/25/20 12:10	
1,1,1-Trichloroethane	ug/L	ND	1.0	11/25/20 12:10	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	11/25/20 12:10	
1,1,2-Trichloroethane	ug/L	ND	1.0	11/25/20 12:10	
1,1-Dichloroethane	ug/L	ND	1.0	11/25/20 12:10	
1,1-Dichloroethene	ug/L	ND	1.0	11/25/20 12:10	
1,1-Dichloropropene	ug/L	ND	1.0	11/25/20 12:10	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	11/25/20 12:10	
1,2,3-Trichloropropane	ug/L	ND	1.0	11/25/20 12:10	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	11/25/20 12:10	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	11/25/20 12:10	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	11/25/20 12:10	
1,2-Dichlorobenzene	ug/L	ND	1.0	11/25/20 12:10	
1,2-Dichloroethane	ug/L	ND	1.0	11/25/20 12:10	
1,2-Dichloropropane	ug/L	ND	1.0	11/25/20 12:10	
1,3-Dichlorobenzene	ug/L	ND	1.0	11/25/20 12:10	
1,3-Dichloropropane	ug/L	ND	1.0	11/25/20 12:10	
1,4-Dichlorobenzene	ug/L	ND	1.0	11/25/20 12:10	
2,2-Dichloropropane	ug/L	ND	1.0	11/25/20 12:10	
2-Butanone (MEK)	ug/L	ND	5.0	11/25/20 12:10	
2-Chlorotoluene	ug/L	ND	1.0	11/25/20 12:10	
2-Hexanone	ug/L	ND	5.0	11/25/20 12:10	
4-Chlorotoluene	ug/L	ND	1.0	11/25/20 12:10	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	11/25/20 12:10	
Acetone	ug/L	ND	25.0	11/25/20 12:10	
Benzene	ug/L	ND	1.0	11/25/20 12:10	
Bromobenzene	ug/L	ND	1.0	11/25/20 12:10	
Bromochloromethane	ug/L	ND	1.0	11/25/20 12:10	
Bromodichloromethane	ug/L	ND	1.0	11/25/20 12:10	
Bromoform	ug/L	ND	1.0	11/25/20 12:10	
Bromomethane	ug/L	ND	2.0	11/25/20 12:10	IK
Carbon tetrachloride	ug/L	ND	1.0	11/25/20 12:10	
Chlorobenzene	ug/L	ND	1.0	11/25/20 12:10	
Chloroethane	ug/L	ND	1.0	11/25/20 12:10	
Chloroform	ug/L	ND	5.0	11/25/20 12:10	
Chloromethane	ug/L	ND	1.0	11/25/20 12:10	
cis-1,2-Dichloroethene	ug/L	ND	1.0	11/25/20 12:10	
cis-1,3-Dichloropropene	ug/L	ND	1.0	11/25/20 12:10	
Dibromochloromethane	ug/L	ND	1.0	11/25/20 12:10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

METHOD BLANK: 3082529 Matrix: Water

Associated Lab Samples: 92507937001, 92507937002, 92507937003, 92507937004, 92507937005, 92507937006, 92507937007,

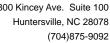
92507937008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromomethane	ug/L	ND ND	1.0	11/25/20 12:10	
Dichlorodifluoromethane	ug/L	ND	1.0	11/25/20 12:10	
Diisopropyl ether	ug/L	ND	1.0	11/25/20 12:10	
Ethylbenzene	ug/L	ND	1.0	11/25/20 12:10	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	11/25/20 12:10	
m&p-Xylene	ug/L	ND	2.0	11/25/20 12:10	
Methyl-tert-butyl ether	ug/L	ND	1.0	11/25/20 12:10	
Methylene Chloride	ug/L	ND	5.0	11/25/20 12:10	
Naphthalene	ug/L	ND	1.0	11/25/20 12:10	
o-Xylene	ug/L	ND	1.0	11/25/20 12:10	
p-Isopropyltoluene	ug/L	ND	1.0	11/25/20 12:10	
Styrene	ug/L	ND	1.0	11/25/20 12:10	
Tetrachloroethene	ug/L	ND	1.0	11/25/20 12:10	
Toluene	ug/L	ND	1.0	11/25/20 12:10	
trans-1,2-Dichloroethene	ug/L	ND	1.0	11/25/20 12:10	
trans-1,3-Dichloropropene	ug/L	ND	1.0	11/25/20 12:10	
Trichloroethene	ug/L	ND	1.0	11/25/20 12:10	
Trichlorofluoromethane	ug/L	ND	1.0	11/25/20 12:10	
Vinyl acetate	ug/L	ND	2.0	11/25/20 12:10	
Vinyl chloride	ug/L	ND	1.0	11/25/20 12:10	
Xylene (Total)	ug/L	ND	1.0	11/25/20 12:10	
1,2-Dichloroethane-d4 (S)	%	96	70-130	11/25/20 12:10	
4-Bromofluorobenzene (S)	%	101	70-130	11/25/20 12:10	
Toluene-d8 (S)	%	100	70-130	11/25/20 12:10	

LABORATORY CONTROL SAMPLE:	3082530					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	48.0	96	70-130	
1,1,1-Trichloroethane	ug/L	50	47.8	96	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	46.5	93	70-130	
1,1,2-Trichloroethane	ug/L	50	43.6	87	70-130	
1,1-Dichloroethane	ug/L	50	48.5	97	70-130	
1,1-Dichloroethene	ug/L	50	50.9	102	70-132	
1,1-Dichloropropene	ug/L	50	49.9	100	70-131	
1,2,3-Trichlorobenzene	ug/L	50	48.9	98	70-134	
1,2,3-Trichloropropane	ug/L	50	47.8	96	70-130	
1,2,4-Trichlorobenzene	ug/L	50	50.9	102	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	48.0	96	70-132	
1,2-Dibromoethane (EDB)	ug/L	50	48.0	96	70-130	
1,2-Dichlorobenzene	ug/L	50	49.6	99	70-130	
1,2-Dichloroethane	ug/L	50	45.5	91	70-130	
1,2-Dichloropropane	ug/L	50	48.1	96	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092


QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507937

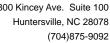
Date: 12/04/2020 04:29 PM

ABORATORY CONTROL SAMPLE:	3082530					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,3-Dichlorobenzene	ug/L	50	46.7	93	70-130	
1,3-Dichloropropane	ug/L	50	50.9	102	70-130	
1,4-Dichlorobenzene	ug/L	50	48.2	96	70-130	
2,2-Dichloropropane	ug/L	50	55.4	111	70-130	
2-Butanone (MEK)	ug/L	100	93.4	93	70-133	
2-Chlorotoluene	ug/L	50	47.6	95	70-130	
2-Hexanone	ug/L	100	88.1	88	70-130	
-Chlorotoluene	ug/L	50	46.8	94	70-130	
l-Methyl-2-pentanone (MIBK)	ug/L	100	87.8	88	70-130	
cetone	ug/L	100	94.7	95	70-144	
Benzene	ug/L	50	47.6	95	70-130	
Bromobenzene	ug/L	50	47.5	95	70-130	
Bromochloromethane	ug/L	50	48.1	96	70-130	
Bromodichloromethane	ug/L	50	43.6	87	70-130	
Bromoform	ug/L	50	49.1	98	70-131	
Bromomethane	ug/L	50	54.5	109	30-177 I	K
Carbon tetrachloride	ug/L	50	48.3	97	70-130	
Chlorobenzene	ug/L	50	47.2	94	70-130	
Chloroethane	ug/L	50	42.9	86	46-131	
Chloroform	ug/L	50	48.9	98	70-130	
Chloromethane	ug/L	50	50.2	100	49-130	
is-1,2-Dichloroethene	ug/L	50	47.5	95	70-130	
is-1,3-Dichloropropene	ug/L	50	49.5	99	70-130	
Dibromochloromethane	ug/L	50	51.3	103	70-130	
Dibromomethane	ug/L	50	46.5	93	70-130	
Dichlorodifluoromethane	ug/L	50	48.0	96	52-134	
Diisopropyl ether	ug/L	50	45.3	91	70-131	
Ethylbenzene	ug/L	50	47.2	94	70-130	
lexachloro-1,3-butadiene	ug/L	50	50.6	101	70-131	
n&p-Xylene	ug/L	100	93.8	94	70-130	
Methyl-tert-butyl ether	ug/L	50	46.4	93	70-130	
Methylene Chloride	ug/L	50	45.9	92	68-130	
Naphthalene	ug/L	50	48.3	97	70-133	
-Xylene	ug/L	50	47.1	94	70-130	
o-Isopropyltoluene	ug/L	50	48.8	98	70-130	
Styrene	ug/L	50	46.6	93	70-130	
etrachloroethene	ug/L	50	47.2	94	70-130	
oluene	ug/L	50	45.9	92	70-130	
rans-1,2-Dichloroethene	ug/L	50	50.0	100	70-130	
rans-1,3-Dichloropropene	ug/L	50	50.6	101	70-130	
Trichloroethene	ug/L	50	49.0	98	70-130	
richlorofluoromethane	ug/L	50	48.2	96	61-130	
/inyl acetate	ug/L	100	119	119	70-140	
/inyl chloride	ug/L	50	48.0	96	59-142	
(ylene (Total)	ug/L	150	141	94	70-130	
,2-Dichloroethane-d4 (S)	%	.00		98	70-130	
4-Bromofluorobenzene (S)	%			101	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM


LABORATORY CONTROL SAMPLE: 3082530

Spike LCS LCS % Rec

Parameter Units Conc. Result % Rec Limits Qualifiers

MATRIX SPIKE & MATRIX S	PIKE DUPL	ICATE: 3082	:531		3082532							
			MS	MSD								
		92507532001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD (Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	20	20	20.8	24.1	104	120	70-135	14	30	
1,1,1-Trichloroethane	ug/L	ND	20	20	21.0	25.4	105	127	70-148	19	30	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	20.8	24.3	104	122	70-131	16	30	
1,1,2-Trichloroethane	ug/L	ND	20	20	20.1	24.3	100	122	70-136	19	30	
1,1-Dichloroethane	ug/L	ND	20	20	22.9	26.7	114	134	70-147	16	30	
1,1-Dichloroethene	ug/L	ND	20	20	23.1	26.7	116	134	70-158	14	30	
1,1-Dichloropropene	ug/L	ND	20	20	23.1	27.2	115	136	70-149	16	30	
1,2,3-Trichlorobenzene	ug/L	ND	20	20	20.8	22.6	104	113	68-140	9	30	
1,2,3-Trichloropropane	ug/L	ND	20	20	20.5	25.5	102	128	67-137	22	30	
1,2,4-Trichlorobenzene	ug/L	ND	20	20	22.0	24.2	110	121	70-139	10	30	
1,2-Dibromo-3-	ug/L	ND	20	20	19.6	23.6	98	118	69-136	18	30	
chloropropane					- · -							
1,2-Dibromoethane (EDB)	ug/L	ND	20	20	21.5	26.1	108	130	70-137	19	30	
1,2-Dichlorobenzene	ug/L	ND	20	20	21.3	23.7	106	118	70-133	11	30	
1,2-Dichloroethane	ug/L	ND	20	20	20.8	24.6	104	123	67-138	17	30	
1,2-Dichloropropane	ug/L	ND	20	20	22.3	26.9	112	135	70-138	19	30	
1,3-Dichlorobenzene	ug/L	ND	20	20	20.4	22.2	102	111	70-133	8	30	
1,3-Dichloropropane	ug/L	ND	20	20	24.0	27.9	120	139	70-136	15	30 M	1
1,4-Dichlorobenzene	ug/L	ND	20	20	20.8	22.9	104	115	70-133	10	30	
2,2-Dichloropropane	ug/L	ND	20	20	23.8	28.5	119	143	52-155	18	30	
2-Butanone (MEK)	ug/L	ND	40	40	39.9	44.6	100	112	61-147	11	30	
2-Chlorotoluene	ug/L	ND	20	20	21.2	22.3	106	111	70-141	5	30	
2-Hexanone	ug/L	ND	40	40	37.6	43.9	94	110	67-139	15	30	
4-Chlorotoluene	ug/L	ND	20	20	20.5	22.2	103	111	70-135	8	30	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	40	40	38.9	44.2	97	111	67-136	13	30	
Acetone	ug/L	ND	40	40	42.6	41.4	106	103	55-159	3	30	
Benzene	ug/L	ND	20	20	23.2	26.3	116	132	67-150	13	30	
Bromobenzene	ug/L	ND	20	20	20.8	22.4	104	112	70-134	7	30	
Bromochloromethane	ug/L	ND	20	20	23.1	26.5	115	133	70-146	14	30	
Bromodichloromethane	ug/L	ND	20	20	20.2	23.2	101	116	70-138	14	30	
Bromoform	ug/L	ND	20	20	19.5	24.6	97	123	57-138	23	30	
Bromomethane	ug/L	ND	20	20	29.5	35.1	147	176	10-200	17	30 IK	(
Carbon tetrachloride	ug/L	ND	20	20	21.4	26.0	107	130	70-147	20	30	
Chlorobenzene	ug/L	ND	20	20	21.4	24.8	107	124	70-137	15	30	
Chloroethane	ug/L	ND	20	20	22.8	36.2	114	181	51-166	45	30 M	1,R1
Chloroform	ug/L	ND	20	20	22.2	26.2	111	131	70-144	16	30	
Chloromethane	ug/L	ND	20	20	22.6	337	113	1680	24-161	175	30 E, R	
cis-1,2-Dichloroethene	ug/L	ND	20	20	22.3	25.5	112	128	67-148	13	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

MATRIX SPIKE & MATRIX SF	PIKE DUP	LICATE: 3082	531 MS	MSD	3082532							
		92507532001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
cis-1,3-Dichloropropene	ug/L	ND	20	20	23.4	21.5	117	108	70-142	9	30	
Dibromochloromethane	ug/L	ND	20	20	21.9	27.0	109	135	68-138	21	30	
Dibromomethane	ug/L	ND	20	20	21.4	25.1	107	126	70-134	16	30	
Dichlorodifluoromethane	ug/L	ND	20	20	20.9	25.8	104	129	43-155	21	30	
Diisopropyl ether	ug/L	ND	20	20	20.4	23.3	102	116	65-146	13	30	
Ethylbenzene	ug/L	ND	20	20	20.8	24.2	104	121	68-143	15	30	
Hexachloro-1,3-butadiene	ug/L	ND	20	20	21.2	23.7	106	119	62-151	11	30	
n&p-Xylene	ug/L	ND	40	40	41.1	47.3	103	118	53-157	14	30	
Methyl-tert-butyl ether	ug/L	ND	20	20	20.9	24.1	104	121	59-156	15	30	
Methylene Chloride	ug/L	ND	20	20	21.5	24.7	107	124	64-148	14	30	
Naphthalene	ug/L	ND	20	20	20.9	22.5	104	112	57-150	7	30	
o-Xylene	ug/L	ND	20	20	20.7	23.8	103	119	68-143	14	30	
o-Isopropyltoluene	ug/L	ND	20	20	20.4	23.6	102	118	70-141	14	30	
Styrene	ug/L	ND	20	20	21.2	24.3	106	122	70-136	13	30	
Tetrachloroethene	ug/L	ND	20	20	20.0	23.4	100	117	70-139	16	30	
Toluene	ug/L	ND	20	20	21.6	24.5	108	122	47-157	12	30	
rans-1,2-Dichloroethene	ug/L	ND	20	20	22.7	26.7	114	133	70-149	16	30	
rans-1,3-Dichloropropene	ug/L	ND	20	20	22.3	24.5	111	123	70-138	10	30	
Trichloroethene	ug/L	ND	20	20	22.0	25.7	110	128	70-149	15	30	
Trichlorofluoromethane	ug/L	ND	20	20	21.4	24.4	107	122	61-154	13	30	
√inyl acetate	ug/L	ND	40	40	52.6	62.3	132	156	48-156	17	30	
/inyl chloride	ug/L	ND	20	20	20.7	23.8	103	119	55-172	14	30	
Kylene (Total)	ug/L	ND	60	60	61.8	71.1	103	119	66-145	14	30	
,2-Dichloroethane-d4 (S)	%						96	99	70-130			
4-Bromofluorobenzene (S)	%						100	101	70-130			
Toluene-d8 (S)	%						100	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

QC Batch: 583045 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92507937009, 92507937010, 92507937011, 92507937013, 92507937014

METHOD BLANK: 3083148 Matrix: Water

Associated Lab Samples: 92507937009, 92507937010, 92507937011, 92507937013, 92507937014

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	11/26/20 00:23	
1,1,1-Trichloroethane	ug/L	ND	1.0	11/26/20 00:23	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	11/26/20 00:23	
1,1,2-Trichloroethane	ug/L	ND	1.0	11/26/20 00:23	
1,1-Dichloroethane	ug/L	ND	1.0	11/26/20 00:23	
1,1-Dichloroethene	ug/L	ND	1.0	11/26/20 00:23	
1,1-Dichloropropene	ug/L	ND	1.0	11/26/20 00:23	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	11/26/20 00:23	
1,2,3-Trichloropropane	ug/L	ND	1.0	11/26/20 00:23	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	11/26/20 00:23	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	11/26/20 00:23	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	11/26/20 00:23	
1,2-Dichlorobenzene	ug/L	ND	1.0	11/26/20 00:23	
1,2-Dichloroethane	ug/L	ND	1.0	11/26/20 00:23	
1,2-Dichloropropane	ug/L	ND	1.0	11/26/20 00:23	
1,3-Dichlorobenzene	ug/L	ND	1.0	11/26/20 00:23	
1,3-Dichloropropane	ug/L	ND	1.0	11/26/20 00:23	
1,4-Dichlorobenzene	ug/L	ND	1.0	11/26/20 00:23	
2,2-Dichloropropane	ug/L	ND	1.0	11/26/20 00:23	
2-Butanone (MEK)	ug/L	ND	5.0	11/26/20 00:23	
2-Chlorotoluene	ug/L	ND	1.0	11/26/20 00:23	
2-Hexanone	ug/L	ND	5.0	11/26/20 00:23	
4-Chlorotoluene	ug/L	ND	1.0	11/26/20 00:23	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	11/26/20 00:23	
Acetone	ug/L	ND	25.0	11/26/20 00:23	
Benzene	ug/L	ND	1.0	11/26/20 00:23	
Bromobenzene	ug/L	ND	1.0	11/26/20 00:23	
Bromochloromethane	ug/L	ND	1.0	11/26/20 00:23	
Bromodichloromethane	ug/L	ND	1.0	11/26/20 00:23	
Bromoform	ug/L	ND	1.0	11/26/20 00:23	
Bromomethane	ug/L	ND	2.0	11/26/20 00:23	v2
Carbon tetrachloride	ug/L	ND	1.0	11/26/20 00:23	
Chlorobenzene	ug/L	ND	1.0	11/26/20 00:23	
Chloroethane	ug/L	ND	1.0	11/26/20 00:23	
Chloroform	ug/L	ND	5.0	11/26/20 00:23	
Chloromethane	ug/L	ND	1.0	11/26/20 00:23	
cis-1,2-Dichloroethene	ug/L	ND	1.0	11/26/20 00:23	
cis-1,3-Dichloropropene	ug/L	ND	1.0	11/26/20 00:23	
Dibromochloromethane	ug/L	ND	1.0	11/26/20 00:23	
Dibromomethane	ug/L	ND	1.0	11/26/20 00:23	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

METHOD BLANK: 3083148 Matrix: Water

Associated Lab Samples: 92507937009, 92507937010, 92507937011, 92507937013, 92507937014

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dichlorodifluoromethane	ug/L	ND	1.0	11/26/20 00:23	-
Diisopropyl ether	ug/L	ND	1.0	11/26/20 00:23	
Ethylbenzene	ug/L	ND	1.0	11/26/20 00:23	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	11/26/20 00:23	
m&p-Xylene	ug/L	ND	2.0	11/26/20 00:23	
Methyl-tert-butyl ether	ug/L	ND	1.0	11/26/20 00:23	
Methylene Chloride	ug/L	ND	5.0	11/26/20 00:23	
Naphthalene	ug/L	ND	1.0	11/26/20 00:23	
o-Xylene	ug/L	ND	1.0	11/26/20 00:23	
p-Isopropyltoluene	ug/L	ND	1.0	11/26/20 00:23	
Styrene	ug/L	ND	1.0	11/26/20 00:23	
Tetrachloroethene	ug/L	ND	1.0	11/26/20 00:23	
Toluene	ug/L	ND	1.0	11/26/20 00:23	
trans-1,2-Dichloroethene	ug/L	ND	1.0	11/26/20 00:23	
trans-1,3-Dichloropropene	ug/L	ND	1.0	11/26/20 00:23	
Trichloroethene	ug/L	ND	1.0	11/26/20 00:23	
Trichlorofluoromethane	ug/L	ND	1.0	11/26/20 00:23	v1
Vinyl acetate	ug/L	ND	2.0	11/26/20 00:23	
Vinyl chloride	ug/L	ND	1.0	11/26/20 00:23	
Xylene (Total)	ug/L	ND	1.0	11/26/20 00:23	
1,2-Dichloroethane-d4 (S)	%	118	70-130	11/26/20 00:23	
4-Bromofluorobenzene (S)	%	100	70-130	11/26/20 00:23	
Toluene-d8 (S)	%	103	70-130	11/26/20 00:23	

LABORATORY CONTROL SAMPLE:	3083149					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	55.9	112	70-130	
1,1,1-Trichloroethane	ug/L	50	60.4	121	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	51.8	104	70-130	
1,1,2-Trichloroethane	ug/L	50	53.9	108	70-130	
1,1-Dichloroethane	ug/L	50	54.5	109	70-130	
1,1-Dichloroethene	ug/L	50	62.3	125	70-132	
1,1-Dichloropropene	ug/L	50	53.4	107	70-131	
1,2,3-Trichlorobenzene	ug/L	50	57.4	115	70-134	
1,2,3-Trichloropropane	ug/L	50	53.8	108	70-130	
1,2,4-Trichlorobenzene	ug/L	50	56.7	113	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	55.9	112	70-132	
1,2-Dibromoethane (EDB)	ug/L	50	53.9	108	70-130	
1,2-Dichlorobenzene	ug/L	50	51.1	102	70-130	
1,2-Dichloroethane	ug/L	50	59.8	120	70-130	
1,2-Dichloropropane	ug/L	50	49.8	100	70-130	
1,3-Dichlorobenzene	ug/L	50	50.5	101	70-130	
1,3-Dichloropropane	ug/L	50	51.7	103	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

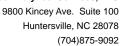
Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

ABORATORY CONTROL SAMPLE:	3083149					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
,4-Dichlorobenzene	ug/L	50	50.2	100	70-130	
2,2-Dichloropropane	ug/L	50	59.1	118	70-130	
P-Butanone (MEK)	ug/L	100	115	115	70-133	
-Chlorotoluene	ug/L	50	50.2	100	70-130	
-Hexanone	ug/L	100	116	116	70-130	
-Chlorotoluene	ug/L	50	48.6	97	70-130	
-Methyl-2-pentanone (MIBK)	ug/L	100	112	112	70-130	
cetone	ug/L	100	130	130	70-144	
enzene	ug/L	50	50.5	101	70-130	
romobenzene	ug/L	50	50.7	101	70-130	
romochloromethane	ug/L	50	51.6	103	70-130	
romodichloromethane	ug/L	50	51.7	103	70-130	
romoform	ug/L	50	54.6	109	70-131	
romomethane	ug/L	50	47.4	95	30-177 v	/3
arbon tetrachloride	ug/L	50	62.9	126	70-130	
hlorobenzene	ug/L	50	50.6	101	70-130	
hloroethane	ug/L	50	54.3	109	46-131	
hloroform	ug/L	50	52.3	105	70-130	
hloromethane	ug/L	50	42.7	85	49-130	
s-1,2-Dichloroethene	ug/L	50	53.4	107	70-130	
s-1,3-Dichloropropene	ug/L	50	55.0	110	70-130	
ibromochloromethane	ug/L	50	56.2	112	70-130	
ibromomethane	ug/L	50	55.6	111	70-130	
ichlorodifluoromethane	ug/L	50	56.0	112	52-134	
iisopropyl ether	ug/L	50	50.1	100	70-131	
thylbenzene	ug/L	50	50.7	101	70-130	
lexachloro-1,3-butadiene	ug/L	50	57.7	115	70-131	
n&p-Xylene	ug/L	100	105	105	70-130	
lethyl-tert-butyl ether	ug/L	50	54.1	108	70-130	
lethylene Chloride	ug/L	50	51.7	103	68-130	
laphthalene	ug/L	50	56.7	113	70-133	
-Xylene	ug/L	50	50.2	100	70-130	
-Isopropyltoluene	ug/L	50	49.9	100	70-130	
Styrene	ug/L	50	51.8	104	70-130	
etrachloroethene	ug/L	50	52.6	105	70-130	
oluene	ug/L	50	51.6	103	70-130	
ans-1,2-Dichloroethene	ug/L	50	56.0	112	70-130	
ans-1,3-Dichloropropene	ug/L	50	55.8	112	70-130	
richloroethene	ug/L	50	56.1	112	70-130	
richlorofluoromethane	ug/L	50	61.5	123	61-130 v	′ 1
inyl acetate	ug/L	100	123	123	70-140	
inyl chloride	ug/L	50	49.8	100	59-142	
ylene (Total)	ug/L	150	155	103	70-130	
,2-Dichloroethane-d4 (S)	%		.00	116	70-130	
-Bromofluorobenzene (S)	%			104	70-130	
oluene-d8 (S)	%			100	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

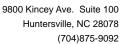

QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

MATRIX SPIKE & MATRIX SF	PIKE DUPI	LICATE: 3083			3083151							
			MS	MSD					_			
Parameter	Units	92507939009 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
1,1,1,2-Tetrachloroethane	ug/L		20	20	19.7	20.9	98	105	70-135	6	30	
I,1,1-Trichloroethane	ug/L		20	20	22.5	22.6	113	113	70-148	0	30	
,1,2,2-Tetrachloroethane	ug/L		20	20	15.7	27.0	78	135	70-131	53		M1,R
1,1,2-Trichloroethane	ug/L		20	20	26.7	21.5	134	107	70-136	22		
I,1-Dichloroethane	ug/L		20	20	21.3	21.4	107	107	70-147	1		
,1-Dichloroethene	ug/L		20	20	21.0	21.3	105	107	70-158	1	30	
,1-Dichloropropene	ug/L		20	20	21.3	21.7	107	109	70-149	2	30	
I,2,3-Trichlorobenzene	ug/L		20	20	18.1	17.7	90	89	68-140	2		
,2,3-Trichloropropane	ug/L		20	20	15.7	26.3	78	132	67-137	51	30	R1
,2,4-Trichlorobenzene	ug/L		20	20	17.9	17.5	89	88	70-139	2	30	
,2-Dibromo-3- chloropropane	ug/L		20	20	22.4	21.1	112	105	69-136	6	30	
,2-Dibromoethane (EDB)	ug/L		20	20	21.1	21.8	106	109	70-137	3	30	
,2-Dichlorobenzene	ug/L		20	20	20.0	19.2	100	96	70-133	4	30	
,2-Dichloroethane	ug/L		20	20	20.3	21.2	102	106	67-138	4	30	
,2-Dichloropropane	ug/L		20	20	26.4	20.9	132	105	70-138	23	30	
,3-Dichlorobenzene	ug/L		20	20	19.5	21.4	97	107	70-133	9	30	
,3-Dichloropropane	ug/L		20	20	21.4	21.7	107	109	70-136	1	30	
,4-Dichlorobenzene	ug/L		20	20	19.8	21.2	99	106	70-133	7	30	
2,2-Dichloropropane	ug/L		20	20	14.6	15.1	73	75	52-155	3	30	
2-Butanone (MEK)	ug/L		40	40	44.6	44.3	111	111	61-147	1	30	
2-Chlorotoluene	ug/L		20	20	20.7	26.5	104	132	70-141	24	30	
?-Hexanone	ug/L		40	40	40.7	40.6	102	101	67-139	0	30	
l-Chlorotoluene	ug/L		20	20	19.6	23.8	98	119	70-135	19	30	
l-Methyl-2-pentanone MIBK)	ug/L		40	40	51.2	41.4	128	103	67-136	21	30	
Acetone	ug/L		40	40	46.4	46.0	116	115	55-159	1		
Benzene	ug/L		20	20	20.9	22.4	105	112	67-150	7		
Bromobenzene	ug/L		20	20	21.8	25.6	109	128	70-134	16		
Bromochloromethane	ug/L		20	20	22.4	22.4	112	112	70-146	0		
Bromodichloromethane	ug/L		20	20	23.7	20.3	118	102	70-138	15		
Bromoform	ug/L		20	20	18.5	19.6	92	98	57-138	6		
Bromomethane	ug/L		20	20	23.7	23.8	119	119	10-200	0		
Carbon tetrachloride	ug/L		20	20	21.8	24.2	109	121	70-147	11		
Chlorobenzene	ug/L		20	20	21.1	21.3	106	107	70-137	1		
Chloroethane	ug/L		20	20	20.0	21.0	100	105	51-166	5		IK,v3
Chloroform	ug/L		20	20	22.4	23.2	112	116	70-144	3		
Chloromethane	ug/L		20	20	19.4	19.8	97	99	24-161	2		
is-1,2-Dichloroethene	ug/L		20	20	21.2	22.2	106	111	67-148	5		
cis-1,3-Dichloropropene	ug/L		20	20	23.7	20.1	119	100	70-142	17		
Dibromochloromethane	ug/L		20	20	21.5	22.8	107	114	68-138	6		
Dibromomethane	ug/L		20	20	23.7	20.0	118	100	70-134	17		
Dichlorodifluoromethane	ug/L		20	20	14.7	15.2	74	76	43-155	3		
Diisopropyl ether	ug/L		20	20	19.8	19.9	99	100	65-146	1		
Ethylbenzene	ug/L		20	20	20.0	20.7	100	103	68-143	3		
Hexachloro-1,3-butadiene	ug/L		20	20	17.2	16.3	86	81	62-151	6	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

MATRIX SPIKE & MATRIX SP	PIKE DUPL	ICATE: 3083	150 MS	MSD	3083151							
		92507939009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
m&p-Xylene	ug/L		40	40	40.4	42.0	101	105	53-157	4	30	
Methyl-tert-butyl ether	ug/L		20	20	19.6	19.8	98	99	59-156	1	30	
Methylene Chloride	ug/L		20	20	20.6	20.3	103	102	64-148	1	30	
Naphthalene	ug/L		20	20	20.2	19.7	101	98	57-150	2	30	
o-Xylene	ug/L		20	20	21.5	22.0	107	110	68-143	2	30	
p-Isopropyltoluene	ug/L		20	20	19.2	21.5	96	107	70-141	11	30	
Styrene	ug/L		20	20	20.8	21.4	104	107	70-136	3	30	
Tetrachloroethene	ug/L		20	20	19.0	19.7	95	98	70-139	4	30	
Toluene	ug/L		20	20	26.5	21.8	132	109	47-157	19	30	
trans-1,2-Dichloroethene	ug/L		20	20	19.8	20.5	99	102	70-149	3	30	
trans-1,3-Dichloropropene	ug/L		20	20	24.5	21.0	123	105	70-138	15	30	
Trichloroethene	ug/L		20	20	20.8	22.2	104	111	70-149	7	30	
Trichlorofluoromethane	ug/L		20	20	20.3	20.3	101	102	61-154	0	30	
Vinyl acetate	ug/L		40	40	28.1	27.6	70	69	48-156	2	30	
Vinyl chloride	ug/L		20	20	19.4	19.4	97	97	55-172	0	30	
Xylene (Total)	ug/L		60	60	61.9	63.9	103	107	66-145	3	30	
1,2-Dichloroethane-d4 (S)	%						102	103	70-130			
4-Bromofluorobenzene (S)	%						87	107	70-130			
Toluene-d8 (S)	%						125	101	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

QC Batch: 583926 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte


Associated Lab Samples: 92507937012

METHOD BLANK: 3086935 Matrix: Water

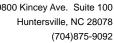
Associated Lab Samples: 92507937012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	12/02/20 21:57	· <u></u> -
1,1,1-Trichloroethane	ug/L	ND	1.0	12/02/20 21:57	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	12/02/20 21:57	
1,1,2-Trichloroethane	ug/L	ND	1.0	12/02/20 21:57	
1,1-Dichloroethane	ug/L	ND	1.0	12/02/20 21:57	
1,1-Dichloroethene	ug/L	ND	1.0	12/02/20 21:57	
1,1-Dichloropropene	ug/L	ND	1.0	12/02/20 21:57	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	12/02/20 21:57	
1,2,3-Trichloropropane	ug/L	ND	1.0	12/02/20 21:57	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	12/02/20 21:57	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	12/02/20 21:57	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	12/02/20 21:57	
1,2-Dichlorobenzene	ug/L	ND	1.0	12/02/20 21:57	
1,2-Dichloroethane	ug/L	ND	1.0	12/02/20 21:57	
1,2-Dichloropropane	ug/L	ND	1.0	12/02/20 21:57	
1,3-Dichlorobenzene	ug/L	ND	1.0	12/02/20 21:57	
1,3-Dichloropropane	ug/L	ND	1.0	12/02/20 21:57	
1,4-Dichlorobenzene	ug/L	ND	1.0	12/02/20 21:57	
2,2-Dichloropropane	ug/L	ND	1.0	12/02/20 21:57	
2-Butanone (MEK)	ug/L	ND	5.0	12/02/20 21:57	
2-Chlorotoluene	ug/L	ND	1.0	12/02/20 21:57	
2-Hexanone	ug/L	ND	5.0	12/02/20 21:57	
4-Chlorotoluene	ug/L	ND	1.0	12/02/20 21:57	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	12/02/20 21:57	v2
Acetone	ug/L	ND	25.0	12/02/20 21:57	
Benzene	ug/L	ND	1.0	12/02/20 21:57	
Bromobenzene	ug/L	ND	1.0	12/02/20 21:57	
Bromochloromethane	ug/L	ND	1.0	12/02/20 21:57	
Bromodichloromethane	ug/L	ND	1.0	12/02/20 21:57	
Bromoform	ug/L	ND	1.0	12/02/20 21:57	
Bromomethane	ug/L	ND	2.0	12/02/20 21:57	v2
Carbon tetrachloride	ug/L	ND	1.0	12/02/20 21:57	
Chlorobenzene	ug/L	ND	1.0	12/02/20 21:57	
Chloroethane	ug/L	ND	1.0	12/02/20 21:57	v2
Chloroform	ug/L	ND	5.0	12/02/20 21:57	
Chloromethane	ug/L	ND	1.0	12/02/20 21:57	
cis-1,2-Dichloroethene	ug/L	ND	1.0	12/02/20 21:57	
cis-1,3-Dichloropropene	ug/L	ND	1.0	12/02/20 21:57	
Dibromochloromethane	ug/L	ND	1.0	12/02/20 21:57	
Dibromomethane	ug/L	ND	1.0	12/02/20 21:57	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

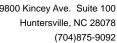

METHOD BLANK: 3086935 Matrix: Water

Associated Lab Samples: 92507937012

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Dichlorodifluoromethane	ug/L	ND	1.0	12/02/20 21:57	
Diisopropyl ether	ug/L	ND	1.0	12/02/20 21:57	
Ethylbenzene	ug/L	ND	1.0	12/02/20 21:57	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	12/02/20 21:57	
m&p-Xylene	ug/L	ND	2.0	12/02/20 21:57	
Methyl-tert-butyl ether	ug/L	ND	1.0	12/02/20 21:57	
Methylene Chloride	ug/L	ND	5.0	12/02/20 21:57	v2
Naphthalene	ug/L	ND	1.0	12/02/20 21:57	
o-Xylene	ug/L	ND	1.0	12/02/20 21:57	
p-Isopropyltoluene	ug/L	ND	1.0	12/02/20 21:57	
Styrene	ug/L	ND	1.0	12/02/20 21:57	
Tetrachloroethene	ug/L	ND	1.0	12/02/20 21:57	
Toluene	ug/L	ND	1.0	12/02/20 21:57	
trans-1,2-Dichloroethene	ug/L	ND	1.0	12/02/20 21:57	
trans-1,3-Dichloropropene	ug/L	ND	1.0	12/02/20 21:57	
Trichloroethene	ug/L	ND	1.0	12/02/20 21:57	
Trichlorofluoromethane	ug/L	ND	1.0	12/02/20 21:57	
Vinyl acetate	ug/L	ND	2.0	12/02/20 21:57	
Vinyl chloride	ug/L	ND	1.0	12/02/20 21:57	
Xylene (Total)	ug/L	ND	1.0	12/02/20 21:57	
1,2-Dichloroethane-d4 (S)	%	93	70-130	12/02/20 21:57	
4-Bromofluorobenzene (S)	%	100	70-130	12/02/20 21:57	
Toluene-d8 (S)	%	104	70-130	12/02/20 21:57	

LABORATORY CONTROL SAMPLE:	3086936					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	53.8	108	70-130	
1,1,1-Trichloroethane	ug/L	50	43.1	86	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	50.9	102	70-130	
1,1,2-Trichloroethane	ug/L	50	45.3	91	70-130	
1,1-Dichloroethane	ug/L	50	42.5	85	70-130	
1,1-Dichloroethene	ug/L	50	44.0	88	70-132	
1,1-Dichloropropene	ug/L	50	45.7	91	70-131	
1,2,3-Trichlorobenzene	ug/L	50	52.1	104	70-134	
1,2,3-Trichloropropane	ug/L	50	53.1	106	70-130	
1,2,4-Trichlorobenzene	ug/L	50	53.0	106	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	51.6	103	70-132	
1,2-Dibromoethane (EDB)	ug/L	50	55.6	111	70-130	
1,2-Dichlorobenzene	ug/L	50	53.0	106	70-130	
1,2-Dichloroethane	ug/L	50	40.6	81	70-130	
1,2-Dichloropropane	ug/L	50	46.2	92	70-130	
1,3-Dichlorobenzene	ug/L	50	54.2	108	70-130	
1,3-Dichloropropane	ug/L	50	55.7	111	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

LABORATORY CONTROL SAMPLE:	3086936				
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifi
1,4-Dichlorobenzene	ug/L		53.4	107	70-130
2,2-Dichloropropane	ug/L	50	42.9	86	70-130
2-Butanone (MEK)	ug/L	100	83.8	84	70-133
2-Chlorotoluene	ug/L	50	53.0	106	70-130
2-Hexanone	ug/L	100	92.3	92	70-130
4-Chlorotoluene	ug/L	50	52.1	104	70-130
4-Methyl-2-pentanone (MIBK)	ug/L	100	78.0	78	70-130 v3
Acetone	ug/L	100	86.7	87	70-144
Benzene	ug/L	50	45.5	91	70-130
Bromobenzene	ug/L	50	52.9	106	70-130
Bromochloromethane	ug/L	50	44.6	89	70-130
Bromodichloromethane	ug/L	50	43.0	86	70-130
Bromoform	ug/L	50	50.5	101	70-131
Bromomethane	ug/L	50	37.0	74	30-177 v3
Carbon tetrachloride	ug/L	50	44.5	89	70-130
Chlorobenzene	ug/L	50	51.6	103	70-130
Chloroethane	ug/L	50 50	39.4	79	46-131 v3
Chloroform	ug/L	50 50	43.2	86	70-130
Chloromethane	ug/L	50	40.2	80	49-130
sis-1,2-Dichloroethene	ug/L	50 50	40.8	82	70-130
sis-1,3-Dichloropropene	ug/L	50 50	48.6	97	70-130
Dibromochloromethane	_	50 50	56.9	114	70-130
Dibromomethane	ug/L	50 50	45.3	91	70-130 70-130
Dichlorodifluoromethane	ug/L	50 50	43.1	86	52-134
	ug/L	50 50	42.1	84	70-131
Diisopropyl ether Ethylbenzene	ug/L	50 50	50.4	101	70-131
•	ug/L	50 50			
Hexachloro-1,3-butadiene	ug/L		51.6	103	70-131
n&p-Xylene	ug/L	100	104	104	70-130
Methyl-tert-butyl ether	ug/L	50 50	44.6	89 79	70-130
Methylene Chloride	ug/L		39.5		68-130 v3
Naphthalene	ug/L	50	52.5	105	70-133
o-Xylene	ug/L	50	53.7	107	70-130
o-Isopropyltoluene	ug/L	50	53.5	107	70-130
Styrene Tetrachloroethene	ug/L	50 50	52.9 51.5	106	70-130
	ug/L			103	70-130
Toluene	ug/L	50 50	42.3	85	70-130
rans-1,2-Dichloroethene	ug/L	50 50	42.1	84	70-130
rans-1,3-Dichloropropene	ug/L	50 50	46.2	92 05	70-130
Frichloroethene	ug/L	50 50	47.4 41.6	95	70-130
Frichlorofluoromethane	ug/L	50	41.6	83	61-130
/inyl acetate	ug/L	100	106	106	70-140
/inyl chloride	ug/L	50	40.0	80	59-142
(Yylene (Total)	ug/L	150	158	105	70-130
,2-Dichloroethane-d4 (S)	%			93	70-130
4-Bromofluorobenzene (S)	%			98	70-130
Toluene-d8 (S)	%			93	70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

MATRIX SPIKE & MATRIX SI	PIKE DUPI	LICATE: 308	5937		3086938							
			MS	MSD								
		92508563001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
,1,1,2-Tetrachloroethane	ug/L	ND	4000	4000	4170	4230	104	106	70-135	1	30	
,1,1-Trichloroethane	ug/L	ND	4000	4000	3930	3980	98	100	70-148	1	30	
,1,2,2-Tetrachloroethane	ug/L	ND	4000	4000	4060	4090	102	102	70-131	1	30	
,1,2-Trichloroethane	ug/L	ND	4000	4000	3640	3690	91	92	70-136	2	30	
,1-Dichloroethane	ug/L	ND	4000	4000	3880	3880	97	97	70-147	0	30	
,1-Dichloroethene	ug/L	ND	4000	4000	4130	4040	103	101	70-158	2	30	
,1-Dichloropropene	ug/L	ND	4000	4000	4040	4160	101	104	70-149	3	30	
,2,3-Trichlorobenzene	ug/L	ND	4000	4000	4140	4500	103	112	68-140	8	30	
,2,3-Trichloropropane	ug/L	ND	4000	4000	3800	3790	95	95	67-137	0	30	
,2,4-Trichlorobenzene	ug/L	ND	4000	4000	4200	4530	105	113	70-139	8	30	
,2-Dibromo-3-	ug/L	ND	4000	4000	4160	4260	104	107	69-136	3	30	
hloropropane										_		
,2-Dibromoethane (EDB)	ug/L	ND	4000	4000	4300	4400	107	110	70-137	2		
,2-Dichlorobenzene	ug/L	ND	4000	4000	4450	4650	111	116	70-133	5		
,2-Dichloroethane	ug/L	ND	4000	4000	3560	3610	89	90	67-138	1		
,2-Dichloropropane	ug/L	ND	4000	4000	4060	4120	102	103	70-138	1		
,3-Dichlorobenzene	ug/L	ND	4000	4000	4540	4630	113	116	70-133	2		
,3-Dichloropropane	ug/L	ND	4000	4000	4480	4460	112	111	70-136	0		
,4-Dichlorobenzene	ug/L	ND	4000	4000	4470	4570	112	114	70-133	2		
,2-Dichloropropane	ug/L	ND	4000	4000	3260	3260	82	81	52-155	0		
-Butanone (MEK)	ug/L	ND	8000	8000	7080	6810	89	85	61-147	4		
2-Chlorotoluene	ug/L	ND	4000	4000	4480	4560	112	114	70-141	2		
?-Hexanone	ug/L	ND	8000	8000	7690	7680	96	96	67-139	0		
-Chlorotoluene	ug/L	ND	4000	4000	4460	4600	112	115	70-135	3		
-Methyl-2-pentanone MIBK)	ug/L	ND	8000	8000	6280	6420	79	80	67-136	2		v3
Acetone	ug/L	ND	8000	8000	7840	7690	98	96	55-159	2		
Benzene	ug/L	ND	4000	4000	4070	4050	102	101	67-150	0		
Bromobenzene	ug/L	ND	4000	4000	4400	4600	110	115	70-134	4		
Bromochloromethane	ug/L	ND	4000	4000	4020	4160	100	104	70-146	4		
Bromodichloromethane	ug/L	ND	4000	4000	3750	3820	94	95	70-138	2		
Bromoform	ug/L	ND	4000	4000	3710	3760	93	94	57-138	1		
Bromomethane	ug/L	ND	4000	4000	3050	3540	76	88	10-200	15		v3
Carbon tetrachloride	ug/L	ND	4000	4000	4090	4160	102	104	70-147	2		
Chlorobenzene	ug/L	ND	4000	4000	4460	4490	111	112	70-137	1		
Chloroethane	ug/L	ND	4000	4000	4090	3950	102	99	51-166	3		v3
Chloroform	ug/L	ND	4000	4000	3500	3690	87	92	70-144	5		
Chloromethane	ug/L	ND	4000	4000	3730	3800	93	95	24-161	2		
is-1,2-Dichloroethene	ug/L	3240	4000	4000	6690	6720	86	87	67-148	1		
is-1,3-Dichloropropene	ug/L	ND	4000	4000	3860	3960	96	99	70-142	3		
Dibromochloromethane	ug/L	ND	4000	4000	4400	4470	110	112	68-138	2	30	
Dibromomethane	ug/L	ND	4000	4000	4010	4090	100	102	70-134	2	30	
Dichlorodifluoromethane	ug/L	ND	4000	4000	3710	3710	93	93	43-155	0		
Diisopropyl ether	ug/L	ND	4000	4000	3370	3420	84	86	65-146	1	30	
Ethylbenzene	ug/L	ND	4000	4000	4440	4450	111	111	68-143	0	30	
Hexachloro-1,3-butadiene	ug/L	ND	4000	4000	4160	4250	104	106	62-151	2	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	CATE: 3086	937 MS	MSD	3086938							
	g	2508563001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
m&p-Xylene	ug/L	ND	8000	8000	9260	9220	116	115	53-157	0	30	
Methyl-tert-butyl ether	ug/L	ND	4000	4000	3680	3730	92	93	59-156	1	30	
Methylene Chloride	ug/L	ND	4000	4000	3700	3780	92	94	64-148	2	30	v3
Naphthalene	ug/L	ND	4000	4000	4200	4540	105	114	57-150	8	30	
o-Xylene	ug/L	ND	4000	4000	4660	4600	116	115	68-143	1	30	
p-Isopropyltoluene	ug/L	ND	4000	4000	4380	4620	109	116	70-141	5	30	
Styrene	ug/L	ND	4000	4000	4600	4620	115	116	70-136	0	30	
Tetrachloroethene	ug/L	ND	4000	4000	4430	4380	111	109	70-139	1	30	
Toluene	ug/L	ND	4000	4000	3860	3930	94	96	47-157	2	30	
trans-1,2-Dichloroethene	ug/L	ND	4000	4000	3920	3990	98	100	70-149	2	30	
trans-1,3-Dichloropropene	ug/L	ND	4000	4000	3530	3590	88	90	70-138	2	30	
Trichloroethene	ug/L	19800	4000	4000	24700	24700	123	124	70-149	0	30	
Trichlorofluoromethane	ug/L	ND	4000	4000	4140	3860	104	97	61-154	7	30	
Vinyl acetate	ug/L	ND	8000	8000	8360	8520	105	106	48-156	2	30	
Vinyl chloride	ug/L	477	4000	4000	4140	4210	92	93	55-172	2	30	
Xylene (Total)	ug/L	ND	12000	12000	13900	13800	116	115	66-145	1	30	
1,2-Dichloroethane-d4 (S)	%						96	101	70-130			
4-Bromofluorobenzene (S)	%						100	99	70-130			
Toluene-d8 (S)	%						95	95	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

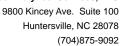
Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

QC Batch: 584621 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte


Associated Lab Samples: 92507937015

METHOD BLANK: 3090277 Matrix: Water

Associated Lab Samples: 92507937015

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	12/04/20 11:01	
1,1,1-Trichloroethane	ug/L	ND	1.0	12/04/20 11:01	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	12/04/20 11:01	
1,1,2-Trichloroethane	ug/L	ND	1.0	12/04/20 11:01	
1,1-Dichloroethane	ug/L	ND	1.0	12/04/20 11:01	
1,1-Dichloroethene	ug/L	ND	1.0	12/04/20 11:01	
1,1-Dichloropropene	ug/L	ND	1.0	12/04/20 11:01	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	12/04/20 11:01	
1,2,3-Trichloropropane	ug/L	ND	1.0	12/04/20 11:01	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	12/04/20 11:01	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	12/04/20 11:01	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	12/04/20 11:01	
1,2-Dichlorobenzene	ug/L	ND	1.0	12/04/20 11:01	
1,2-Dichloroethane	ug/L	ND	1.0	12/04/20 11:01	
1,2-Dichloropropane	ug/L	ND	1.0	12/04/20 11:01	
1,3-Dichlorobenzene	ug/L	ND	1.0	12/04/20 11:01	
1,3-Dichloropropane	ug/L	ND	1.0	12/04/20 11:01	
1,4-Dichlorobenzene	ug/L	ND	1.0	12/04/20 11:01	
2,2-Dichloropropane	ug/L	ND	1.0	12/04/20 11:01	
2-Butanone (MEK)	ug/L	ND	5.0	12/04/20 11:01	
2-Chlorotoluene	ug/L	ND	1.0	12/04/20 11:01	
2-Hexanone	ug/L	ND	5.0	12/04/20 11:01	
4-Chlorotoluene	ug/L	ND	1.0	12/04/20 11:01	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	12/04/20 11:01	
Acetone	ug/L	ND	25.0	12/04/20 11:01	
Benzene	ug/L	ND	1.0	12/04/20 11:01	
Bromobenzene	ug/L	ND	1.0	12/04/20 11:01	
Bromochloromethane	ug/L	ND	1.0	12/04/20 11:01	
Bromodichloromethane	ug/L	ND	1.0	12/04/20 11:01	
Bromoform	ug/L	ND	1.0	12/04/20 11:01	
Bromomethane	ug/L	ND	2.0	12/04/20 11:01	
Carbon tetrachloride	ug/L	ND	1.0	12/04/20 11:01	
Chlorobenzene	ug/L	ND	1.0	12/04/20 11:01	
Chloroethane	ug/L	ND	1.0	12/04/20 11:01	IK,v1
Chloroform	ug/L	ND	5.0	12/04/20 11:01	
Chloromethane	ug/L	ND	1.0	12/04/20 11:01	IK
cis-1,2-Dichloroethene	ug/L	ND	1.0	12/04/20 11:01	
cis-1,3-Dichloropropene	ug/L	ND	1.0	12/04/20 11:01	
Dibromochloromethane	ug/L	ND	1.0	12/04/20 11:01	
Dibromomethane	ug/L	ND	1.0	12/04/20 11:01	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

METHOD BLANK: 3090277 Matrix: Water

Associated Lab Samples: 92507937015

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Dichlorodifluoromethane	ug/L	ND	1.0	12/04/20 11:01	
Diisopropyl ether	ug/L	ND	1.0	12/04/20 11:01	
Ethylbenzene	ug/L	ND	1.0	12/04/20 11:01	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	12/04/20 11:01	
m&p-Xylene	ug/L	ND	2.0	12/04/20 11:01	
Methyl-tert-butyl ether	ug/L	ND	1.0	12/04/20 11:01	
Methylene Chloride	ug/L	ND	5.0	12/04/20 11:01	
Naphthalene	ug/L	ND	1.0	12/04/20 11:01	
o-Xylene	ug/L	ND	1.0	12/04/20 11:01	
p-Isopropyltoluene	ug/L	ND	1.0	12/04/20 11:01	
Styrene	ug/L	ND	1.0	12/04/20 11:01	
Tetrachloroethene	ug/L	ND	1.0	12/04/20 11:01	
Toluene	ug/L	ND	1.0	12/04/20 11:01	
trans-1,2-Dichloroethene	ug/L	ND	1.0	12/04/20 11:01	
trans-1,3-Dichloropropene	ug/L	ND	1.0	12/04/20 11:01	
Trichloroethene	ug/L	ND	1.0	12/04/20 11:01	
Trichlorofluoromethane	ug/L	ND	1.0	12/04/20 11:01	
Vinyl acetate	ug/L	ND	2.0	12/04/20 11:01	
Vinyl chloride	ug/L	ND	1.0	12/04/20 11:01	
Xylene (Total)	ug/L	ND	1.0	12/04/20 11:01	
1,2-Dichloroethane-d4 (S)	%	115	70-130	12/04/20 11:01	
4-Bromofluorobenzene (S)	%	97	70-130	12/04/20 11:01	
Toluene-d8 (S)	%	104	70-130	12/04/20 11:01	

LABORATORY CONTROL SAMPLE:	3090278					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	53.5	107	70-130	
1,1,1-Trichloroethane	ug/L	50	51.5	103	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	50.0	100	70-130	
1,1,2-Trichloroethane	ug/L	50	49.9	100	70-130	
1,1-Dichloroethane	ug/L	50	48.5	97	70-130	
1,1-Dichloroethene	ug/L	50	51.5	103	70-132	
1,1-Dichloropropene	ug/L	50	50.6	101	70-131	
1,2,3-Trichlorobenzene	ug/L	50	53.1	106	70-134	
1,2,3-Trichloropropane	ug/L	50	49.7	99	70-130	
1,2,4-Trichlorobenzene	ug/L	50	52.8	106	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	52.9	106	70-132	
1,2-Dibromoethane (EDB)	ug/L	50	53.4	107	70-130	
1,2-Dichlorobenzene	ug/L	50	50.5	101	70-130	
1,2-Dichloroethane	ug/L	50	56.9	114	70-130	
1,2-Dichloropropane	ug/L	50	52.8	106	70-130	
1,3-Dichlorobenzene	ug/L	50	51.9	104	70-130	
1,3-Dichloropropane	ug/L	50	52.5	105	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

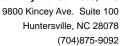
Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

ABORATORY CONTROL SAMPLE:	3090278					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
,4-Dichlorobenzene	ug/L		51.6	103	70-130	
2,2-Dichloropropane	ug/L	50	50.7	101	70-130	
2-Butanone (MEK)	ug/L	100	97.6	98	70-133	
2-Chlorotoluene	ug/L	50	49.3	99	70-130	
-Hexanone	ug/L	100	91.1	91	70-130	
-Chlorotoluene	ug/L	50	48.6	97	70-130	
-Methyl-2-pentanone (MIBK)	ug/L	100	95.1	95	70-130	
cetone	ug/L	100	102	102	70-144	
enzene	ug/L	50	51.4	103	70-130	
romobenzene	ug/L	50	50.9	102	70-130	
romochloromethane	ug/L	50	51.9	104	70-130	
romodichloromethane	ug/L	50	49.4	99	70-130	
romoform	ug/L	50	51.6	103	70-131	
Bromomethane	ug/L	50	54.7	109	30-177	
arbon tetrachloride	ug/L	50	53.7	107	70-130	
hlorobenzene	ug/L	50	52.0	104	70-130	
hloroethane	ug/L	50	46.6	93	46-131 I	K,v1
hloroform	ug/L	50	53.8	108	70-130	•
hloromethane	ug/L	50	48.8	98	49-130 I	K
s-1,2-Dichloroethene	ug/L	50	47.8	96	70-130	
s-1,3-Dichloropropene	ug/L	50	53.1	106	70-130	
ibromochloromethane	ug/L	50	54.6	109	70-130	
ibromomethane	ug/L	50	54.0	108	70-130	
ichlorodifluoromethane	ug/L	50	47.4	95	52-134	
iisopropyl ether	ug/L	50	45.7	91	70-131	
thylbenzene	ug/L	50	50.4	101	70-130	
lexachloro-1,3-butadiene	ug/L	50	55.1	110	70-131	
n&p-Xylene	ug/L	100	100	100	70-130	
lethyl-tert-butyl ether	ug/L	50	47.4	95	70-130	
lethylene Chloride	ug/L	50	55.0	110	68-130	
laphthalene	ug/L	50	49.1	98	70-133	
-Xylene	ug/L	50	52.0	104	70-130	
-Isopropyltoluene	ug/L	50	49.4	99	70-130	
ityrene	ug/L	50	50.5	101	70-130	
etrachloroethene	ug/L	50	54.8	110	70-130	
oluene	ug/L	50	50.8	102	70-130	
ans-1,2-Dichloroethene	ug/L	50	50.8	102	70-130	
ans-1,3-Dichloropropene	ug/L	50	51.1	102	70-130	
richloroethene	ug/L	50	53.5	107	70-130	
richlorofluoromethane	ug/L	50	49.4	99	61-130	
inyl acetate	ug/L	100	103	103	70-140	
inyl chloride	ug/L	50	41.1	82	59-142	
(ylene (Total)	ug/L	150	152	101	70-130	
,2-Dichloroethane-d4 (S)	%			89	70-130	
-Bromofluorobenzene (S)	%			103	70-130	
oluene-d8 (S)	%			99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092


QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

MATRIX SPIKE & MATRIX SF	PIKE DUPLIC	ATE: 3090	279		3090280							
			MS	MSD								
		2507937015	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
,1,1,2-Tetrachloroethane	ug/L	ND	400	400	427	445	107	111	70-135	4	30	
,1,1-Trichloroethane	ug/L	2060	400	400	2330	2360	67	76	70-148	1	30	M1
,1,2,2-Tetrachloroethane	ug/L	ND	400	400	433	425	108	106	70-131	2	30	
,1,2-Trichloroethane	ug/L	ND	400	400	397	401	99	100	70-136	1	30	
,1-Dichloroethane	ug/L	1560	400	400	1790	1760	58	51	70-147	2	30	M1
,1-Dichloroethene	ug/L	1130	400	400	1620	1590	124	115	70-158	2	30	
,1-Dichloropropene	ug/L	ND	400	400	479	478	120	119	70-149	0	30	
,2,3-Trichlorobenzene	ug/L	ND	400	400	395	399	99	100	68-140	1	30	
,2,3-Trichloropropane	ug/L	ND	400	400	421	416	105	104	67-137	1	30	
,2,4-Trichlorobenzene	ug/L	ND	400	400	408	409	102	102	70-139	0	30	
,2-Dibromo-3-	ug/L	ND	400	400	410	410	102	102	69-136	0	30	
hloropropane	4	ND	400	400	447	407	404	407	70.407			
,2-Dibromoethane (EDB)	ug/L	ND	400	400	417	427	104	107	70-137	2		
,2-Dichlorobenzene	ug/L	ND	400	400	423	415	106	104	70-133	2		
,2-Dichloroethane	ug/L	ND	400	400	543	518	136	129	67-138	5		
,2-Dichloropropane	ug/L	ND	400	400	447	454	112	114	70-138	2		
,3-Dichlorobenzene	ug/L	ND	400	400	440	436	110	109	70-133	1	30	
,3-Dichloropropane	ug/L	ND	400	400	454	446	113	111	70-136	2		
,4-Dichlorobenzene	ug/L	ND	400	400	435	425	109	106	70-133	2		
2,2-Dichloropropane	ug/L	ND	400	400	445	461	111	115	52-155	3		
-Butanone (MEK)	ug/L	ND	800	800	920	875	115	109	61-147	5		
2-Chlorotoluene	ug/L	ND	400	400	446	444	112	111	70-141	0	30	
-Hexanone	ug/L	ND	800	800	831	811	104	101	67-139	3		
I-Chlorotoluene	ug/L	ND	400	400	441	433	110	108	70-135	2		
l-Methyl-2-pentanone MIBK)	ug/L	ND	800	800	831	820	104	102	67-136	1	30	
Acetone	ug/L	ND	800	800	973	939	122	117	55-159	4		
Benzene	ug/L	ND	400	400	444	447	111	112	67-150	1	30	
Bromobenzene	ug/L	ND	400	400	423	411	106	103	70-134	3		
Bromochloromethane	ug/L	ND	400	400	417	440	104	110	70-146	5	30	
Bromodichloromethane	ug/L	ND	400	400	391	402	98	100	70-138	3		
Bromoform	ug/L	ND	400	400	392	385	98	96	57-138	2		
Bromomethane	ug/L	ND	400	400	562	535	141	134	10-200	5		
Carbon tetrachloride	ug/L	ND	400	400	416	461	104	115	70-147	10	30	
Chlorobenzene	ug/L	ND	400	400	438	439	109	110	70-137	0	30	
Chloroethane	ug/L	ND	400	400	530	524	132	131	51-166	1		IK,v1
Chloroform	ug/L	ND	400	400	471	479	118	120	70-144	2		
Chloromethane	ug/L	ND	400	400	467	450	117	113	24-161	4		IK
is-1,2-Dichloroethene	ug/L	ND	400	400	453	448	110	109	67-148	1	30	
is-1,3-Dichloropropene	ug/L	ND	400	400	437	439	109	110	70-142	1	30	
Dibromochloromethane	ug/L	ND	400	400	417	420	104	105	68-138	1	30	
Dibromomethane	ug/L	ND	400	400	400	427	100	107	70-134	7		
Dichlorodifluoromethane	ug/L	ND	400	400	454	454	114	113	43-155	0		
iisopropyl ether	ug/L	ND	400	400	432	424	108	106	65-146	2		
Ethylbenzene	ug/L	ND	400	400	447	446	112	112	68-143	0		
lexachloro-1,3-butadiene	ug/L	ND	400	400	426	416	107	104	62-151	2	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	ATE: 3090	279		3090280							
			MS	MSD								
	9:	2507937015	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
m&p-Xylene	ug/L	ND	800	800	888	895	111	112	53-157	1	30	
Methyl-tert-butyl ether	ug/L	ND	400	400	399	404	100	101	59-156	1	30	
Methylene Chloride	ug/L	ND	400	400	493	486	123	122	64-148	1	30	
Naphthalene	ug/L	ND	400	400	392	385	98	96	57-150	2	30	
o-Xylene	ug/L	ND	400	400	453	450	113	113	68-143	1	30	
o-Isopropyltoluene	ug/L	ND	400	400	435	418	109	104	70-141	4	30	
Styrene	ug/L	ND	400	400	426	434	106	108	70-136	2	30	
Tetrachloroethene	ug/L	ND	400	400	452	462	113	116	70-139	2	30	
Toluene	ug/L	ND	400	400	439	441	110	110	47-157	0	30	
trans-1,2-Dichloroethene	ug/L	ND	400	400	444	465	111	116	70-149	4	30	
rans-1,3-Dichloropropene	ug/L	ND	400	400	419	422	105	106	70-138	1	30	
Trichloroethene	ug/L	ND	400	400	451	467	109	113	70-149	4	30	
Trichlorofluoromethane	ug/L	ND	400	400	469	455	117	114	61-154	3	30	
√inyl acetate	ug/L	ND	800	800	989	957	124	120	48-156	3	30	
Vinyl chloride	ug/L	ND	400	400	392	387	98	97	55-172	1	30	
Xylene (Total)	ug/L	ND	1200	1200	1340	1350	112	112	66-145	0	30	
1,2-Dichloroethane-d4 (S)	%						111	110	70-130			
4-Bromofluorobenzene (S)	%						104	105	70-130			
Toluene-d8 (S)	%						97	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507937

QC Batch: 582772 Analysis Method: EPA 8260D Mod.
QC Batch Method: EPA 8260D Mod. Analysis Description: 8260D MSV SIM

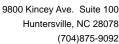
Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92507937002, 92507937003, 92507937004, 92507937005, 92507937006, 92507937008

METHOD BLANK: 3081850 Matrix: Water

Associated Lab Samples: 92507937002, 92507937003, 92507937004, 92507937005, 92507937006, 92507937008

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed 1,4-Dioxane (p-Dioxane) ND 2.0 11/24/20 16:00 ug/L 1,2-Dichloroethane-d4 (S) % 97 70-130 11/24/20 16:00 Toluene-d8 (S) % 66-133 92 11/24/20 16:00


LABORATORY CONTROL SAMPLE: 3081851

Date: 12/04/2020 04:29 PM

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L		18.8	94	70-130	
1,2-Dichloroethane-d4 (S)	%			99	70-130	
Toluene-d8 (S)	%			92	66-133	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3081853 MS MSD 92507939007 MSD Spike Spike MS MS MSD % Rec Max Units Qual Parameter Conc. Result % Rec **RPD** RPD Conc. Result % Rec Limits Result 30 1,4-Dioxane (p-Dioxane) ug/L ND 20 20 18.4 19.6 92 98 64-141 1,2-Dichloroethane-d4 (S) % 102 100 70-130 30 Toluene-d8 (S) % 92 91 66-133 30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex

Pace Project No.: 92507937

QC Batch: 582773

QC Batch Method: EPA 8260D Mod. Analysis Method:

EPA 8260D Mod.

Analysis Description:

8260D MSV SIM

Analyzed

11/24/20 16:19

Laboratory:

Pace Analytical Services - Charlotte

Qualifiers

Associated Lab Samples: 92507937001

METHOD BLANK:

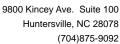
Date: 12/04/2020 04:29 PM

Matrix: Water

Associated Lab Samples: 92507937001

Blank Reporting Parameter Units Result Limit 1,4-Dioxane (p-Dioxane) ug/L ND 2.0

1,2-Dichloroethane-d4 (S) % 96 70-130 11/24/20 16:19 Toluene-d8 (S) % 92 66-133 11/24/20 16:19


LABORATORY CONTROL SAMPLE: 3081856

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1,4-Dioxane (p-Dioxane) 20 20.5 102 70-130 ug/L 1,2-Dichloroethane-d4 (S) 96 70-130 % Toluene-d8 (S) % 92 66-133

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3081858

MS MSD 92507939013 MSD Spike Spike MS MS MSD % Rec Max Units Qual Parameter Conc. Result % Rec % Rec **RPD** RPD Result Conc. Result Limits 30 1,4-Dioxane (p-Dioxane) ug/L 41.5 20 20 64.4 62.3 115 104 64-141 3 1,2-Dichloroethane-d4 (S) % 103 98 70-130 30 Toluene-d8 (S) % 93 91 66-133 30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex Pace Project No.: 92507937

QC Batch: 582774

QC Batch Method: EPA 8260D Mod. Analysis Method: Analysis Description: EPA 8260D Mod.

8260D MSV SIM Laboratory:

Pace Analytical Services - Charlotte

92507937007 Associated Lab Samples:

METHOD BLANK: 3081862

Date: 12/04/2020 04:29 PM

Matrix: Water

Associated Lab Samples: 92507937007

Blank Reporting Parameter Units Limit Qualifiers Result Analyzed 1,4-Dioxane (p-Dioxane) ug/L ND 2.0 11/25/20 04:16 1,2-Dichloroethane-d4 (S) % 99 70-130 11/25/20 04:16 Toluene-d8 (S) % 91 66-133 11/25/20 04:16

LABORATORY CONTROL SAMPLE: 3081863

_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	20	20.2	101	70-130	
1,2-Dichloroethane-d4 (S)	%			100	70-130	
Toluene-d8 (S)	%			93	66-133	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3081864 3081865

Parameter	Units	92507748001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,4-Dioxane (p-Dioxane) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S)	ug/L % %	ND	20	20	20.1	20.6	99 98 93	101 101 92	64-141 70-130 66-133	2	30 30 30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

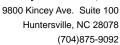
QC Batch: 583085 Analysis Method: EPA 8260D Mod.

QC Batch Method: EPA 8260D Mod. Analysis Description: 8260D MSV SIM

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92507937009, 92507937010, 92507937011, 92507937012, 92507937014, 92507937015

METHOD BLANK: 3083365 Matrix: Water


Associated Lab Samples: 92507937009, 92507937010, 92507937011, 92507937012, 92507937014, 92507937015

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	ND ND	2.0	11/25/20 15:42	
1,2-Dichloroethane-d4 (S)	%	100	70-130	11/25/20 15:42	
Toluene-d8 (S)	%	89	66-133	11/25/20 15:42	

LABORATORY CONTROL SAMPLE: 3083366 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1,4-Dioxane (p-Dioxane) 70-130 ug/L 20 22.9 115 1,2-Dichloroethane-d4 (S) 100 % 70-130 Toluene-d8 (S) % 92 66-133

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3083367 3083368												
			MS	MSD								
	9	2508101002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,4-Dioxane (p-Dioxane)	ug/L	187	80	80	289	296	128	137	64-141	2	30	
1,2-Dichloroethane-d4 (S)	%						97	96	70-130		30	
Toluene-d8 (S)	%						93	93	66-133		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex Pace Project No.: 92507937

QC Batch: 583589

QC Batch Method: EPA 8260D Mod. Analysis Method:

EPA 8260D Mod.

Analysis Description: 8260D MSV SIM

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples: 92507937013

METHOD BLANK: 3085484

Matrix: Water

Associated Lab Samples:

Date: 12/04/2020 04:29 PM

92507937013

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	ND ND	2.0	12/01/20 12:52	
1,2-Dichloroethane-d4 (S)	%	101	70-130	12/01/20 12:52	
Toluene-d8 (S)	%	97	66-133	12/01/20 12:52	

LABORATORY CONTROL SAMPLE:

Davanatas	Haita	Spike	LCS	LCS	% Rec	Overlitie ne
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	20	18.3	91	70-130	
1,2-Dichloroethane-d4 (S)	%			101	70-130	
Toluene-d8 (S)	%			95	66-133	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3085486 3085487

Parameter	Units	92507937013 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,4-Dioxane (p-Dioxane)	ug/L	151	50	50	211	206	119	110	64-141	2	30	
1,2-Dichloroethane-d4 (S)	%						103	99	70-130		30	
Toluene-d8 (S)	%						101	99	66-133		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Kop Flex
Pace Project No.: 92507937

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

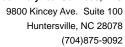
U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.


TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 12/04/2020 04:29 PM

E	Analyte concentration exceeded the calibration range. The reported result is estimated.

- IK The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should be considered an estimated value.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.
- The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
- v2 The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- v3 The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Kop Flex
Pace Project No.: 92507937

Date: 12/04/2020 04:29 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92507937001	MW-43	EPA 8260D	582948		
92507937002	MW-39	EPA 8260D	582948		
92507937003	MW-18	EPA 8260D	582948		
92507937004	MW-5R	EPA 8260D	582948		
92507937005	MW-40D	EPA 8260D	582948		
92507937006	MW-1D	EPA 8260D	582948		
2507937007	MW-23D	EPA 8260D	582948		
92507937008	Trip Blank	EPA 8260D	582948		
92507937009	MW-38R	EPA 8260D	583045		
92507937010	MW-21D	EPA 8260D	583045		
92507937011	MW-22D	EPA 8260D	583045		
92507937012	MW-20	EPA 8260D	583926		
92507937013	MW-4	EPA 8260D	583045		
92507937014	MW-9	EPA 8260D	583045		
2507937015	MW-16	EPA 8260D	584621		
92507937001	MW-43	EPA 8260D Mod.	582773		
92507937002	MW-39	EPA 8260D Mod.	582772		
92507937003	MW-18	EPA 8260D Mod.	582772		
92507937004	MW-5R	EPA 8260D Mod.	582772		
92507937005	MW-40D	EPA 8260D Mod.	582772		
92507937006	MW-1D	EPA 8260D Mod.	582772		
92507937007	MW-23D	EPA 8260D Mod.	582774		
92507937008	Trip Blank	EPA 8260D Mod.	582772		
92507937009	MW-38R	EPA 8260D Mod.	583085		
92507937010	MW-21D	EPA 8260D Mod.	583085		
92507937011	MW-22D	EPA 8260D Mod.	583085		
92507937012	MW-20	EPA 8260D Mod.	583085		
92507937013	MW-4	EPA 8260D Mod.	583589		
2507937014	MW-9	EPA 8260D Mod.	583085		
92507937015	MW-16	EPA 8260D Mod.	583085		

Document Name:

Sample Condition Upon Receipt(SCUR)

F-CAR-CS-033-Rev.07

Document No.:

Document Revised: October 28, 2020

Page 1 of 2 Issuing Authority: Pace Carolinas Quality Office

Laboratory receiving samples: Asheville Eden Greenwood	Hunters	sville()	Ž Ralei	eigh Mechanicsville Atlanta Kernersville
Sample Condition Upon Receipt Client Name:	Ÿ.,			Project #: WO#:92507937
Courier: Fed Ex UPS Pace	USP:		С	Client 92507937
Custody Seal Present? Yes No Seals I Packing Material: Bubble Wrap Bubble Thermometer:		□Yes	10	Other Biological Tissue Frozen? Wes No None
Cooler Temp: 92T064 Cooler Temp: 19, 1-7 Correction Factor: Add/Subtract (°C): USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the Unite	<u>-0.1</u>	ce:	-	Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun
□Yes □No				including Hawaii and Puerto Rico)? Yes No
				Comments/Discrepancy:
Chain of Custody Present?	√⊠Yes	□No	□N/A	1.
Samples Arrived within Hold Time?	√Yes	□No	□N/A	2.
Short Hold Time Analysis (<72 hr.)?	□Yes	⊠Ño	□N/A	3.
Rush Turn Around Time Requested?	Yes	Dino	□N/A	4.
Sufficient Volume?	Ves	□No	□N/A	5.
Correct Containers Used? -Pace Containers Used?	(∑Yes ∑Yes	□No	□N/A □N/A	6.
Containers Intact?	∑Ves	□No	□N/A	7.
Dissolved analysis: Samples Field Filtered?	□Yes	□No	ØN/A	8.
Sample Labels Match COC?	Ves	□No	□n/a	9.
-Includes Date/Time/ID/Analysis Matrix:	NT			
Headspace in VOA Vials (>5-6mm)?	□Yes	No	N/A	10.
Trip Blank Present?	Ves	□No	□N/A	11.
Trip Blank Custody Seals Present?	Ayes	□No	□N/A	
Samples MN-38R, MI	N-21	b, ρ	MW- resen	Field Data Required? Yes No
CLIENT NOTIFICATION/RESOLUTION				20110 of april contentiers.
		-		
Person contacted:			_ Date/Tii	Fime:
Project Manager SCURF Review:	An	16	`.	Date: 1-24-2020
Brainet Managar SPE Baylows	AV	nB		Date: 11-211-2020

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority: Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project # WO#: 92507937

PM: BV

Due Date: 12/03/20

CLIENT: 92-WSP

N. 380																												
# most	8P4U-125 mL Plastic Unpreserved (N/A) (Cl-)	8P3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S- 125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N- 250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (Cl-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)25O4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1																6											200	
2				(8)							/					0												
3					/	/										\overline{n}												
4								/							/	0												
5	/						7				/		/			6												
6	/						/	/						/		6				:								
7					/	$ \setminus $	/									6					-							
8					\angle		/	/								2				7	•			/				
9					/	/	/	7						/														
10					/	/	/	/			/			1	/							٠.						
11	\setminus			•	/		/	/							/													
12							/																					
									nH	l Adj	lustr	nen	t Lo	g foi	Pre	serv	/ed	Sam	ples									\exists
	iample	ID	Тур	e of P	reserv	ative	pl	H upo	n rece					on adj			ime p		ation		Amo		f Pres dded	ervati	ve		Lot #	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020

Page 1 of 2
Issuing Authority:
Pace Carolinas Quality Office

Laboratory receiving samples: Asheville Eden Greenwood	Huntersville Ralei	gh Mechanicsville Atlanta Kernersville
Sample Condition Upon Receipt Courier: Client Name: Upon Receipt Upon Receipt Upon Receipt	USPSC	Project #: UO#: 92507937 PM: BV
Commercial Pace	Other:	
Custody Seal Present? Yes No Seals In	tact? Yes No	Date/Initials Person Examining Contents 1997
Packing Material: Bubble Wrap Bubb	le Bags None (Other Biological Tissue Frozen?
Thermometer: 92T064	☐Wet ☐	Blue None
Cooler Temp: Cooler Temp Corrected (°C): Cooler Temp Corrected (°C):	-0.1	Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun
USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the United Yes No	States: CA, NY, or SC (check m	including Hawaii and Puerto Rico)? Yes
		Comments/Discrepancy:
Chain of Custody Present?	☐Yes ☐No ☐N/A	1.
Samples Arrived within Hold Time?	Yes No NA	2.
Short Hold Time Analysis (<72 hr.)?		3.
Rush Turn Around Time Requested?	Yes No N/A	4.
Sufficient Volume?	Yes No NA	5.
Correct Containers Used? -Pace Containers Used?	Yes No N/A	6.
Containers Intact?	Yes No NA	7.
Dissolved analysis: Samples Field Filtered?	□Yes □No □N/A	8.
Sample Labels Match COC?	Ves □No □N/A	9.
-Includes Date/Time/ID/Analysis Matrix:		
Headspace in VOA Vials (>5-6mm)?	Yes No NA	10.
Trip Blank Present? Trip Blank Custody Seals Present?	Yes	
COMMENTS/SAMPLE DISCREPANCY REAL MUSSRymudy MU	-22D, pw-2	Field Data Required? Yes No
	×	Lot ID of split containers:
CLIENT NOTIFICATION/RESOLUTION		and the second s
Person contacted:	Date/Ti	me:
Project Manager SCURF Review:		Date:
Project Manager SRF Review:		Date:

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority:
Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

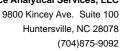
Project # _

W0#:92507937

PM: BV

Due Date: 12/03/20

CLIENT: 92-WSP


ltem#	BP4U-125 mL Plastic Unpreserved (N/A) (Cl-)	8P3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (Cl-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na252O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1																6					٠							
2																6												
3																6				-	2							
4															1	6							٠					
5												=				6												
6								1							/	6												
7					/										/	6												
8	/																											
9					/	/	/																	7				
10					/	/					/			/	/							٠.		7	7			
11				-	/		/				/				/										1			-
12							/																					

		pH Ad	justment Log for Pres	served Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#
				1		
		. N. Se				

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

CHAIN-OF-CUSTODY RECORD of Requested Analyses & Preservatives No. 010009 aboratory Name & Location Project Location @wsp.com Number of Containers 24 HR 72 HR Collection Starts Collection Step* Sample Comments 12020 B 006 B B Tracking Number(s) Time Shipment Method 73 Relinquished By (Signature) Received By (Signature) Time Number of Packages Custody Seal Number(s) Page 66 of 66 *Use stop time/date for composite and/or air samples; use only start time/date for all other samples. Matrix: AQ = Aqueous, S = Soil, SE = Sediment, A = Air, W = Wipe, B = Bulk, O = Other (detail in comments)

December 15, 2020

Eric Johnson WSP USA 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: KopFlex

Pace Project No.: 92510474

Dear Eric Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on December 09, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

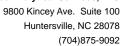
Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Bonnie Vang

bonnie.vang@pacelabs.com

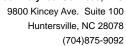
Bonnie Vaing


(704)875-9092 Project Manager

Enclosures

cc: Molly Long, WSP

Pam Robertson, WSP USA



CERTIFICATIONS

Project: KopFlex
Pace Project No.: 92510474

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project: KopFlex
Pace Project No.: 92510474

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92510474001	DUP-120820	Water	12/08/20 12:00	12/09/20 11:07
92510474002	MW-45	Water	12/08/20 13:30	12/09/20 11:07
92510474003	MW-16D	Water	12/08/20 13:45	12/09/20 11:07
92510474004	Trip Blank	Water	12/08/20 00:00	12/09/20 11:07

SAMPLE ANALYTE COUNT

Project: KopFlex
Pace Project No.: 92510474

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92510474001	DUP-120820	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92510474002	MW-45	EPA 8260D	GAW	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92510474003	MW-16D	EPA 8260D	GAW	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92510474004	Trip Blank	EPA 8260D	GAW	63	PASI-C

PASI-C = Pace Analytical Services - Charlotte

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

Sample: DUP-120820	Lab ID: 925	10474001	Collected: 12/08/2	20 12:00	Received:	12/09/20 11:07	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	- Charlotte					
Acetone	ND	ug/L	25.0	1		12/14/20 14:1	9 67-64-1	
Benzene	ND	ug/L	1.0	1		12/14/20 14:1		
Bromobenzene	ND	ug/L	1.0	1		12/14/20 14:1	9 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		12/14/20 14:1	9 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		12/14/20 14:1	9 75-27-4	
Bromoform	ND	ug/L	1.0	1		12/14/20 14:1		
Bromomethane	ND	ug/L	2.0	1		12/14/20 14:1		
2-Butanone (MEK)	ND	ug/L	5.0	1		12/14/20 14:1		
Carbon tetrachloride	ND	ug/L	1.0	1		12/14/20 14:1		
Chlorobenzene	ND	ug/L	1.0	1		12/14/20 14:1		
Chloroethane	ND	ug/L	1.0	1		12/14/20 14:1		
Chloroform	ND	ug/L	5.0	1		12/14/20 14:1		
Chloromethane	ND	ug/L	1.0	1		12/14/20 14:1		
2-Chlorotoluene	ND	ug/L	1.0	1		12/14/20 14:1		
4-Chlorotoluene	ND	ug/L	1.0	1		12/14/20 14:1		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		12/14/20 14:1		
Dibromochloromethane	ND ND	ug/L ug/L	1.0	1		12/14/20 14:1		
,2-Dibromoethane (EDB)	ND	ug/L ug/L	1.0	1		12/14/20 14:1		
Dibromomethane	ND		1.0	1		12/14/20 14:1		
	ND ND	ug/L	1.0	1		12/14/20 14.1		
,2-Dichlorobenzene		ug/L		1				
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND ND	ug/L	1.0 1.0	1		12/14/20 14:1 12/14/20 14:1		
,		ug/L						
Dichlorodifluoromethane	ND	ug/L	1.0	1		12/14/20 14:1		
I,1-Dichloroethane	24.4	ug/L	1.0	1		12/14/20 14:1		
1,2-Dichloroethane	1.7	ug/L	1.0	1		12/14/20 14:1		
1,1-Dichloroethene	108	ug/L	1.0	1		12/14/20 14:1		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		12/14/20 14:1		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		12/14/20 14:1		
I,2-Dichloropropane	ND	ug/L	1.0	1		12/14/20 14:1		
I,3-Dichloropropane	ND	ug/L	1.0	1		12/14/20 14:1		
2,2-Dichloropropane	ND	ug/L	1.0	1		12/14/20 14:1		
I,1-Dichloropropene	ND	ug/L	1.0	1		12/14/20 14:1		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			9 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1			9 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		12/14/20 14:1		
Ethylbenzene	ND	ug/L	1.0	1		12/14/20 14:1		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		12/14/20 14:1		
2-Hexanone	ND	ug/L	5.0	1		12/14/20 14:1		
-Isopropyltoluene	ND	ug/L	1.0	1		12/14/20 14:1		
Methylene Chloride	ND	ug/L	5.0	1		12/14/20 14:1	9 75-09-2	
I-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		12/14/20 14:1	9 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		12/14/20 14:1	9 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		12/14/20 14:1	9 91-20-3	
Styrene	ND	ug/L	1.0	1		12/14/20 14:1	9 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		12/14/20 14:1	9 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		12/14/20 14:1	9 79-34-5	

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

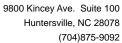
Sample: DUP-120820	Lab ID: 9251	10474001	Collected: 12/08/2	20 12:00	Received:	12/09/20 11:07	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		12/14/20 14:19	9 127-18-4	
Toluene	ND	ug/L	1.0	1		12/14/20 14:19	9 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		12/14/20 14:19	9 87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		12/14/20 14:19	9 120-82-1	
1,1,1-Trichloroethane	8.9	ug/L	1.0	1		12/14/20 14:19	9 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		12/14/20 14:19	9 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		12/14/20 14:19	9 79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		12/14/20 14:19	9 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		12/14/20 14:19	9 96-18-4	
√inyl acetate	ND	ug/L	2.0	1		12/14/20 14:19	9 108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		12/14/20 14:19	9 75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		12/14/20 14:19	9 1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		12/14/20 14:19	9 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		12/14/20 14:19	9 95-47-6	
Surrogates		_						
4-Bromofluorobenzene (S)	98	%	70-130	1		12/14/20 14:19	9 460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	70-130	1		12/14/20 14:19	9 17060-07-0	
Toluene-d8 (S)	102	%	70-130	1		12/14/20 14:19	9 2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	118	ug/L	5.0	2.5		12/10/20 15:39	9 123-91-1	
1,2-Dichloroethane-d4 (S)	100	%	70-130	2.5		12/10/20 15:39	9 17060-07-0	
Toluene-d8 (S)	89	%	66-133	2.5		12/10/20 15:39	9 2037-26-5	

300 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

ANALYTICAL RESULTS

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM


Sample: MW-45	Lab ID: 925	10474002	Collected: 12/08/2	20 13:30	Received:	12/09/20 11:07	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	nod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		12/10/20 12:3	3 67-64-1	
Benzene	ND	ug/L	1.0	1		12/10/20 12:3	3 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		12/10/20 12:3	3 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		12/10/20 12:3	3 74-97-5	M1,R1
Bromodichloromethane	ND	ug/L	1.0	1		12/10/20 12:3	3 75-27-4	
Bromoform	ND	ug/L	1.0	1		12/10/20 12:3	3 75-25-2	
Bromomethane	ND	ug/L	2.0	1		12/10/20 12:3	3 74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		12/10/20 12:3		
Carbon tetrachloride	ND	ug/L	1.0	1		12/10/20 12:3		M1
Chlorobenzene	ND	ug/L	1.0	1		12/10/20 12:3		
Chloroethane	ND	ug/L	1.0	1		12/10/20 12:3		
Chloroform	ND ND	ug/L ug/L	5.0	1		12/10/20 12:3		
Chloromethane	ND ND	•	1.0	1		12/10/20 12:3		v2
		ug/L						VZ
2-Chlorotoluene	ND	ug/L	1.0	1		12/10/20 12:3		
4-Chlorotoluene	ND	ug/L	1.0	1		12/10/20 12:3		
I,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		12/10/20 12:3		
Dibromochloromethane	ND	ug/L	1.0	1		12/10/20 12:3		
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		12/10/20 12:3		
Dibromomethane	ND	ug/L	1.0	1		12/10/20 12:3		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		12/10/20 12:3	3 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		12/10/20 12:3	3 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		12/10/20 12:3	3 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		12/10/20 12:3	3 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		12/10/20 12:3	3 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		12/10/20 12:3	3 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		12/10/20 12:3	3 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		12/10/20 12:3	3 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		12/10/20 12:3	3 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		12/10/20 12:3	3 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		12/10/20 12:3	3 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		12/10/20 12:3	3 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		12/10/20 12:3	3 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		12/10/20 12:3		
Ethylbenzene	ND	ug/L	1.0	1		12/10/20 12:3		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		12/10/20 12:3		
2-Hexanone	ND	ug/L	5.0	1		12/10/20 12:3		
		_		1		12/10/20 12:3		
o-Isopropyltoluene	ND	ug/L	1.0					
Methylene Chloride	ND	ug/L	5.0	1		12/10/20 12:3		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		12/10/20 12:3		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		12/10/20 12:3		
Naphthalene	ND	ug/L	1.0	1		12/10/20 12:3		
Styrene	ND	ug/L	1.0	1		12/10/20 12:3		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		12/10/20 12:3		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		12/10/20 12:3	3 79-34-5	

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

Sample: MW-45	Lab ID: 925	10474002	Collected: 12/08/2	20 13:30	Received: 1	2/09/20 11:07 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		12/10/20 12:33	127-18-4	
Toluene	ND	ug/L	1.0	1		12/10/20 12:33	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		12/10/20 12:33	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		12/10/20 12:33	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		12/10/20 12:33	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		12/10/20 12:33	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		12/10/20 12:33	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		12/10/20 12:33	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		12/10/20 12:33	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		12/10/20 12:33	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		12/10/20 12:33	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		12/10/20 12:33	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		12/10/20 12:33	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		12/10/20 12:33	95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	97	%	70-130	1		12/10/20 12:33	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-130	1		12/10/20 12:33	17060-07-0	
Toluene-d8 (S)	99	%	70-130	1		12/10/20 12:33	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		12/09/20 16:42	123-91-1	
1,2-Dichloroethane-d4 (S)	101	%	70-130	1		12/09/20 16:42	17060-07-0	
Toluene-d8 (S)	126	%	66-133	1		12/09/20 16:42	2037-26-5	

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM


Sample: MW-16D	Lab ID: 925	10474003	Collected: 12/08/2	20 13:45	Received:	12/09/20 11:07	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		12/10/20 13:4	6 67-64-1	
Benzene	ND	ug/L	1.0	1		12/10/20 13:4	6 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		12/10/20 13:4	6 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		12/10/20 13:4	6 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		12/10/20 13:4	6 75-27-4	
Bromoform	ND	ug/L	1.0	1		12/10/20 13:4	6 75-25-2	
Bromomethane	ND	ug/L	2.0	1		12/10/20 13:4		v2
2-Butanone (MEK)	ND	ug/L	5.0	1		12/10/20 13:4		
Carbon tetrachloride	ND	ug/L	1.0	1		12/10/20 13:4		
Chlorobenzene	ND	ug/L	1.0	1		12/10/20 13:4		
Chloroethane	ND	-	1.0	1		12/10/20 13:4		
Chloroform	ND ND	ug/L	5.0	1		12/10/20 13:4		
		ug/L						
Chloromethane	ND	ug/L	1.0	1		12/10/20 13:4		v2
2-Chlorotoluene	ND	ug/L	1.0	1		12/10/20 13:4		
1-Chlorotoluene	ND	ug/L	1.0	1		12/10/20 13:4		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		12/10/20 13:4		
Dibromochloromethane	ND	ug/L	1.0	1		12/10/20 13:4		
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		12/10/20 13:4		
Dibromomethane	ND	ug/L	1.0	1		12/10/20 13:4	6 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	1.0	1		12/10/20 13:4	6 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		12/10/20 13:4	6 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		12/10/20 13:4	6 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		12/10/20 13:4	6 75-71-8	
1,1-Dichloroethane	25.9	ug/L	1.0	1		12/10/20 13:4	6 75-34-3	
1,2-Dichloroethane	1.6	ug/L	1.0	1		12/10/20 13:4	6 107-06-2	
1,1-Dichloroethene	127	ug/L	1.0	1		12/10/20 13:4	6 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		12/10/20 13:4	6 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		12/10/20 13:4		
1,2-Dichloropropane	ND	ug/L	1.0	1		12/10/20 13:4		
1,3-Dichloropropane	ND	ug/L	1.0	1		12/10/20 13:4		
2,2-Dichloropropane	ND	ug/L	1.0	1		12/10/20 13:4		
1,1-Dichloropropene	ND ND	ug/L ug/L	1.0	1		12/10/20 13:4		
	ND		1.0	1			6 10061-01-5	
cis-1,3-Dichloropropene		ug/L		1				
rans-1,3-Dichloropropene	ND	ug/L	1.0	•			6 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		12/10/20 13:4		
Ethylbenzene	ND	ug/L	1.0	1		12/10/20 13:4		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		12/10/20 13:4		
2-Hexanone	ND	ug/L	5.0	1		12/10/20 13:4		
o-Isopropyltoluene	ND	ug/L	1.0	1		12/10/20 13:4	6 99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		12/10/20 13:4	6 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		12/10/20 13:4	6 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		12/10/20 13:4	6 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		12/10/20 13:4	6 91-20-3	
Styrene	ND	ug/L	1.0	1		12/10/20 13:4	6 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		12/10/20 13:4		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		12/10/20 13:4		

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

Sample: MW-16D	Lab ID: 925	10474003	Collected: 12/08/2	20 13:45	Received: 1	2/09/20 11:07 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		12/10/20 13:46	127-18-4	
Toluene	ND	ug/L	1.0	1		12/10/20 13:46	108-88-3	
,2,3-Trichlorobenzene	ND	ug/L	1.0	1		12/10/20 13:46	87-61-6	
,2,4-Trichlorobenzene	ND	ug/L	1.0	1		12/10/20 13:46	120-82-1	
,1,1-Trichloroethane	10.1	ug/L	1.0	1		12/10/20 13:46	71-55-6	
,1,2-Trichloroethane	ND	ug/L	1.0	1		12/10/20 13:46	79-00-5	
Frichloroethene Trichloroethene	ND	ug/L	1.0	1		12/10/20 13:46	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		12/10/20 13:46	75-69-4	
,2,3-Trichloropropane	ND	ug/L	1.0	1		12/10/20 13:46	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		12/10/20 13:46	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		12/10/20 13:46	75-01-4	
(ylene (Total)	ND	ug/L	1.0	1		12/10/20 13:46	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		12/10/20 13:46	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		12/10/20 13:46	95-47-6	
Surrogates		•						
I-Bromofluorobenzene (S)	98	%	70-130	1		12/10/20 13:46	460-00-4	
,2-Dichloroethane-d4 (S)	102	%	70-130	1		12/10/20 13:46	17060-07-0	
Toluene-d8 (S)	101	%	70-130	1		12/10/20 13:46	2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	60D Mod.					
	Pace Analytica	l Services -	Charlotte					
,4-Dioxane (p-Dioxane) Surrogates	105	ug/L	5.0	2.5		12/09/20 17:01	123-91-1	
,2-Dichloroethane-d4 (S)	100	%	70-130	2.5		12/09/20 17:01	17060-07-0	
Toluene-d8 (S)	88	%	66-133	2.5		12/09/20 17:01	2037-26-5	

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

Sample: Trip Blank	Lab ID: 925	10474004	Collected: 12/08/2	20 00:00	Received:	12/09/20 11:07	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Metl	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		12/10/20 11:20	0 67-64-1	
Benzene	ND	ug/L	1.0	1		12/10/20 11:20	0 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		12/10/20 11:20	0 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		12/10/20 11:20	0 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		12/10/20 11:20	0 75-27-4	
Bromoform	ND	ug/L	1.0	1		12/10/20 11:20	0 75-25-2	
Bromomethane	ND	ug/L	2.0	1		12/10/20 11:20	0 74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		12/10/20 11:20		
Carbon tetrachloride	ND	ug/L	1.0	1		12/10/20 11:20		
Chlorobenzene	ND	ug/L	1.0	1		12/10/20 11:20		
Chloroethane	ND	ug/L	1.0	1		12/10/20 11:20		
Chloroform	ND	ug/L	5.0	1		12/10/20 11:20		
Chloromethane	ND	ug/L	1.0	1		12/10/20 11:20		v2
2-Chlorotoluene	ND	•		1		12/10/20 11:20		٧Z
		ug/L	1.0					
4-Chlorotoluene	ND	ug/L	1.0	1		12/10/20 11:20		
,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		12/10/20 11:20		
Dibromochloromethane	ND	ug/L	1.0	1		12/10/20 11:20	-	
,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		12/10/20 11:20		
Dibromomethane	ND	ug/L	1.0	1		12/10/20 11:20		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		12/10/20 11:20	0 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		12/10/20 11:20	0 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	1.0	1		12/10/20 11:20	0 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		12/10/20 11:20	0 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		12/10/20 11:20	0 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		12/10/20 11:20	0 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		12/10/20 11:20	0 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		12/10/20 11:20	0 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		12/10/20 11:20	0 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		12/10/20 11:20	0 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		12/10/20 11:20	0 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		12/10/20 11:20	0 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		12/10/20 11:20		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			0 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1			0 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		12/10/20 11:20		
Ethylbenzene	ND	ug/L	1.0	1		12/10/20 11:20		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		12/10/20 11:20		
2-Hexanone	ND	ug/L	5.0	1		12/10/20 11:20		
		_		1				
o-Isopropyltoluene	ND	ug/L	1.0			12/10/20 11:20		
Methylene Chloride	ND	ug/L	5.0	1		12/10/20 11:20		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		12/10/20 11:20		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		12/10/20 11:20		
Naphthalene -	ND	ug/L	1.0	1		12/10/20 11:20		
Styrene	ND	ug/L	1.0	1		12/10/20 11:20		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		12/10/20 11:20		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		12/10/20 11:20	0 79-34-5	

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

Sample: Trip Blank	Lab ID: 925	10474004	Collected: 12/08/2	00:00	Received: 1	2/09/20 11:07	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	nod: EPA 82	260D					
	Pace Analytica	I Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		12/10/20 11:20) 127-18-4	
Toluene	ND	ug/L	1.0	1		12/10/20 11:20	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		12/10/20 11:20	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		12/10/20 11:20	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		12/10/20 11:20	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		12/10/20 11:20	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		12/10/20 11:20	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		12/10/20 11:20	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		12/10/20 11:20	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		12/10/20 11:20	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		12/10/20 11:20	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		12/10/20 11:20	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		12/10/20 11:20	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		12/10/20 11:20	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	102	%	70-130	1		12/10/20 11:20	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	70-130	1		12/10/20 11:20	17060-07-0	
Toluene-d8 (S)	103	%	70-130	1		12/10/20 11:20	2037-26-5	

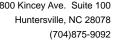
Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

QC Batch: 585820 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte


Associated Lab Samples: 92510474002, 92510474003, 92510474004

METHOD BLANK: 3096653 Matrix: Water

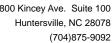
Associated Lab Samples: 92510474002, 92510474003, 92510474004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	12/10/20 11:02	·
1,1,1-Trichloroethane	ug/L	ND	1.0	12/10/20 11:02	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	12/10/20 11:02	
1,1,2-Trichloroethane	ug/L	ND	1.0	12/10/20 11:02	
1,1-Dichloroethane	ug/L	ND	1.0	12/10/20 11:02	
1,1-Dichloroethene	ug/L	ND	1.0	12/10/20 11:02	
1,1-Dichloropropene	ug/L	ND	1.0	12/10/20 11:02	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	12/10/20 11:02	
1,2,3-Trichloropropane	ug/L	ND	1.0	12/10/20 11:02	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	12/10/20 11:02	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	12/10/20 11:02	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	12/10/20 11:02	
1,2-Dichlorobenzene	ug/L	ND	1.0	12/10/20 11:02	
1,2-Dichloroethane	ug/L	ND	1.0	12/10/20 11:02	
1,2-Dichloropropane	ug/L	ND	1.0	12/10/20 11:02	
1,3-Dichlorobenzene	ug/L	ND	1.0	12/10/20 11:02	
1,3-Dichloropropane	ug/L	ND	1.0	12/10/20 11:02	
1,4-Dichlorobenzene	ug/L	ND	1.0	12/10/20 11:02	
2,2-Dichloropropane	ug/L	ND	1.0	12/10/20 11:02	
2-Butanone (MEK)	ug/L	ND	5.0	12/10/20 11:02	
2-Chlorotoluene	ug/L	ND	1.0	12/10/20 11:02	
2-Hexanone	ug/L	ND	5.0	12/10/20 11:02	
4-Chlorotoluene	ug/L	ND	1.0	12/10/20 11:02	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	12/10/20 11:02	
Acetone	ug/L	ND	25.0	12/10/20 11:02	
Benzene	ug/L	ND	1.0	12/10/20 11:02	
Bromobenzene	ug/L	ND	1.0	12/10/20 11:02	
Bromochloromethane	ug/L	ND	1.0	12/10/20 11:02	
Bromodichloromethane	ug/L	ND	1.0	12/10/20 11:02	
Bromoform	ug/L	ND	1.0	12/10/20 11:02	
Bromomethane	ug/L	ND	2.0	12/10/20 11:02	v2
Carbon tetrachloride	ug/L	ND	1.0	12/10/20 11:02	
Chlorobenzene	ug/L	ND	1.0	12/10/20 11:02	
Chloroethane	ug/L	ND	1.0	12/10/20 11:02	
Chloroform	ug/L	ND	5.0	12/10/20 11:02	
Chloromethane	ug/L	ND	1.0	12/10/20 11:02	v2
cis-1,2-Dichloroethene	ug/L	ND	1.0	12/10/20 11:02	
cis-1,3-Dichloropropene	ug/L	ND	1.0	12/10/20 11:02	
Dibromochloromethane	ug/L	ND	1.0	12/10/20 11:02	
Dibromomethane	ug/L	ND	1.0	12/10/20 11:02	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM


METHOD BLANK: 3096653 Matrix: Water

Associated Lab Samples: 92510474002, 92510474003, 92510474004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Faianietei				Allalyzeu	Qualifiers
Dichlorodifluoromethane	ug/L	ND	1.0	12/10/20 11:02	
Diisopropyl ether	ug/L	ND	1.0	12/10/20 11:02	
Ethylbenzene	ug/L	ND	1.0	12/10/20 11:02	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	12/10/20 11:02	
m&p-Xylene	ug/L	ND	2.0	12/10/20 11:02	
Methyl-tert-butyl ether	ug/L	ND	1.0	12/10/20 11:02	
Methylene Chloride	ug/L	ND	5.0	12/10/20 11:02	
Naphthalene	ug/L	ND	1.0	12/10/20 11:02	
o-Xylene	ug/L	ND	1.0	12/10/20 11:02	
p-Isopropyltoluene	ug/L	ND	1.0	12/10/20 11:02	
Styrene	ug/L	ND	1.0	12/10/20 11:02	
Tetrachloroethene	ug/L	ND	1.0	12/10/20 11:02	
Toluene	ug/L	ND	1.0	12/10/20 11:02	
trans-1,2-Dichloroethene	ug/L	ND	1.0	12/10/20 11:02	
trans-1,3-Dichloropropene	ug/L	ND	1.0	12/10/20 11:02	
Trichloroethene	ug/L	ND	1.0	12/10/20 11:02	
Trichlorofluoromethane	ug/L	ND	1.0	12/10/20 11:02	
Vinyl acetate	ug/L	ND	2.0	12/10/20 11:02	
Vinyl chloride	ug/L	ND	1.0	12/10/20 11:02	
Xylene (Total)	ug/L	ND	1.0	12/10/20 11:02	
1,2-Dichloroethane-d4 (S)	%	97	70-130	12/10/20 11:02	
4-Bromofluorobenzene (S)	%	99	70-130	12/10/20 11:02	
Toluene-d8 (S)	%	101	70-130	12/10/20 11:02	

LABORATORY CONTROL SAMPLE:	3096654					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	51.8	104	70-130	
1,1,1-Trichloroethane	ug/L	50	47.6	95	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	50.4	101	70-130	
1,1,2-Trichloroethane	ug/L	50	50.4	101	70-130	
1,1-Dichloroethane	ug/L	50	44.8	90	70-130	
1,1-Dichloroethene	ug/L	50	47.3	95	70-132	
1,1-Dichloropropene	ug/L	50	45.3	91	70-131	
1,2,3-Trichlorobenzene	ug/L	50	52.6	105	70-134	
1,2,3-Trichloropropane	ug/L	50	48.1	96	70-130	
1,2,4-Trichlorobenzene	ug/L	50	51.8	104	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	51.2	102	70-132	
1,2-Dibromoethane (EDB)	ug/L	50	52.4	105	70-130	
1,2-Dichlorobenzene	ug/L	50	50.3	101	70-130	
1,2-Dichloroethane	ug/L	50	47.0	94	70-130	
1,2-Dichloropropane	ug/L	50	48.0	96	70-130	
1,3-Dichlorobenzene	ug/L	50	51.2	102	70-130	
1,3-Dichloropropane	ug/L	50	51.4	103	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

ABORATORY CONTROL SAMPLE:	3096654					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
,4-Dichlorobenzene	ug/L		50.3	101	70-130	
2,2-Dichloropropane	ug/L	50	47.0	94	70-130	
2-Butanone (MEK)	ug/L	100	93.4	93	70-133	
2-Chlorotoluene	ug/L	50	50.9	102	70-130	
2-Hexanone	ug/L	100	102	102	70-130	
I-Chlorotoluene	ug/L	50	49.0	98	70-130	
-Methyl-2-pentanone (MIBK)	ug/L	100	93.2	93	70-130	
acetone (MIBIT)	ug/L	100	99.6	100	70-144	
Benzene	ug/L	50	46.1	92	70-130	
romobenzene	ug/L	50	49.1	98	70-130	
Gromochloromethane	ug/L	50	46.6	93	70-130	
romodichloromethane	ug/L	50 50	47.5	95	70-130	
romoform	ug/L	50 50	47.3 45.7	91	70-130	
Bromomethane	ug/L ug/L	50 50	39.2	78	30-177 v	ı3
Carbon tetrachloride	ug/L ug/L	50 50	59.2 50.8	76 102	70-130	J
			50.5 50.5	102		
Chlorobenzene	ug/L	50 50	50.5 41.2	82	70-130 46-131	
Chloroethane	ug/L	50				
Chloroform	ug/L	50	47.8	96	70-130	
thloromethane	ug/L	50	29.3	59	49-130 v	3
is-1,2-Dichloroethene	ug/L	50	44.0	88	70-130	
is-1,3-Dichloropropene	ug/L	50	48.2	96	70-130	
ibromochloromethane	ug/L	50	49.3	99	70-130	
ibromomethane	ug/L	50	50.8	102	70-130	
Dichlorodifluoromethane	ug/L	50	41.1	82	52-134	
iisopropyl ether	ug/L	50	42.0	84	70-131	
thylbenzene	ug/L	50	50.2	100	70-130	
lexachloro-1,3-butadiene	ug/L	50	52.1	104	70-131	
n&p-Xylene	ug/L	100	101	101	70-130	
lethyl-tert-butyl ether	ug/L	50	46.3	93	70-130	
lethylene Chloride	ug/L	50	43.7	87	68-130	
laphthalene	ug/L	50	54.7	109	70-133	
-Xylene	ug/L	50	51.0	102	70-130	
-Isopropyltoluene	ug/L	50	51.0	102	70-130	
Styrene	ug/L	50	51.3	103	70-130	
etrachloroethene	ug/L	50	50.8	102	70-130	
oluene	ug/L	50	46.6	93	70-130	
ans-1,2-Dichloroethene	ug/L	50	46.4	93	70-130	
ans-1,3-Dichloropropene	ug/L	50	48.5	97	70-130	
richloroethene	ug/L	50	48.4	97	70-130	
richlorofluoromethane	ug/L	50	44.0	88	61-130	
inyl acetate	ug/L	100	103	103	70-140	
'inyl chloride	ug/L	50	40.8	82	59-142	
ylene (Total)	ug/L	150	152	101	70-130	
,2-Dichloroethane-d4 (S)	%			91	70-130	
-Bromofluorobenzene (S)	%			102	70-130	
oluene-d8 (S)	%			98	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

MATRIX SPIKE & MATRIX SI	PIKE DUPL	LICATE: 3096			3096656							
			MS	MSD								
		92510474002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
,1,1,2-Tetrachloroethane	ug/L	ND	20	20	21.6	21.2	108	106	70-135	2	30	
,1,1-Trichloroethane	ug/L	ND	20	20	20.1	21.1	100	105	70-148	5	30	
,1,2,2-Tetrachloroethane	ug/L	ND	20	20	21.1	20.8	105	104	70-131	1	30	
,1,2-Trichloroethane	ug/L	ND	20	20	21.4	21.9	107	109	70-136	2	30	
,1-Dichloroethane	ug/L	ND	20	20	19.1	19.3	95	96	70-147	1	30	
,1-Dichloroethene	ug/L	ND	20	20	20.5	20.9	102	104	70-158	2	30	
,1-Dichloropropene	ug/L	ND	20	20	19.8	19.8	99	99	70-149	0	30	
,2,3-Trichlorobenzene	ug/L	ND	20	20	21.1	22.1	105	111	68-140	5	30	
,2,3-Trichloropropane	ug/L	ND	20	20	20.2	20.2	101	101	67-137	0	30	
,2,4-Trichlorobenzene	ug/L	ND	20	20	21.1	22.8	106	114	70-139	8	30	
,2-Dibromo-3-	ug/L	ND	20	20	22.1	23.4	110	117	69-136	6	30	
hloropropane	_											
,2-Dibromoethane (EDB)	ug/L	ND	20	20	21.0	22.0	105	110	70-137	4		
,2-Dichlorobenzene	ug/L	ND	20	20	21.2	22.0	106	110	70-133	4		
,2-Dichloroethane	ug/L	ND	20	20	18.7	19.3	94	97	67-138	3	30	
,2-Dichloropropane	ug/L	ND	20	20	20.0	20.9	100	105	70-138	4	30	
,3-Dichlorobenzene	ug/L	ND	20	20	21.7	22.1	109	110	70-133	2	30	
,3-Dichloropropane	ug/L	ND	20	20	21.5	20.7	107	103	70-136	4	30	
,4-Dichlorobenzene	ug/L	ND	20	20	21.2	21.8	106	109	70-133	3	30	
,2-Dichloropropane	ug/L	ND	20	20	20.4	20.9	102	104	52-155	2	30	
-Butanone (MEK)	ug/L	ND	40	40	42.0	39.6	105	99	61-147	6	30	
-Chlorotoluene	ug/L	ND	20	20	22.0	22.4	110	112	70-141	2	30	
?-Hexanone	ug/L	ND	40	40	43.9	41.8	110	105	67-139	5	30	
I-Chlorotoluene	ug/L	ND	20	20	21.3	21.9	106	109	70-135	3	30	
l-Methyl-2-pentanone MIBK)	ug/L	ND	40	40	38.9	38.4	97	96	67-136	1		
Acetone	ug/L	ND	40	40	42.1	40.7	105	102	55-159	3	30	
Benzene	ug/L	ND	20	20	20.1	20.2	100	101	67-150	1		
Bromobenzene	ug/L	ND	20	20	20.4	21.1	102	106	70-134	3		
Bromochloromethane	ug/L	ND	20	20	10.8	19.7	54	99	70-146	59		M1,R v3
Bromodichloromethane	ug/L	ND	20	20	20.1	20.3	101	102	70-138	1		
Bromoform	ug/L	ND	20	20	21.7	22.8	109	114	57-138	5		
Bromomethane	ug/L	ND	20	20	15.9	17.2	79	86	10-200	8		
Carbon tetrachloride	ug/L	ND	20	20	13.2	11.4	66	57	70-147	15		M1
Chlorobenzene	ug/L	ND	20	20	21.4	21.6	107	108	70-137	1		
Chloroethane	ug/L	ND	20	20	17.3	17.2	86	86	51-166	0		
Chloroform	ug/L	ND	20	20	19.8	19.8	99	99	70-144	0		
Chloromethane	ug/L	ND	20	20	13.1	16.5	66	82	24-161	23	30	v3
is-1,2-Dichloroethene	ug/L	ND	20	20	18.8	19.4	94	97	67-148	3		
is-1,3-Dichloropropene	ug/L	ND	20	20	20.4	20.9	102	105	70-142	3		
Dibromochloromethane	ug/L	ND	20	20	21.4	22.1	107	111	68-138	3	30	
Dibromomethane	ug/L	ND	20	20	21.1	22.3	105	112	70-134	6	30	
Dichlorodifluoromethane	ug/L	ND	20	20	16.5	16.9	83	85	43-155	2	30	
Diisopropyl ether	ug/L	ND	20	20	16.5	17.2	83	86	65-146	4	30	
Ethylbenzene	ug/L	ND	20	20	21.2	21.8	106	109	68-143	3	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 3096		MCD	3096656							
	0	2510474002	MS Spike	MSD	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Spike Conc.	Spike Conc.	Result	Result	% Rec	% Rec	% Rec	RPD	RPD	Qua
Hexachloro-1,3-butadiene	ug/L	ND	20	20	22.8	23.6	114	118	62-151	4		v1
m&p-Xylene	ug/L	ND	40	40	42.7	42.8	107	107	53-157	0	30	
Methyl-tert-butyl ether	ug/L	ND	20	20	18.3	18.8	91	94	59-156	3	30	
Methylene Chloride	ug/L	ND	20	20	18.2	18.7	91	93	64-148	3	30	
Naphthalene	ug/L	ND	20	20	20.9	22.4	104	112	57-150	7	30	
o-Xylene	ug/L	ND	20	20	21.0	21.8	105	109	68-143	4	30	
p-Isopropyltoluene	ug/L	ND	20	20	22.3	22.9	111	114	70-141	3	30	
Styrene	ug/L	ND	20	20	21.5	21.9	108	109	70-136	2	30	
Tetrachloroethene	ug/L	ND	20	20	21.9	22.1	109	111	70-139	1	30	
Toluene	ug/L	ND	20	20	20.1	20.0	100	100	47-157	0	30	
trans-1,2-Dichloroethene	ug/L	ND	20	20	19.6	20.0	98	100	70-149	2	30	
trans-1,3-Dichloropropene	ug/L	ND	20	20	21.4	21.5	107	107	70-138	0	30	
Trichloroethene	ug/L	ND	20	20	20.9	20.9	104	105	70-149	0	30	
Trichlorofluoromethane	ug/L	ND	20	20	20.0	19.4	100	97	61-154	3	30	
Vinyl acetate	ug/L	ND	40	40	40.0	40.3	100	101	48-156	1	30	
Vinyl chloride	ug/L	ND	20	20	17.4	16.9	87	84	55-172	3	30	
Xylene (Total)	ug/L	ND	60	60	63.7	64.6	106	108	66-145	1	30	
1,2-Dichloroethane-d4 (S)	%						92	92	70-130			
4-Bromofluorobenzene (S)	%						102	101	70-130			
Toluene-d8 (S)	%						99	98	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

QC Batch: 586572 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92510474001

METHOD BLANK: 3100422 Matrix: Water

Associated Lab Samples: 92510474001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	12/14/20 12:11	
1,1,1-Trichloroethane	ug/L	ND	1.0	12/14/20 12:11	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	12/14/20 12:11	
1,1,2-Trichloroethane	ug/L	ND	1.0	12/14/20 12:11	
1,1-Dichloroethane	ug/L	ND	1.0	12/14/20 12:11	
1,1-Dichloroethene	ug/L	ND	1.0	12/14/20 12:11	
1,1-Dichloropropene	ug/L	ND	1.0	12/14/20 12:11	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	12/14/20 12:11	
1,2,3-Trichloropropane	ug/L	ND	1.0	12/14/20 12:11	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	12/14/20 12:11	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	12/14/20 12:11	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	12/14/20 12:11	
1,2-Dichlorobenzene	ug/L	ND	1.0	12/14/20 12:11	
1,2-Dichloroethane	ug/L	ND	1.0	12/14/20 12:11	
1,2-Dichloropropane	ug/L	ND	1.0	12/14/20 12:11	
1,3-Dichlorobenzene	ug/L	ND	1.0	12/14/20 12:11	
1,3-Dichloropropane	ug/L	ND	1.0	12/14/20 12:11	
1,4-Dichlorobenzene	ug/L	ND	1.0	12/14/20 12:11	
2,2-Dichloropropane	ug/L	ND	1.0	12/14/20 12:11	
2-Butanone (MEK)	ug/L	ND	5.0	12/14/20 12:11	
2-Chlorotoluene	ug/L	ND	1.0	12/14/20 12:11	
2-Hexanone	ug/L	ND	5.0	12/14/20 12:11	
4-Chlorotoluene	ug/L	ND	1.0	12/14/20 12:11	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	12/14/20 12:11	
Acetone	ug/L	ND	25.0	12/14/20 12:11	
Benzene	ug/L	ND	1.0	12/14/20 12:11	
Bromobenzene	ug/L	ND	1.0	12/14/20 12:11	
Bromochloromethane	ug/L	ND	1.0	12/14/20 12:11	
Bromodichloromethane	ug/L	ND	1.0	12/14/20 12:11	
Bromoform	ug/L	ND	1.0	12/14/20 12:11	
Bromomethane	ug/L	ND	2.0	12/14/20 12:11	
Carbon tetrachloride	ug/L	ND	1.0	12/14/20 12:11	
Chlorobenzene	ug/L	ND	1.0	12/14/20 12:11	
Chloroethane	ug/L	ND	1.0	12/14/20 12:11	
Chloroform	ug/L	ND	5.0	12/14/20 12:11	
Chloromethane	ug/L	ND	1.0	12/14/20 12:11	
cis-1,2-Dichloroethene	ug/L	ND	1.0	12/14/20 12:11	
cis-1,3-Dichloropropene	ug/L	ND	1.0	12/14/20 12:11	
Dibromochloromethane	ug/L	ND	1.0	12/14/20 12:11	
Dibromomethane	ug/L	ND	1.0	12/14/20 12:11	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

METHOD BLANK: 3100422 Matrix: Water

Associated Lab Samples: 92510474001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Dichlorodifluoromethane	ug/L		1.0	12/14/20 12:11	
Diisopropyl ether	ug/L	ND	1.0	12/14/20 12:11	
Ethylbenzene	ug/L	ND	1.0	12/14/20 12:11	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	12/14/20 12:11	
m&p-Xylene	ug/L	ND	2.0	12/14/20 12:11	
Methyl-tert-butyl ether	ug/L	ND	1.0	12/14/20 12:11	
Methylene Chloride	ug/L	ND	5.0	12/14/20 12:11	
Naphthalene	ug/L	ND	1.0	12/14/20 12:11	
o-Xylene	ug/L	ND	1.0	12/14/20 12:11	
p-Isopropyltoluene	ug/L	ND	1.0	12/14/20 12:11	
Styrene	ug/L	ND	1.0	12/14/20 12:11	
Tetrachloroethene	ug/L	ND	1.0	12/14/20 12:11	
Toluene	ug/L	ND	1.0	12/14/20 12:11	
trans-1,2-Dichloroethene	ug/L	ND	1.0	12/14/20 12:11	
trans-1,3-Dichloropropene	ug/L	ND	1.0	12/14/20 12:11	
Trichloroethene	ug/L	ND	1.0	12/14/20 12:11	
Trichlorofluoromethane	ug/L	ND	1.0	12/14/20 12:11	
Vinyl acetate	ug/L	ND	2.0	12/14/20 12:11	
Vinyl chloride	ug/L	ND	1.0	12/14/20 12:11	
Xylene (Total)	ug/L	ND	1.0	12/14/20 12:11	
1,2-Dichloroethane-d4 (S)	%	99	70-130	12/14/20 12:11	
4-Bromofluorobenzene (S)	%	100	70-130	12/14/20 12:11	
Toluene-d8 (S)	%	102	70-130	12/14/20 12:11	

LABORATORY CONTROL SAMPLE:	3100423					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	49.1	98	70-130	
1,1,1-Trichloroethane	ug/L	50	44.9	90	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	49.7	99	70-130	
1,1,2-Trichloroethane	ug/L	50	47.6	95	70-130	
1,1-Dichloroethane	ug/L	50	42.3	85	70-130	
1,1-Dichloroethene	ug/L	50	45.8	92	70-132	
1,1-Dichloropropene	ug/L	50	43.0	86	70-131	
1,2,3-Trichlorobenzene	ug/L	50	53.1	106	70-134	
1,2,3-Trichloropropane	ug/L	50	47.3	95	70-130	
1,2,4-Trichlorobenzene	ug/L	50	52.7	105	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	50.4	101	70-132	
1,2-Dibromoethane (EDB)	ug/L	50	51.0	102	70-130	
1,2-Dichlorobenzene	ug/L	50	47.3	95	70-130	
1,2-Dichloroethane	ug/L	50	43.9	88	70-130	
1,2-Dichloropropane	ug/L	50	43.7	87	70-130	
1,3-Dichlorobenzene	ug/L	50	47.5	95	70-130	
1,3-Dichloropropane	ug/L	50	49.6	99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

LABORATORY CONTROL SAMPL	E: 3100423	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	ug/L		46.0	92	70-130	
2,2-Dichloropropane	ug/L	50	43.7	87	70-130	
2-Butanone (MEK)	ug/L	100	96.2	96	70-133	
2-Chlorotoluene	ug/L	50	46.8	94	70-130	
2-Hexanone	ug/L	100	103	103	70-130	
4-Chlorotoluene	ug/L	50	44.9	90	70-130	
1-Methyl-2-pentanone (MIBK)	ug/L	100	89.7	90	70-130	
Acetone	ug/L	100	105	105	70-144	
Benzene	ug/L	50	44.0	88	70-130	
Bromobenzene	ug/L	50	45.1	90	70-130	
Bromochloromethane	ug/L	50	43.3	87	70-130	
Bromodichloromethane	ug/L	50	45.6	91	70-130	
Bromoform	ug/L	50	52.5	105	70-131	
Bromomethane	ug/L	50	40.7	81	30-177	
Carbon tetrachloride	ug/L	50	46.5	93	70-130	
Chlorobenzene	ug/L	50	48.3	97	70-130	
Chloroethane	ug/L	50	40.1	80	46-131	
Chloroform	ug/L	50	45.5	91	70-130	
Chloromethane	ug/L	50	33.3	67	49-130	
is-1,2-Dichloroethene	ug/L	50	41.4	83	70-130	
sis-1,3-Dichloropropene	ug/L	50	47.8	96	70-130	
Dibromochloromethane	ug/L	50	49.6	99	70-130	
Dibromomethane	ug/L	50	48.9	98	70-130	
Dichlorodifluoromethane	ug/L	50	37.9	76	52-134	
Diisopropyl ether	ug/L	50	39.6	79	70-131	
Ethylbenzene	ug/L	50	47.5	95	70-130	
Hexachloro-1,3-butadiene	ug/L	50	53.1	106	70-130	
n&p-Xylene	ug/L	100	96.1	96	70-131	
Methyl-tert-butyl ether	ug/L	50	45.6	91	70-130	
Methylene Chloride	ug/L	50 50	43.0	86	68-130	
Naphthalene	ug/L	50 50	52.8	106	70-133	
o-Xylene	_	50 50	48.5	97	70-133	
•	ug/L	50 50	46.5 47.4	97 95	70-130	
o-Isopropyltoluene Styrene	ug/L ug/L	50 50	48.8	98	70-130 70-130	
etrachloroethene		50 50	49.0	98	70-130	
Toluene	ug/L	50 50	49.0 44.4	96 89	70-130 70-130	
	ug/L					
rans-1,2-Dichloroethene	ug/L	50 50	45.0 40.6	90	70-130	
rans-1,3-Dichloropropene	ug/L	50 50	49.6 45.0	99	70-130	
richloroethene	ug/L	50 50	45.0	90	70-130	
richlorofluoromethane	ug/L	50	41.9	84	61-130	
/inyl acetate	ug/L	100	96.3	96	70-140	
/inyl chloride	ug/L	50	37.2	74	59-142	
(ylene (Total)	ug/L	150	145	96	70-130	
,2-Dichloroethane-d4 (S)	%			94	70-130	
1-Bromofluorobenzene (S)	%			102	70-130	
Toluene-d8 (S)	%			98	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(704)875-9092

QUALITY CONTROL DATA

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

MATRIX SPIKE & MATRIX SI	PIKE DUPI	LICATE: 3100			3100425							
			MS	MSD								
Parameter	Units	92510407021 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qι
.1.1.2-Tetrachloroethane		— ND	20	20	25.0	19.1	125	96	70-135	26		
, , ,	ug/L		20	20	24.4				70-133	20		
,1,1-Trichloroethane	ug/L	ND	20	20	24.4	19.6	122 118	98			30	
,1,2,2-Tetrachloroethane ,1,2-Trichloroethane	ug/L	ND ND	20	20	23.7	19.1 18.3	117	96 91	70-131 70-136	21 25		
,1-Dichloroethane	ug/L ug/L	ND ND	20	20	24.2	19.3	121	97	70-130	22		
,1-Dichloroethene	ug/L ug/L	ND ND	20	20	26.2	20.6	131	103	70-147	24		
,1-Dichloropropene	_	ND ND	20	20	25.1	19.2	126	96	70-138	24 27	30	
,2,3-Trichlorobenzene	ug/L	ND ND	20	20	23.1	18.2	116	90	68-140	24		
	ug/L ug/L	ND ND	20	20	23.2	19.2	119	96	67-137	24 22		
,2,3-Trichloropropane ,2,4-Trichlorobenzene		ND ND	20	20	24.0	19.2	120	96	70-139	22		
,2-Dibromo-3-	ug/L	ND ND	20	20	24.0	19.2	120	97	69-136	24		
hloropropane	ug/L	ND	20	20	24.0	19.3	123	91	09-130	24	30	
,2-Dibromoethane (EDB)	ug/L	ND	20	20	24.2	19.2	121	96	70-137	23	30	
,2-Dichlorobenzene	ug/L	ND	20	20	24.5	18.6	122	93	70-133	27	30	
,2-Dichloroethane	ug/L	ND	20	20	23.3	17.9	117	90	67-138	26	30	
,2-Dichloropropane	ug/L	ND	20	20	25.5	20.0	128	100	70-138	24	30	
,3-Dichlorobenzene	ug/L	ND	20	20	24.4	18.8	122	94	70-133	26	30	
,3-Dichloropropane	ug/L	ND	20	20	24.0	18.6	120	93	70-136	25	30	
,4-Dichlorobenzene	ug/L	ND	20	20	23.2	18.8	116	94	70-133	21	30	
,2-Dichloropropane	ug/L	ND	20	20	29.3	23.2	147	116	52-155	23	30	
-Butanone (MEK)	ug/L	ND	40	40	48.2	36.6	120	92	61-147	27	30	
-Chlorotoluene	ug/L	ND	20	20	25.4	21.0	127	105	70-141	19	30	
-Hexanone	ug/L	ND	40	40	49.9	38.8	125	97	67-139	25	30	
-Chlorotoluene	ug/L	ND	20	20	24.3	19.4	121	97	70-135	22	30	
-Methyl-2-pentanone	ug/L	ND	40	40	48.5	37.1	121	93	67-136	27	30	
MIBK)	/1	ND	40	40	E0 6	27.5	107	0.4	EE 1E0	20	20	
cetone	ug/L	ND	40 20	40	50.6 24.1	37.5 19.0	127	94	55-159 67-150	30		
Benzene Bromobenzene	ug/L	ND ND	20	20 20	23.7	18.8	121 119	95 94	70-134	24 23		
	ug/L		20		26.0	21.0					30	
Bromochloromethane	ug/L	ND ND		20 20	23.2		130	105	70-146	21		
romodichloromethane romoform	ug/L		20 20	20	23.2	18.0 17.3	116	90	70-138 57-138	26		
	ug/L	ND	20	20	28.3	22.2	112	86	10-200	26		ш
Fromomethane Carbon tetrachloride	ug/L	ND ND	20	20	26.3 25.1	19.9	141 125	111 100	70-147	24 23		ın
	ug/L	ND ND	20	20	24.3	19.9	123	98	70-147	23 21	30	
Chlorobenzene Chloroethane	ug/L	ND ND	20	20	24.3	17.1	111		51-166	26		
	ug/L			20				85			30	
hloroform	ug/L	ND	20		24.7	20.0	124	100	70-144	21		
hloromethane	ug/L	ND	20	20	24.7	19.6	123	98	24-161 67-148	23		
is-1,2-Dichloroethene is-1,3-Dichloropropene	ug/L	ND ND	20	20	23.7 25.2	18.7 19.2	118 126	93 96	70-142	24 27		
ibromochloromethane	ug/L	ND ND	20 20	20 20	25.2 24.4	19.2	120		68-138	22		
ibromocnioromethane ibromomethane	ug/L							98				
	ug/L	ND	20	20	24.4	18.7	122	94	70-134	26		
Pichlorodifluoromethane	ug/L	ND	20	20	20.6	16.7	103	84	43-155 65 146	21	30	
Diisopropyl ether	ug/L	ND	20	20	22.6	18.1	113	90	65-146	22		
Ethylbenzene	ug/L	ND	20	20	23.9	18.8	119	94	68-143	24		
lexachloro-1,3-butadiene	ug/L	ND	20	20	24.8	20.2	124	101	62-151	20	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	ATE: 3100	424		3100425							
			MS	MSD								
	9:	2510407021	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
m&p-Xylene	ug/L	ND	40	40	48.2	38.6	120	97	53-157	22	30	
Methyl-tert-butyl ether	ug/L	ND	20	20	22.7	18.0	113	90	59-156	23	30	
Methylene Chloride	ug/L	ND	20	20	23.0	19.2	115	96	64-148	18	30	
Naphthalene	ug/L	ND	20	20	23.6	18.7	118	93	57-150	23	30	
o-Xylene	ug/L	ND	20	20	23.6	18.8	118	94	68-143	23	30	
o-Isopropyltoluene	ug/L	ND	20	20	24.9	19.6	125	98	70-141	24	30	
Styrene	ug/L	ND	20	20	23.4	17.9	117	89	70-136	27	30	
Tetrachloroethene	ug/L	1.4	20	20	24.7	20.7	116	96	70-139	18	30	
Toluene	ug/L	ND	20	20	24.4	19.3	122	97	47-157	23	30	
trans-1,2-Dichloroethene	ug/L	ND	20	20	24.5	19.0	122	95	70-149	25	30	
trans-1,3-Dichloropropene	ug/L	ND	20	20	25.6	19.5	128	97	70-138	27	30	
Trichloroethene	ug/L	ND	20	20	24.0	18.8	120	94	70-149	25	30	
Trichlorofluoromethane	ug/L	ND	20	20	23.3	18.6	117	93	61-154	22	30	
√inyl acetate	ug/L	ND	40	40	52.7	41.1	132	103	48-156	25	30	
Vinyl chloride	ug/L	ND	20	20	22.4	17.7	112	89	55-172	23	30	
Xylene (Total)	ug/L	ND	60	60	71.8	57.4	120	96	66-145	22	30	
1,2-Dichloroethane-d4 (S)	%						98	98	70-130			
4-Bromofluorobenzene (S)	%						102	103	70-130			
Toluene-d8 (S)	%						100	101	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KopFlex
Pace Project No.: 92510474

QC Batch: 585780 QC Batch Method: EPA 8260D Mod. Analysis Method: EPA 8260D Mod.
Analysis Description: 8260D MSV SIM

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples: 92510474002, 92510474003

METHOD BLANK: 3096253

Matrix: Water

77

Associated Lab Samples: 92

1,4-Dioxane (p-Dioxane)

Toluene-d8 (S)

Toluene-d8 (S)

Date: 12/15/2020 04:23 PM

1,2-Dichloroethane-d4 (S)

Parameter

92510474002, 92510474003

Units

ug/L

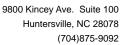
%

%

%

Blank Result	Reporting Limit	Analyzed	Qualifiers
ND	2.0	12/09/20 15:24	
99	70-130	12/09/20 15:24	

66-133 12/09/20 15:24


122

66-133

LABORATORY CONTROL SAMPLE: 3096254 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1,4-Dioxane (p-Dioxane) 20 21.7 108 70-130 ug/L 1,2-Dichloroethane-d4 (S) 98 70-130 %

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3097529 MS MSD 92510474002 MSD Spike Spike MS MS MSD % Rec Max Units Qual Parameter Conc. Result % Rec % Rec **RPD** RPD Result Conc. Result Limits 30 1,4-Dioxane (p-Dioxane) ug/L ND 20 20 20.1 20.6 99 101 64-141 2 1,2-Dichloroethane-d4 (S) % 96 98 70-130 30 Toluene-d8 (S) % 97 73 66-133 30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: KopFlex
Pace Project No.: 92510474

QC Batch: 586140

QC Batch Method: EPA 8260D Mod.

Analysis Method:

EPA 8260D Mod.

Analysis Description:

8260D MSV SIM

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples: 92510474001

METHOD BLANK: 3098144

Date: 12/15/2020 04:23 PM

Matrix: Water

Associated Lab Samples: 92510474001

Blank Reporting

Units Limit Qualifiers Parameter Result Analyzed 1,4-Dioxane (p-Dioxane) ug/L ND 2.0 12/10/20 15:20 1,2-Dichloroethane-d4 (S) % 99 70-130 12/10/20 15:20 Toluene-d8 (S) % 100 66-133 12/10/20 15:20

MAC

LABORATORY CONTROL SAMPLE: 3098145

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1,4-Dioxane (p-Dioxane) ug/L 100 20 19.9 70-130 1,2-Dichloroethane-d4 (S) 70-130 % 94 Toluene-d8 (S) % 75 66-133

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3098146 3098147

Parameter	Units	92510474001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,4-Dioxane (p-Dioxane)	ug/L	118	50	50	182	173	129	111	64-141	5	30	
1,2-Dichloroethane-d4 (S)	%						96	98	70-130		30	
Toluene-d8 (S)	%						74	111	66-133		30	

MOD

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Huntersville, NC 28078 (704)875-9092

Pace Analytical www.pacelabs.com

QUALIFIERS

Project: KopFlex
Pace Project No.: 92510474

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 12/15/2020 04:23 PM

IK	The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should be considered an estimated value.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
R1	RPD value was outside control limits.
v1	The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
v2	The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
v3	The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: KopFlex
Pace Project No.: 92510474

Date: 12/15/2020 04:23 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92510474001	DUP-120820	EPA 8260D	586572		
92510474002	MW-45	EPA 8260D	585820		
92510474003	MW-16D	EPA 8260D	585820		
92510474004	Trip Blank	EPA 8260D	585820		
92510474001	DUP-120820	EPA 8260D Mod.	586140		
92510474002	MW-45	EPA 8260D Mod.	585780		
92510474003	MW-16D	EPA 8260D Mod.	585780		

Issuing Authority: Document No.: F-CAR-CS-033-Rev.07 Pace Carolinas Quality Office Laboratory receiving samples: Greenwood Huntersville Raleigh Mechanicsville Atlanta Kernersville Asheville Eden Project #: WO#: 92510474 Sample Condition Client Name: **Upon Receipt** USPS Client Courier: ☐ Commercial Other: **Custody Seal Present?** No Seals Intact? Yes No Date/Initials Person Examining Contents: Bubble Bags Biological Tissue Frozen? Packing Material: Bubble Wrap None Other ☐Yes ☐No ☐N/A Thermometer: Blue None 92T064 IR Gun ID: Type of Ice: Correction Factor: Cooler Temp: Add/Subtract (°C) -0.1Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process 0.3 Cooler Temp Corrected (°C): has begun USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the United States: CA, NY, or SC (check maps)? Did samples originate from a foreign source (internationally, Yes No including Hawaii and Puerto Rico)? Yes No Comments/Discrepancy: Chain of Custody Present? ✓Yes □No □N/A 1. Yes Samples Arrived within Hold Time? □No □N/A 3. Short Hold Time Analysis (<72 hr.)? Yes □N/A No Rush Turn Around Time Requested? Yes No □N/A 4. Sufficient Volume? □N/A Mes □No Correct Containers Used? Yes No □N/A . . . Yes -Pace Containers Used? No □N/A Containers Intact? ✓ Yes □ No □N/A Dissolved analysis: Samples Field Filtered? Yes No □N/A 8. Sample Labels Match COC? Yes □No □N/A W -Includes Date/Time/ID/Analysis Matrix: Headspace in VOA Vials (>5-6mm)? Yes No □N/A 10. Trip Blank Present? ✓Yes No □N/A 11. Trip Blank Custody Seals Present? Ves □No □N/A COMMENTS/SAMPLE DISCREPANCY Field Data Required? Yes No Lot ID of split containers: CLIENT NOTIFICATION/RESOLUTION Date/Time: Person contacted: Project Manager SCURF Review: Date: Date: Project Manager SRF Review:

Document Name:

Sample Condition Upon Receipt(SCUR)

ace Analytical

Document Revised: October 28, 2020

Page 1 of 2

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07

Page 2 of 2

Issuing Authority:
Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

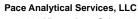
**Bottom half of box is to list number of bottles

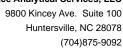
Project #

WO#: 92510474

PM: BV

Due Date: 12/16/20


CLIENT: 92-WSP


	Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	BP3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (Cl-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP42-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na252O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gaş kit (N/♠)	SPST-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)	BP3A-250 mL Plastic (NH2)2504 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
	2										2						6											
	5							/	7			/		/			2		2		. 8	e :		2			i i	
	7																							2 20				
-	9																					3						
	11																										25.45	

18		рН Ас	ljustment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#
				1		
		· · · · · · · · · · · · · · · · · · ·	-			

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Date Time Shipment Method Rights 1107 Fed ex Date Time Number of Packages Custody Seal Number(s)	PACE AL	Date Time Received By (Signature) Received By (Signature) Received By (Signature)	Relinquished By (Signature) Date Received By (Received By Acceived	--	-----------------	---	--
Time Shipment Method Tracking Number(s) 81278179 519	PACE IN .	Time Cha Has					
			/				
400	2 /	- LAB PROMID	TRIP BLANK				
X 003	13 45 6 XX	AR IVAIN	WMULLED				
7	13 30 6 XX	As Meha	NW-45				
001	1200 象火人	\$ 12016	DUP-120820				
Sample Comment	1	Matrix Collection Start*	Sample Identification				
Standard 24 HR	ber of Containe		Sampler(s) Name(s)				
	260.	TOS TO 9 6500	3)401545-010/3				
Laboral	@wsp.com	WSP USA Contact E-mail MoLLY a CON C	HANDVER, MD				
Laboratory Name & Location PACE, NC	with	WSP USA CONTROL CON G	roject Name (Capflex				
No. 10577 11501	NA 20171	DREET 300 HERNDON	13530 DULLESTECH NOLOGY				
Requirested Analyses & Procedurations	Regueste		WSP USA Office Address				

January 11, 2021

Eric Johnson WSP USA 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: Kop Flex

Pace Project No.: 92515248

Dear Eric Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on January 07, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Bonnie Vang bonnie.vang@pacelabs.com

Bonnie Vaing

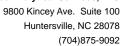
(704)875-9092 Project Manager

Enclosures

cc: Molly Long, WSP

Pam Robertson, WSP USA

9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092



CERTIFICATIONS

Project: Kop Flex
Pace Project No.: 92515248

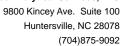
Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project: Kop Flex
Pace Project No.: 92515248

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92515248001	MW-42	Water	01/06/21 11:45	01/07/21 10:52
92515248002	Trip Blank	Water	01/06/21 00:00	01/07/21 10:52



SAMPLE ANALYTE COUNT

Project: Kop Flex
Pace Project No.: 92515248

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92515248001	MW-42	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92515248002	Trip Blank	EPA 8260D	CL	63	PASI-C

PASI-C = Pace Analytical Services - Charlotte

Project: Kop Flex
Pace Project No.: 92515248

Date: 01/11/2021 11:40 AM


Sample: MW-42	Lab ID: 925	15248001	Collected: 01/06/2	1 11:45	Received:	01/07/21 10:52	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260D MSV Low Level	Analytical Met	nod: EPA 82	260D					
	Pace Analytica	al Services -	- Charlotte					
Acetone	ND	ug/L	25.0	1		01/08/21 01:5	59 67-64-1	
Benzene	ND	ug/L	1.0	1		01/08/21 01:5		
Bromobenzene	ND	ug/L	1.0	1		01/08/21 01:5		
Bromochloromethane	ND	ug/L	1.0	1		01/08/21 01:5		
Bromodichloromethane	ND	ug/L	1.0	1		01/08/21 01:5	9 75-27-4	
Bromoform	ND	ug/L	1.0	1		01/08/21 01:5		
Bromomethane	ND	ug/L	2.0	1		01/08/21 01:5		
2-Butanone (MEK)	ND	ug/L	5.0	1		01/08/21 01:5		
Carbon tetrachloride	ND	ug/L	1.0	1		01/08/21 01:5		
Chlorobenzene	ND	ug/L	1.0	1		01/08/21 01:5		
Chloroethane	ND	ug/L	1.0	1		01/08/21 01:5		IL
Chloroform	ND	ug/L	5.0	1		01/08/21 01:5		
Chloromethane	ND	ug/L	1.0	1		01/08/21 01:5		
2-Chlorotoluene	ND	ug/L	1.0	1		01/08/21 01:5		
4-Chlorotoluene	ND	ug/L	1.0	1		01/08/21 01:5		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		01/08/21 01:5		
Dibromochloromethane	ND	ug/L	1.0	1		01/08/21 01:5		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		01/08/21 01:5		
Dibromomethane	ND	ug/L	1.0	1		01/08/21 01:5		
1.2-Dichlorobenzene	ND	ug/L	1.0	1		01/08/21 01:5		
1,3-Dichlorobenzene	ND ND	ug/L ug/L	1.0	1		01/08/21 01:5		
1,4-Dichlorobenzene	ND ND	ug/L ug/L	1.0	1		01/08/21 01:5		
Dichlorodifluoromethane	ND	ug/L	1.0	1		01/08/21 01:5		
1,1-Dichloroethane	ND ND	ug/L ug/L	1.0	1		01/08/21 01:5		
1,2-Dichloroethane	ND ND	ug/L ug/L	1.0	1		01/08/21 01:5		
•	ND ND	•	1.0	1		01/08/21 01:5		
1,1-Dichloroethene cis-1,2-Dichloroethene	ND ND	ug/L ug/L	1.0	1		01/08/21 01:5		
trans-1,2-Dichloroethene	ND	ug/L ug/L	1.0	1		01/08/21 01:5		
·	ND	•	1.0	1		01/08/21 01:5		
1,2-Dichloropropane	ND ND	ug/L	1.0	1		01/08/21 01:5		
1,3-Dichloropropane	ND ND	ug/L	1.0	1		01/08/21 01:5		
2,2-Dichloropropane	ND ND	ug/L	1.0	1				
1,1-Dichloropropene	ND ND	ug/L	1.0	1		01/08/21 01:5	59 10061-01-5	
cis-1,3-Dichloropropene		ug/L		1				
rans-1,3-Dichloropropene	ND	ug/L	1.0				59 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		01/08/21 01:5		
Ethylbenzene	ND	ug/L	1.0	1		01/08/21 01:5		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		01/08/21 01:5		
2-Hexanone	ND	ug/L	5.0	1		01/08/21 01:5		
o-Isopropyltoluene	ND	ug/L	1.0	1		01/08/21 01:5		
Methylene Chloride	ND	ug/L	5.0	1		01/08/21 01:5		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		01/08/21 01:5		
Methyl-tert-butyl ether	ND	ug/L	1.0	1			59 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		01/08/21 01:5		
Styrene	ND	ug/L	1.0	1		01/08/21 01:5		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		01/08/21 01:5		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		01/08/21 01:5	9 79-34-5	

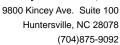
Project: Kop Flex
Pace Project No.: 92515248

Date: 01/11/2021 11:40 AM

Sample: MW-42	Lab ID: 925	15248001	Collected: 01/06/2	1 11:45	Received: 0	1/07/21 10:52 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		01/08/21 01:59	127-18-4	
Toluene	ND	ug/L	1.0	1		01/08/21 01:59	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		01/08/21 01:59	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		01/08/21 01:59	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		01/08/21 01:59	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		01/08/21 01:59	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		01/08/21 01:59	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		01/08/21 01:59	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		01/08/21 01:59	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		01/08/21 01:59	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		01/08/21 01:59	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		01/08/21 01:59	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		01/08/21 01:59	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		01/08/21 01:59	95-47-6	
Surrogates		Ü						
4-Bromofluorobenzene (S)	96	%	70-130	1		01/08/21 01:59	460-00-4	
1,2-Dichloroethane-d4 (S)	96	%	70-130	1		01/08/21 01:59	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		01/08/21 01:59	2037-26-5	
8260D MSV SIM	Analytical Meth	nod: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	13.2	ug/L	2.0	1		01/07/21 17:51	123-91-1	
1,2-Dichloroethane-d4 (S)	107	%	70-130	1		01/07/21 17:51	17060-07-0	
Toluene-d8 (S)	104	%	66-133	1		01/07/21 17:51	2037-26-5	

Project: Kop Flex
Pace Project No.: 92515248

Date: 01/11/2021 11:40 AM


Sample: Trip Blank	Lab ID: 925	15248002	Collected: 01/06/2	21 00:00	Received:	01/07/21 10:52	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		01/08/21 01:0	5 67-64-1	
Benzene	ND	ug/L	1.0	1		01/08/21 01:0	5 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		01/08/21 01:0	5 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		01/08/21 01:0	5 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		01/08/21 01:0	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		01/08/21 01:0	5 75-25-2	
Bromomethane	ND	ug/L	2.0	1		01/08/21 01:0	5 74-83-9	
2-Butanone (MEK)	ND	ug/L	5.0	1		01/08/21 01:0		
Carbon tetrachloride	ND	ug/L	1.0	1		01/08/21 01:0		
Chlorobenzene	ND	ug/L	1.0	1		01/08/21 01:0		
Chloroethane	ND	ug/L	1.0	1		01/08/21 01:0		IL
Chloroform	ND	ug/L	5.0	1		01/08/21 01:0		12
Chloromethane	ND	ug/L	1.0	1		01/08/21 01:0		
2-Chlorotoluene	ND	•		1		01/08/21 01:0		
		ug/L	1.0					
4-Chlorotoluene	ND	ug/L	1.0	1		01/08/21 01:0		
,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		01/08/21 01:0		
Dibromochloromethane	ND	ug/L	1.0	1		01/08/21 01:0		
I,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		01/08/21 01:0		
Dibromomethane	ND	ug/L	1.0	1		01/08/21 01:0		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		01/08/21 01:0		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		01/08/21 01:0		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		01/08/21 01:0	5 106-46-7	
Dichlorodifluoromethane	ND	ug/L	1.0	1		01/08/21 01:0	5 75-71-8	
1,1-Dichloroethane	ND	ug/L	1.0	1		01/08/21 01:0	5 75-34-3	
1,2-Dichloroethane	ND	ug/L	1.0	1		01/08/21 01:0	5 107-06-2	
1,1-Dichloroethene	ND	ug/L	1.0	1		01/08/21 01:0	5 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		01/08/21 01:0	5 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		01/08/21 01:0	5 156-60-5	
1,2-Dichloropropane	ND	ug/L	1.0	1		01/08/21 01:0	5 78-87-5	
1,3-Dichloropropane	ND	ug/L	1.0	1		01/08/21 01:0	5 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		01/08/21 01:0	5 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		01/08/21 01:0	5 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		01/08/21 01:0	5 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		01/08/21 01:0		
Diisopropyl ether	ND	ug/L	1.0	1		01/08/21 01:0		
Ethylbenzene	ND	ug/L	1.0	1		01/08/21 01:0		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		01/08/21 01:0		
2-Hexanone	ND	ug/L	5.0	1		01/08/21 01:0		
	ND ND	_	1.0	1		01/08/21 01:0		
o-Isopropyltoluene	ND ND	ug/L	5.0	1		01/08/21 01:0		
Methylene Chloride		ug/L						
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		01/08/21 01:0		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		01/08/21 01:0		
Naphthalene	ND	ug/L	1.0	1		01/08/21 01:0		
Styrene	ND	ug/L	1.0	1		01/08/21 01:0		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		01/08/21 01:0		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		01/08/21 01:0	5 79-34-5	

Project: Kop Flex
Pace Project No.: 92515248

Date: 01/11/2021 11:40 AM

Sample: Trip Blank	Lab ID: 925	15248002	Collected: 01/06/2	21 00:00	Received: 01/0	07/21 10:52	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1	(01/08/21 01:05	5 127-18-4	
Toluene	ND	ug/L	1.0	1	(01/08/21 01:05	5 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1	(01/08/21 01:05	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1	(01/08/21 01:05	5 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1	(01/08/21 01:05	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1	(01/08/21 01:05	5 79-00-5	
Trichloroethene	ND	ug/L	1.0	1	(01/08/21 01:05	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1	(01/08/21 01:05	5 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1	(01/08/21 01:05	5 96-18-4	
Vinyl acetate	ND	ug/L	2.0	1	(01/08/21 01:05	5 108-05-4	
Vinyl chloride	ND	ug/L	1.0	1	(01/08/21 01:05	5 75-01-4	
Xylene (Total)	ND	ug/L	1.0	1	(01/08/21 01:05	5 1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1	(01/08/21 01:05	5 179601-23-1	
o-Xylene	ND	ug/L	1.0	1	(01/08/21 01:05	5 95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	98	%	70-130	1	(01/08/21 01:05	5 460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130	1	(01/08/21 01:05	5 17060-07-0	
Toluene-d8 (S)	97	%	70-130	1	(01/08/21 01:05	5 2037-26-5	

Project: Kop Flex
Pace Project No.: 92515248

Date: 01/11/2021 11:40 AM

QC Batch: 591349 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92515248001, 92515248002

METHOD BLANK: 3121997 Matrix: Water

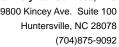
Associated Lab Samples: 92515248001, 92515248002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND -	1.0	01/08/21 00:46	-
1,1,1-Trichloroethane	ug/L	ND	1.0	01/08/21 00:46	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	01/08/21 00:46	
1,1,2-Trichloroethane	ug/L	ND	1.0	01/08/21 00:46	
1,1-Dichloroethane	ug/L	ND	1.0	01/08/21 00:46	
1,1-Dichloroethene	ug/L	ND	1.0	01/08/21 00:46	
1,1-Dichloropropene	ug/L	ND	1.0	01/08/21 00:46	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	01/08/21 00:46	
1,2,3-Trichloropropane	ug/L	ND	1.0	01/08/21 00:46	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	01/08/21 00:46	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	01/08/21 00:46	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	01/08/21 00:46	
1,2-Dichlorobenzene	ug/L	ND	1.0	01/08/21 00:46	
1,2-Dichloroethane	ug/L	ND	1.0	01/08/21 00:46	
1,2-Dichloropropane	ug/L	ND	1.0	01/08/21 00:46	
1,3-Dichlorobenzene	ug/L	ND	1.0	01/08/21 00:46	
1,3-Dichloropropane	ug/L	ND	1.0	01/08/21 00:46	
1,4-Dichlorobenzene	ug/L	ND	1.0	01/08/21 00:46	
2,2-Dichloropropane	ug/L	ND	1.0	01/08/21 00:46	
2-Butanone (MEK)	ug/L	ND	5.0	01/08/21 00:46	
2-Chlorotoluene	ug/L	ND	1.0	01/08/21 00:46	
2-Hexanone	ug/L	ND	5.0	01/08/21 00:46	
4-Chlorotoluene	ug/L	ND	1.0	01/08/21 00:46	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	01/08/21 00:46	
Acetone	ug/L	ND	25.0	01/08/21 00:46	
Benzene	ug/L	ND	1.0	01/08/21 00:46	
Bromobenzene	ug/L	ND	1.0	01/08/21 00:46	
Bromochloromethane	ug/L	ND	1.0	01/08/21 00:46	
Bromodichloromethane	ug/L	ND	1.0	01/08/21 00:46	
Bromoform	ug/L	ND	1.0	01/08/21 00:46	
Bromomethane	ug/L	ND	2.0	01/08/21 00:46	
Carbon tetrachloride	ug/L	ND	1.0	01/08/21 00:46	
Chlorobenzene	ug/L	ND	1.0	01/08/21 00:46	
Chloroethane	ug/L	ND	1.0	01/08/21 00:46	IL
Chloroform	ug/L	ND	5.0	01/08/21 00:46	
Chloromethane	ug/L	ND	1.0	01/08/21 00:46	
cis-1,2-Dichloroethene	ug/L	ND	1.0	01/08/21 00:46	
cis-1,3-Dichloropropene	ug/L	ND	1.0	01/08/21 00:46	
Dibromochloromethane	ug/L	ND	1.0	01/08/21 00:46	
Dibromomethane	ug/L	ND	1.0	01/08/21 00:46	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92515248

Date: 01/11/2021 11:40 AM

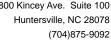

METHOD BLANK: 3121997 Matrix: Water

Associated Lab Samples: 92515248001, 92515248002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dichlorodifluoromethane	ug/L	ND ND	1.0	01/08/21 00:46	
Diisopropyl ether	ug/L	ND	1.0	01/08/21 00:46	
Ethylbenzene	ug/L	ND	1.0	01/08/21 00:46	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	01/08/21 00:46	
m&p-Xylene	ug/L	ND	2.0	01/08/21 00:46	
Methyl-tert-butyl ether	ug/L	ND	1.0	01/08/21 00:46	
Methylene Chloride	ug/L	ND	5.0	01/08/21 00:46	
Naphthalene	ug/L	ND	1.0	01/08/21 00:46	
o-Xylene	ug/L	ND	1.0	01/08/21 00:46	
p-Isopropyltoluene	ug/L	ND	1.0	01/08/21 00:46	
Styrene	ug/L	ND	1.0	01/08/21 00:46	
Tetrachloroethene	ug/L	ND	1.0	01/08/21 00:46	
Toluene	ug/L	ND	1.0	01/08/21 00:46	
trans-1,2-Dichloroethene	ug/L	ND	1.0	01/08/21 00:46	
trans-1,3-Dichloropropene	ug/L	ND	1.0	01/08/21 00:46	
Trichloroethene	ug/L	ND	1.0	01/08/21 00:46	
Trichlorofluoromethane	ug/L	ND	1.0	01/08/21 00:46	
Vinyl acetate	ug/L	ND	2.0	01/08/21 00:46	
Vinyl chloride	ug/L	ND	1.0	01/08/21 00:46	
Xylene (Total)	ug/L	ND	1.0	01/08/21 00:46	
1,2-Dichloroethane-d4 (S)	%	99	70-130	01/08/21 00:46	
4-Bromofluorobenzene (S)	%	97	70-130	01/08/21 00:46	
Toluene-d8 (S)	%	97	70-130	01/08/21 00:46	

LABORATORY CONTROL SAMPLE:	3121998					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	49.4	99	70-130	
1,1,1-Trichloroethane	ug/L	50	47.3	95	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	51.4	103	70-130	
1,1,2-Trichloroethane	ug/L	50	48.8	98	70-130	
1,1-Dichloroethane	ug/L	50	48.0	96	70-130	
1,1-Dichloroethene	ug/L	50	50.0	100	70-132	
1,1-Dichloropropene	ug/L	50	47.1	94	70-131	
1,2,3-Trichlorobenzene	ug/L	50	51.0	102	70-134	
1,2,3-Trichloropropane	ug/L	50	51.0	102	70-130	
1,2,4-Trichlorobenzene	ug/L	50	50.3	101	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	50.2	100	70-132	
1,2-Dibromoethane (EDB)	ug/L	50	49.6	99	70-130	
1,2-Dichlorobenzene	ug/L	50	50.8	102	70-130	
1,2-Dichloroethane	ug/L	50	49.0	98	70-130	
1,2-Dichloropropane	ug/L	50	48.3	97	70-130	
1,3-Dichlorobenzene	ug/L	50	49.8	100	70-130	
1,3-Dichloropropane	ug/L	50	50.0	100	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

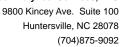


Project: Kop Flex Pace Project No.: 92515248

Date: 01/11/2021 11:40 AM

LABORATORY CONTROL SAMPLE:	3121998					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifier
I,4-Dichlorobenzene	ug/L	50	49.5	99	70-130	
2,2-Dichloropropane	ug/L	50	46.1	92	70-130	
2-Butanone (MEK)	ug/L	100	90.5	91	70-133	
2-Chlorotoluene	ug/L	50	49.9	100	70-130	
2-Hexanone	ug/L	100	93.0	93	70-130	
I-Chlorotoluene	ug/L	50	48.2	96	70-130	
I-Methyl-2-pentanone (MIBK)	ug/L	100	92.3	92	70-130	
Acetone	ug/L	100	92.9	93	70-144	
Benzene	ug/L	50	47.6	95	70-130	
Bromobenzene	ug/L	50	47.9	96	70-130	
Bromochloromethane	ug/L	50	47.5	95	70-130	
Bromodichloromethane	ug/L	50	44.5	89	70-130	
Bromoform	ug/L	50	51.8	104	70-131	
Bromomethane	ug/L	50	37.6	75	30-177	
Carbon tetrachloride	ug/L	50	47.8	96	70-130	
Chlorobenzene	ug/L	50	49.6	99	70-130	
Chloroethane	ug/L	50	28.0	56	46-131	L
Chloroform	ug/L	50	46.9	94	70-130	
Chloromethane	ug/L	50	38.0	76	49-130	
is-1,2-Dichloroethene	ug/L	50	48.1	96	70-130	
is-1,3-Dichloropropene	ug/L	50	49.9	100	70-130	
Dibromochloromethane	ug/L	50	48.8	98	70-130	
Dibromomethane	ug/L	50	50.5	101	70-130	
Dichlorodifluoromethane	ug/L	50	40.1	80	52-134	
Diisopropyl ether	ug/L	50	44.0	88	70-131	
Ethylbenzene	ug/L	50	48.0	96	70-130	
Hexachloro-1,3-butadiene	ug/L	50	49.0	98	70-131	
n&p-Xylene	ug/L	100	97.7	98	70-130	
Methyl-tert-butyl ether	ug/L	50	45.4	91	70-130	
Methylene Chloride	ug/L	50	46.3	93	68-130	
Naphthalene	ug/L	50	50.6	101	70-133	
o-Xylene	ug/L	50	48.8	98	70-130	
o-Isopropyltoluene	ug/L	50	47.9	96	70-130	
Styrene	ug/L	50	50.7	101	70-130	
Tetrachloroethene	ug/L	50	47.7	95	70-130	
Toluene	ug/L	50	47.4	95	70-130	
rans-1,2-Dichloroethene	ug/L	50	48.2	96	70-130	
rans-1,3-Dichloropropene	ug/L	50	48.9	98	70-130	
richloroethene	ug/L	50	49.2	98	70-130	
richlorofluoromethane	ug/L	50	41.1	82	61-130	
/inyl acetate	ug/L	100	97.6	98	70-140	
/inyl chloride	ug/L	50	41.4	83	59-142	
(ylene (Total)	ug/L	150	147	98	70-130	
I,2-Dichloroethane-d4 (S)	%			98	70-130	
1-Bromofluorobenzene (S)	%			104	70-130	
Toluene-d8 (S)	%			99	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

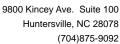


Project: Kop Flex
Pace Project No.: 92515248

Date: 01/11/2021 11:40 AM

MATRIX SPIKE & MATRIX S	PIKE DUPL	LICATE: 3121			3122000							
			MS	MSD								
		92515069001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qu
,1,1,2-Tetrachloroethane	ug/L	ND	800	800	862	868	108	109	70-135	1	30	
,1,1-Trichloroethane	ug/L	ND	800	800	890	877	111	110	70-148	1	30	
,1,2,2-Tetrachloroethane	ug/L	ND	800	800	860	833	107	104	70-131	3	30	
,1,2-Trichloroethane	ug/L	76.6	800	800	928	906	106	104	70-136	2	30	
,1-Dichloroethane	ug/L	ND	800	800	883	877	110	110	70-147	1	30	
,1-Dichloroethene	ug/L	ND	800	800	923	903	115	113	70-158	2	30	
,1-Dichloropropene	ug/L	ND	800	800	877	856	110	107	70-149	2	30	
,2,3-Trichlorobenzene	ug/L	ND	800	800	908	881	113	110	68-140	3	30	
,2,3-Trichloropropane	ug/L	ND	800	800	934	890	117	111	67-137	5	30	
,2,4-Trichlorobenzene	ug/L	ND	800	800	911	886	114	111	70-139	3	30	
,2-Dibromo-3-	ug/L	ND	800	800	1100	1020	112	103	69-136	7	30	
hloropropane	//	0.40	000	000	4400	4400	400	407	70.407		00	
,2-Dibromoethane (EDB)	ug/L	249	800	800	1120	1100	109	107	70-137	1		
,2-Dichlorobenzene	ug/L	ND	800	800	906	880	113	110	70-133	3		
,2-Dichloroethane	ug/L	ND	800	800	892	872	108	106	67-138	2		
,2-Dichloropropane	ug/L	1130	800	800	2000	1990	109	108	70-138	0		
,3-Dichlorobenzene	ug/L	ND	800	800	873	861	109	108	70-133	1		
,3-Dichloropropane	ug/L	ND	800	800	891	854	111	107	70-136	4		
,4-Dichlorobenzene	ug/L	ND	800	800	906	876	113	110	70-133	3		
,2-Dichloropropane	ug/L	ND	800	800	878	838	110	105	52-155	5		
-Butanone (MEK)	ug/L	ND	1600	1600	1740	1570	109	98	61-147	10		
-Chlorotoluene	ug/L	ND	800	800	879	858	110	107	70-141	2		
-Hexanone	ug/L	ND	1600	1600	1740	1590	109	100	67-139	9		
-Chlorotoluene -Methyl-2-pentanone	ug/L	ND	800	800	854	835	107	104	70-135	2		
MIBK)	ug/L	ND	1600	1600	1720	1600	107	100	67-136	7		
cetone	ug/L	ND	1600	1600	1780	1640	111	102	55-159	8		
Benzene	ug/L	ND	800	800	885	876	109	107	67-150	1		
Bromobenzene	ug/L	ND	800	800	865	853	108	107	70-134	1		
Bromochloromethane	ug/L	ND	800	800	863	829	108	104	70-146	4		
romodichloromethane	ug/L	ND	800	800	818	805	98	97	70-138	2		
Bromoform	ug/L	ND	800	800	835	822	104	103	57-138	2		
Bromomethane	ug/L	ND	800	800	578	663	72	83	10-200	14		
Carbon tetrachloride	ug/L	112	800	800	1030	997	115	111	70-147	3		
Chlorobenzene	ug/L	ND	800	800	887	877	111	110	70-137	1		
Chloroethane	ug/L	ND	800	800	689	697	86	87	51-166	1		IL
Chloroform	ug/L	4920	800	800	5800	5550	110	79	70-144	4		
hloromethane	ug/L	ND	800	800	683	667	85	83	24-161	2		
is-1,2-Dichloroethene	ug/L	ND	800	800	878	862	110	108	67-148	2		
is-1,3-Dichloropropene	ug/L	ND	800	800	881	880	110	110	70-142	0		
ibromochloromethane	ug/L	ND	800	800	849	832	106	104	68-138	2		
ibromomethane	ug/L	ND	800	800	890	883	111	110	70-134	1		
ichlorodifluoromethane	ug/L	ND	800	800	717	682	90	85	43-155	5		
iisopropyl ether	ug/L	ND	800	800	830	807	104	101	65-146	3		
thylbenzene	ug/L	ND	800	800	864	867	108	108	68-143	0		
lexachloro-1,3-butadiene	ug/L	ND	800	800	873	876	109	110	62-151	0	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Kop Flex
Pace Project No.: 92515248

Date: 01/11/2021 11:40 AM

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	ATE: 3121	999		3122000							
			MS	MSD								
	9	2515069001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
m&p-Xylene	ug/L	ND	1600	1600	1770	1740	111	109	53-157	1	30	
Methyl-tert-butyl ether	ug/L	ND	800	800	851	824	106	103	59-156	3	30	
Methylene Chloride	ug/L	325	800	800	1180	1150	107	103	64-148	3	30	
Naphthalene	ug/L	ND	800	800	924	890	116	111	57-150	4	30	
o-Xylene	ug/L	ND	800	800	861	854	108	107	68-143	1	30	
o-Isopropyltoluene	ug/L	ND	800	800	884	874	110	109	70-141	1	30	
Styrene	ug/L	ND	800	800	879	868	110	109	70-136	1	30	
Tetrachloroethene	ug/L	53.3	800	800	963	927	114	109	70-139	4	30	
Toluene	ug/L	ND	800	800	861	854	108	107	47-157	1	30	
rans-1,2-Dichloroethene	ug/L	ND	800	800	907	875	113	109	70-149	4	30	
rans-1,3-Dichloropropene	ug/L	ND	800	800	842	829	105	104	70-138	1	30	
Trichloroethene	ug/L	135	800	800	1030	1030	111	111	70-149	0	30	
Trichlorofluoromethane	ug/L	ND	800	800	837	832	105	104	61-154	1	30	
√inyl acetate	ug/L	ND	1600	1600	1870	1780	117	111	48-156	5	30	
Vinyl chloride	ug/L	ND	800	800	727	709	91	89	55-172	3	30	
Xylene (Total)	ug/L	ND	2400	2400	2630	2600	110	108	66-145	1	30	
1,2-Dichloroethane-d4 (S)	%						100	99	70-130			
1-Bromofluorobenzene (S)	%						99	99	70-130			
Toluene-d8 (S)	%						100	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92515248

QC Batch: 591357

QC Batch Method: EPA 8260D Mod.

Parameter

Analysis Method:

EPA 8260D Mod.

Analysis Description: 8260

8260D MSV SIM

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples: 92515248001

METHOD BLANK: 3122052

1,4-Dioxane (p-Dioxane)

Toluene-d8 (S)

1,2-Dichloroethane-d4 (S)

Date: 01/11/2021 11:40 AM

Matrix: Water

Associated Lab Samples: 9

92515248001

Blank Result	Reporting Limit	Analyzed	Qualifiers
ND	2.0	01/07/21 16:33	
107	70-130	01/07/21 16:33	
106	66-133	01/07/21 16:33	

LABORATORY CONTROL SAMPLE: 3122053

5	11.5	Spike	LCS	LCS	% Rec	0 ""
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	20	21.8	109	70-130	_
1,2-Dichloroethane-d4 (S)	%			106	70-130	
Toluene-d8 (S)	%			107	66-133	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3122054 3122055

Units

ug/L

%

%

Parameter	Units	92515248001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,4-Dioxane (p-Dioxane)	ug/L	13.2	20	20	37.4	36.8	121	118	64-141	2	30	
1,2-Dichloroethane-d4 (S)	%						101	103	70-130		30	
Toluene-d8 (S)	%						102	102	66-133		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Huntersville, NC 28078 (704)875-9092

Pace Analytical www.pacelabs.com

QUALIFIERS

Project: Kop Flex
Pace Project No.: 92515248

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

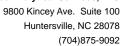
SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.


Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 01/11/2021 11:40 AM

IL This analyte exceeded secondary source verification criteria low for the initial calibration. The reported results should be considered an estimated value.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Kop Flex
Pace Project No.: 92515248

Date: 01/11/2021 11:40 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92515248001	MW-42	EPA 8260D	 591349		
92515248002	Trip Blank	EPA 8260D	591349		
92515248001	MW-42	EPA 8260D Mod.	591357		

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020

Page 1 of 2
Issuing Authority:
Pace Carolinas Quality Office

aboratory receiving samples: Asheville Eden Greenwood	Huntersville	Ralei	igh[]	Mechanicsville Atlanta Kernersville
Sample Condition Upon Receipt Client Name: WSP US	A		Projec	м. #: W0#: 92515248
ourier: Fed Ex UPS Commercial Pace	USPS Other:	c	lient	92515248
stody Seal Present? Yes No Seals	Intact?	es 🔲 No	0	Date/Initials Person Examining Contents: VS 1/7/202
ermometer: 1 R Gun ID: 92T064			Other Blue	Biological Tissue Frozen? ☐Yes ☐No ☑N/A ☐None
oler Temp: Correction Facto Add/Subtract (°C		=	120	Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process
ler Temp Corrected (°C): DA Regulated Soil (☑ N/A, water sample) samples originate in a quarantine zone within the Unit ☐ Yes ☐ No	ed States: CA, NY, c	or SC (check m	aps)?	has begun Did samples originate from a foreign source (internationally,
		F 1971 M		including Hawaii and Puerto Rico)? Yes No Comments/Discrepancy:
Chain of Custody Present?	□Yes □N	o 🔲 N/A	1.	
Samples Arrived within Hold Time?	/			<u> </u>
Short Hold Time Analysis (<72 hr.)?	□Yes □N	/	3.	
Rush Turn Around Time Requested?	Yes ON	/	4.	
Sufficient Volume? Correct Containers Used?	☐Yes ☐N		5.	The state of the s
-Pace Containers Used?	☐Yes ☐N			
Containers Intact?	□Yes □N	o □N/A	7.	
Dissolved analysis: Samples Field Filtered?	□Yes □N	o □N/A	8	
Sample Labels Match COC?	□Yes □N	o N/A	9.	
-Includes Date/Time/ID/Analysis Matrix:	VT	,		
Headspace in VOA Vials (>5-6mm)?	□Yes □M		10.	
Trip Blank Present?	☑ Yes □ No		11.	
Trip Blank Custody Seals Present?	□Yes □No	D N/A		
OMMENTS/SAMPLE DISCREPANCY				Field Data Required? Yes No
ENT NOTIFICATION/RESOLUTION			Lot	t ID of split containers:
erson contacted:		Date/Ti	ime: _	
Project Manager SCURF Review:		<u>.</u> .		Date:
Project Manager SRF Review:				Date:

Document Name: Sample Condition Upon Receipt(SCUR)

> Document No.: F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority:

Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project # WO#: 92515248

Due Date: 01/14/21

CLIENT: 92-WSP

-																								 			
Item#	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	8P3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (CI-)	AG15-1 liter Amber H25O4 (pH < 2)	AG3S-250 mL Amber H2504 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na252O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)	BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1					/											6											
2				14						,						2					9					A. (1	
3																-					*						
4						1						-				•						5	1				
5									-							3						7.					
6		100						/										6									
7																10.00										-	
8																											
9																				1						-	
10																					94	-1					
11																											
12																		1									*

		pH Ad	justment Log for Pres	erved Samples		
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot#
				-		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Relinquished By (Signature) Date Time Received By (Relinquished By (Signature)							Trip Blunk	ろうしまり	Sample Identification		Not by Now	31401545.010/3	Project Number & Task	Roject Location	Project Name	e Address	
Date Time Received By (Signature) VS PACE HW es; use only start time/date for all other samples.	Note Time Received By (Signature)							Rab provided 3	A 16/2021 15 5	Matrix Date Figure Date Time		M. Colombia (colombia)	688	WSP USA Contact Prione @wsp.com	WSP USA Contact E-mail	WSP USA Contact Name		CHAIN-OF-
Date Time 1/7/2821 1057 Matrix: AQ = Aqueous, S = Soil, SE = Sed	Date Time Shipment Method			1				♥✓	ら メ ブ	Vo	C	(83 .1,4~	(60)	>)	nativ.	SIMS	Requested Analyses & Preservatives	CHAIN-OF-CUSTODY RECORD
Number of Packages Custody Seal Number(s) Custody Seal Number(s) OGO(O) Matrix: AQ = Aqueous, S = Soil, SE = Sediment, A = Air, W = Wipe, B = Bulk, Q = Other (detail in comments)	Tracking Number(s) 8179 465							002	92515248-001	Sample Comments	H	□ 48 HR □ 72 HR	Requested Turn-Around-Time	Laboratory Project Manager	Fra, NC	ocation	No 10579 1151)	Page 1 of

December 03, 2020

Eric Johnson WSP USA 13530 Dulles Technology Drive Suite 300 Herndon, VA 20171

RE: Project: Kop Flex

Pace Project No.: 92507929

Dear Eric Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on November 24, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

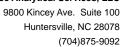
The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Charlotte

If you have any questions concerning this report, please feel free to contact me.

Bonnie Vang bonnie.vang@pacelabs.com (704)875-9092

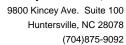
Bonnie Vaing


Project Manager

Enclosures

cc: Molly Long, WSP

Pam Robertson, WSP USA



CERTIFICATIONS

Project: Kop Flex
Pace Project No.: 92507929

Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

SAMPLE SUMMARY

Project: Kop Flex
Pace Project No.: 92507929

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92507929001	RW-1S	Water	11/22/20 13:35	11/24/20 11:00
92507929002	RW-2S	Water	11/22/20 13:40	11/24/20 11:00
92507929003	RW-3S	Water	11/22/20 13:50	11/24/20 11:00
92507929004	RW-1D	Water	11/22/20 14:20	11/24/20 11:00
92507929005	RW-2D	Water	11/22/20 14:50	11/24/20 11:00
92507929006	Trip Blank A	Water	11/22/20 00:00	11/24/20 11:00

SAMPLE ANALYTE COUNT

Project: Kop Flex
Pace Project No.: 92507929

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92507929001	RW-1S	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92507929002	RW-2S	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	CL	3	PASI-C
92507929003	RW-3S	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C
92507929004	RW-1D	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	CL	3	PASI-C
92507929005	RW-2D	EPA 8260D	CL	63	PASI-C
		EPA 8260D Mod.	CL	3	PASI-C
92507929006	Trip Blank A	EPA 8260D	SAS	63	PASI-C
		EPA 8260D Mod.	LMB	3	PASI-C

PASI-C = Pace Analytical Services - Charlotte

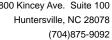
(704)875-9092

ANALYTICAL RESULTS

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

Sample: RW-1S	Lab ID:	92507929001	Collected: 1	11/22/2	0 13:35	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report L	Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical	Method: EPA 82	260D						
	Pace Anal	ytical Services -	Charlotte						
Acetone	NI	D ug/L		62.5	2.5		11/25/20 20:4	3 67-64-1	
Benzene	NI	•		2.5	2.5		11/25/20 20:4	3 71-43-2	
Bromobenzene	NI	_		2.5	2.5		11/25/20 20:4	3 108-86-1	
Bromochloromethane	NI	_		2.5	2.5		11/25/20 20:4	3 74-97-5	
Bromodichloromethane	NI	_		2.5	2.5		11/25/20 20:4	3 75-27-4	
Bromoform	NI	_		2.5	2.5		11/25/20 20:4	3 75-25-2	
Bromomethane	NI	_		5.0	2.5		11/25/20 20:4	3 74-83-9	v2
2-Butanone (MEK)	NI	O ug/L		12.5	2.5		11/25/20 20:4	3 78-93-3	
Carbon tetrachloride	NI	_		2.5	2.5		11/25/20 20:4	3 56-23-5	
Chlorobenzene	NI			2.5	2.5		11/25/20 20:4	3 108-90-7	
Chloroethane	12.	_		2.5	2.5		11/25/20 20:4	3 75-00-3	
Chloroform	N	-		12.5	2.5		11/25/20 20:4		
Chloromethane	NI	•		2.5	2.5		11/25/20 20:4	3 74-87-3	v2
2-Chlorotoluene	NI	_		2.5	2.5		11/25/20 20:4	3 95-49-8	L1
4-Chlorotoluene	NI	_		2.5	2.5		11/25/20 20:4	3 106-43-4	
1,2-Dibromo-3-chloropropane	NI	_		12.5	2.5		11/25/20 20:4	3 96-12-8	
Dibromochloromethane	NI	-		2.5	2.5		11/25/20 20:4	3 124-48-1	L1
1,2-Dibromoethane (EDB)	NI	•		2.5	2.5		11/25/20 20:4	3 106-93-4	
Dibromomethane	NI	_		2.5	2.5		11/25/20 20:4	3 74-95-3	
1,2-Dichlorobenzene	NI	_		2.5	2.5		11/25/20 20:4		
1,3-Dichlorobenzene	NI	_		2.5	2.5		11/25/20 20:4	3 541-73-1	
1,4-Dichlorobenzene	NI	-		2.5	2.5		11/25/20 20:4	3 106-46-7	
Dichlorodifluoromethane	NI	-		2.5	2.5		11/25/20 20:4	3 75-71-8	
1,1-Dichloroethane	81.:	-		2.5	2.5		11/25/20 20:4	3 75-34-3	M1
1,2-Dichloroethane	NI	_		2.5	2.5		11/25/20 20:4	3 107-06-2	
1,1-Dichloroethene	34	_		2.5	2.5		11/25/20 20:4	3 75-35-4	M1,R1
cis-1,2-Dichloroethene	NI	-		2.5	2.5		11/25/20 20:4	3 156-59-2	
trans-1,2-Dichloroethene	NI	O ug/L		2.5	2.5		11/25/20 20:4	3 156-60-5	
1,2-Dichloropropane	NI	_		2.5	2.5		11/25/20 20:4	3 78-87-5	
1,3-Dichloropropane	NI			2.5	2.5		11/25/20 20:4	3 142-28-9	L1
2,2-Dichloropropane	NI	_		2.5	2.5		11/25/20 20:4	3 594-20-7	
1,1-Dichloropropene	NI	-		2.5	2.5		11/25/20 20:4	3 563-58-6	
cis-1,3-Dichloropropene	NI	O ug/L		2.5	2.5		11/25/20 20:4	3 10061-01-5	
trans-1,3-Dichloropropene	NI	O ug/L		2.5	2.5		11/25/20 20:4	3 10061-02-6	
Diisopropyl ether	NI	_		2.5	2.5		11/25/20 20:4	3 108-20-3	
Ethylbenzene	NI			2.5	2.5		11/25/20 20:4	3 100-41-4	
Hexachloro-1,3-butadiene	NI			2.5	2.5		11/25/20 20:4	3 87-68-3	
2-Hexanone	NI	O ug/L		12.5	2.5		11/25/20 20:4	3 591-78-6	
o-Isopropyltoluene	NI	_		2.5	2.5		11/25/20 20:4	3 99-87-6	
Methylene Chloride	NI			12.5	2.5		11/25/20 20:4	3 75-09-2	
4-Methyl-2-pentanone (MIBK)	N	•		12.5	2.5		11/25/20 20:4		
Methyl-tert-butyl ether	N	•		2.5	2.5		11/25/20 20:4		
Naphthalene	NI	•		2.5	2.5		11/25/20 20:4		
Styrene	NI	•		2.5	2.5		11/25/20 20:4		
1,1,1,2-Tetrachloroethane	NI			2.5	2.5		11/25/20 20:4		
1,1,2,2-Tetrachloroethane	NI	•		2.5	2.5		11/25/20 20:4		



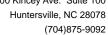
Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

Sample: RW-1S	Lab ID: 9250	7929001	Collected: 11/22/2	0 13:35	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	2.5	2.5		11/25/20 20:43	3 127-18-4	
Toluene	ND	ug/L	2.5	2.5		11/25/20 20:43	3 108-88-3	
,2,3-Trichlorobenzene	ND	ug/L	2.5	2.5		11/25/20 20:43	87-61-6	
,2,4-Trichlorobenzene	ND	ug/L	2.5	2.5		11/25/20 20:43	3 120-82-1	
,1,1-Trichloroethane	65.4	ug/L	2.5	2.5		11/25/20 20:43	3 71-55-6	M1
,1,2-Trichloroethane	ND	ug/L	2.5	2.5		11/25/20 20:43	79-00-5	
Trichloroethene	ND	ug/L	2.5	2.5		11/25/20 20:43	3 79-01-6	
Trichlorofluoromethane	ND	ug/L	2.5	2.5		11/25/20 20:43	75-69-4	
,2,3-Trichloropropane	ND	ug/L	2.5	2.5		11/25/20 20:43	96-18-4	
/inyl acetate	ND	ug/L	5.0	2.5		11/25/20 20:43	3 108-05-4	
/inyl chloride	3.4	ug/L	2.5	2.5		11/25/20 20:43	3 75-01-4	
(ylene (Total)	ND	ug/L	2.5	2.5		11/25/20 20:43	3 1330-20-7	
n&p-Xylene	ND	ug/L	5.0	2.5		11/25/20 20:43	3 179601-23-1	
o-Xylene	ND	ug/L	2.5	2.5		11/25/20 20:43	95-47-6	
Surrogates		•						
I-Bromofluorobenzene (S)	100	%	70-130	2.5		11/25/20 20:43	3 460-00-4	
,2-Dichloroethane-d4 (S)	100	%	70-130	2.5		11/25/20 20:43	17060-07-0	
Toluene-d8 (S)	104	%	70-130	2.5		11/25/20 20:43	3 2037-26-5	
3260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	Services -	Charlotte					
,4-Dioxane (p-Dioxane) Surrogates	351	ug/L	10.0	5		11/25/20 07:11	123-91-1	
,2-Dichloroethane-d4 (S)	100	%	70-130	5		11/25/20 07:11	17060-07-0	
Foluene-d8 (S)	91	%	66-133	5		11/25/20 07:11	2037-26-5	

Project: Kop Flex
Pace Project No.: 92507929

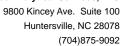
Date: 12/03/2020 04:07 PM


Sample: RW-2S	Lab ID: 925	07929002	Collected: 11/22/2	20 13:40	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/26/20 05:34	4 67-64-1	
Benzene	ND	ug/L	1.0	1		11/26/20 05:34	4 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/26/20 05:34	4 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/26/20 05:34	4 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/26/20 05:34	4 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/26/20 05:34	4 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/26/20 05:34	4 74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		11/26/20 05:34		
Carbon tetrachloride	ND	ug/L	1.0	1		11/26/20 05:34		
Chlorobenzene	ND	ug/L	1.0	1		11/26/20 05:34		
Chloroethane	ND	ug/L	1.0	1		11/26/20 05:3		
Chloroform	ND	ug/L	5.0	1		11/26/20 05:3		
Chloromethane	ND	ug/L	1.0	1		11/26/20 05:3		
2-Chlorotoluene	ND	ug/L	1.0	1		11/26/20 05:3		
4-Chlorotoluene	ND	ug/L	1.0	1		11/26/20 05:3		
1,2-Dibromo-3-chloropropane	ND ND	ug/L ug/L	5.0	1		11/26/20 05:3		
Dibromochloromethane	ND ND	ug/L ug/L	1.0	1		11/26/20 05:3		
	ND ND	•	1.0	1		11/26/20 05:3	_	
I,2-Dibromoethane (EDB)		ug/L						
Dibromomethane	ND	ug/L	1.0	1		11/26/20 05:34		
I,2-Dichlorobenzene	ND	ug/L	1.0	1		11/26/20 05:34		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		11/26/20 05:3		
I,4-Dichlorobenzene	ND	ug/L	1.0	1		11/26/20 05:34		
Dichlorodifluoromethane	ND	ug/L	1.0	1		11/26/20 05:34		
1,1-Dichloroethane	18.6	ug/L	1.0	1		11/26/20 05:34		
1,2-Dichloroethane	ND	ug/L	1.0	1		11/26/20 05:34		
1,1-Dichloroethene	129	ug/L	1.0	1		11/26/20 05:3		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/26/20 05:34		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/26/20 05:34		
1,2-Dichloropropane	ND	ug/L	1.0	1		11/26/20 05:3		
1,3-Dichloropropane	ND	ug/L	1.0	1		11/26/20 05:3	4 142-28-9	
2,2-Dichloropropane	ND	ug/L	1.0	1		11/26/20 05:3	4 594-20-7	
1,1-Dichloropropene	ND	ug/L	1.0	1		11/26/20 05:34	4 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		11/26/20 05:34	4 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		11/26/20 05:34	4 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		11/26/20 05:34	4 108-20-3	
Ethylbenzene	ND	ug/L	1.0	1		11/26/20 05:34	4 100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		11/26/20 05:34	4 87-68-3	
2-Hexanone	ND	ug/L	5.0	1		11/26/20 05:34	4 591-78-6	
o-Isopropyltoluene	ND	ug/L	1.0	1		11/26/20 05:34	4 99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		11/26/20 05:34	4 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/26/20 05:3		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/26/20 05:34		
Naphthalene	ND	ug/L	1.0	1		11/26/20 05:3		
Styrene	ND	ug/L	1.0	1		11/26/20 05:3		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/26/20 05:3		
1,1,2,2-Tetrachloroethane	ND ND	ug/L ug/L	1.0	1		11/26/20 05:3		

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

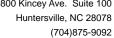
	Lab ID: 9250	7929002	Collected: 11/22/2	0 13:40	Received:	11/24/20 11:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
3260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/26/20 05:34	127-18-4	
Toluene Toluene	ND	ug/L	1.0	1		11/26/20 05:34	108-88-3	
,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/26/20 05:34	87-61-6	
,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/26/20 05:34	120-82-1	
,1,1-Trichloroethane	191	ug/L	1.0	1		11/26/20 05:34	71-55-6	
,1,2-Trichloroethane	ND	ug/L	1.0	1		11/26/20 05:34	79-00-5	
Frichloroethene Trichloroethene	1.4	ug/L	1.0	1		11/26/20 05:34	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/26/20 05:34	75-69-4	v1
,2,3-Trichloropropane	ND	ug/L	1.0	1		11/26/20 05:34	96-18-4	
/inyl acetate	ND	ug/L	2.0	1		11/26/20 05:34	108-05-4	
/inyl chloride	ND	ug/L	1.0	1		11/26/20 05:34	75-01-4	
(ylene (Total)	ND	ug/L	1.0	1		11/26/20 05:34	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		11/26/20 05:34	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/26/20 05:34	95-47-6	
Surrogates		•						
I-Bromofluorobenzene (S)	101	%	70-130	1		11/26/20 05:34	460-00-4	
,2-Dichloroethane-d4 (S)	120	%	70-130	1		11/26/20 05:34	17060-07-0	
Toluene-d8 (S)	102	%	70-130	1		11/26/20 05:34	2037-26-5	
2260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	Services -	Charlotte					
,4-Dioxane (p-Dioxane) Surrogates	97.0	ug/L	2.0	1		11/25/20 22:29	123-91-1	
,2-Dichloroethane-d4 (S)	98	%	70-130	1		11/25/20 22:29	17060-07-0	
roluene-d8 (S)	94	%	66-133	1		11/25/20 22:29	2037-26-5	



Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

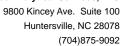
Sample: RW-3S	Lab ID: 925	07929003	Collected: 11/22/	20 13:50	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/25/20 18:2	3 67-64-1	
Benzene	ND	ug/L	1.0	1		11/25/20 18:2		
Bromobenzene	ND	ug/L	1.0	1		11/25/20 18:2	3 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/25/20 18:2	3 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/25/20 18:2	3 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/25/20 18:2	3 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/25/20 18:2	3 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		11/25/20 18:2	3 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		11/25/20 18:2	3 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		11/25/20 18:2	3 108-90-7	
Chloroethane	ND	ug/L	1.0	1		11/25/20 18:2	3 75-00-3	
Chloroform	ND	ug/L	5.0	1		11/25/20 18:2	3 67-66-3	
Chloromethane	ND	ug/L	1.0	1		11/25/20 18:2		
2-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 18:2	3 95-49-8	
4-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 18:2	3 106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/25/20 18:2		
Dibromochloromethane	ND	ug/L	1.0	1		11/25/20 18:2		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/25/20 18:2		
Dibromomethane	ND	ug/L	1.0	1		11/25/20 18:2		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 18:2		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 18:2		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		11/25/20 18:2		
Dichlorodifluoromethane	ND	ug/L	1.0	1		11/25/20 18:2		
1,1-Dichloroethane	2.8	ug/L	1.0	1		11/25/20 18:2		
1,2-Dichloroethane	ND	ug/L	1.0	1		11/25/20 18:2		
1,1-Dichloroethene	4.2	ug/L	1.0	1		11/25/20 18:2		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 18:2		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 18:2		
1,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 18:2		
1,3-Dichloropropane	ND ND	ug/L	1.0	1		11/25/20 18:2		
2,2-Dichloropropane	ND ND	ug/L ug/L	1.0	1		11/25/20 18:2		
1,1-Dichloropropene	ND ND	ug/L ug/L	1.0	1		11/25/20 18:2		
cis-1,3-Dichloropropene	ND ND	ug/L ug/L	1.0	1			3 10061-01-5	
· ·	ND ND	-	1.0	1			3 10061-01-5	
rans-1,3-Dichloropropene		ug/L						
Diisopropyl ether	ND	ug/L	1.0	1		11/25/20 18:2		
Ethylbenzene	ND	ug/L	1.0	1		11/25/20 18:2 11/25/20 18:2		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1				
2-Hexanone	ND	ug/L	5.0	1		11/25/20 18:2		
o-Isopropyltoluene	ND	ug/L	1.0	1		11/25/20 18:2		
Methylene Chloride	ND	ug/L	5.0	1		11/25/20 18:2		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/25/20 18:2		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/25/20 18:2		
Naphthalene	ND	ug/L	1.0	1		11/25/20 18:2		
Styrene	ND	ug/L	1.0	1		11/25/20 18:2		
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 18:2		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 18:2	3 79-34-5	



Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

Sample: RW-3S	Lab ID: 9250	7929003	Collected: 11/22/2	0 13:50	Received: 1	1/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/25/20 18:23	3 127-18-4	
Toluene	ND	ug/L	1.0	1		11/25/20 18:23	3 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 18:23	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 18:23	3 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/25/20 18:23	3 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/25/20 18:23	3 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/25/20 18:23	3 79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/25/20 18:23	3 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/25/20 18:23	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		11/25/20 18:23	3 108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		11/25/20 18:23	3 75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		11/25/20 18:23	3 1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		11/25/20 18:23	3 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/25/20 18:23	95-47-6	
Surrogates		_						
4-Bromofluorobenzene (S)	101	%	70-130	1		11/25/20 18:23	3 460-00-4	
1,2-Dichloroethane-d4 (S)	96	%	70-130	1		11/25/20 18:23	17060-07-0	
Toluene-d8 (S)	99	%	70-130	1		11/25/20 18:23	3 2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	13.8	ug/L	2.0	1		11/25/20 00:24	123-91-1	
1,2-Dichloroethane-d4 (S)	100	%	70-130	1		11/25/20 00:24	17060-07-0	
Toluene-d8 (S)	92	%	66-133	1		11/25/20 00:24	2037-26-5	



Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

Sample: RW-1D	Lab ID: 925	07929004	Collected: 11/22/2	20 14:20	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Metl	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	50.0	2		12/02/20 22:5	0 67-64-1	
Benzene	ND	ug/L	2.0	2		12/02/20 22:5	0 71-43-2	
Bromobenzene	ND	ug/L	2.0	2		12/02/20 22:5	0 108-86-1	
Bromochloromethane	ND	ug/L	2.0	2		12/02/20 22:5	0 74-97-5	
Bromodichloromethane	ND	ug/L	2.0	2		12/02/20 22:5	0 75-27-4	
Bromoform	ND	ug/L	2.0	2		12/02/20 22:5	0 75-25-2	
Bromomethane	ND	ug/L	4.0	2		12/02/20 22:5		v2
P-Butanone (MEK)	ND	ug/L	10.0	2		12/02/20 22:5		
Carbon tetrachloride	ND	ug/L	2.0	2		12/02/20 22:5		
Chlorobenzene	ND	ug/L	2.0	2		12/02/20 22:5		
Chloroethane	4.0	ug/L	2.0	2		12/02/20 22:5		v3
Chloroform	ND	ug/L	10.0	2		12/02/20 22:5		٧٥
Chloromethane	ND ND	•	2.0	2		12/02/20 22:5		
		ug/L						
2-Chlorotoluene	ND	ug/L	2.0	2		12/02/20 22:5		
-Chlorotoluene	ND	ug/L	2.0	2		12/02/20 22:5		
,2-Dibromo-3-chloropropane	ND	ug/L	10.0	2		12/02/20 22:5		
Dibromochloromethane	ND	ug/L	2.0	2		12/02/20 22:5	-	
,2-Dibromoethane (EDB)	ND	ug/L	2.0	2		12/02/20 22:5		
Dibromomethane	ND	ug/L	2.0	2		12/02/20 22:5		
,2-Dichlorobenzene	ND	ug/L	2.0	2		12/02/20 22:5		
,3-Dichlorobenzene	ND	ug/L	2.0	2		12/02/20 22:5	0 541-73-1	
,4-Dichlorobenzene	ND	ug/L	2.0	2		12/02/20 22:5	0 106-46-7	
Dichlorodifluoromethane	ND	ug/L	2.0	2		12/02/20 22:5	0 75-71-8	
,1-Dichloroethane	42.0	ug/L	2.0	2		12/02/20 22:5	0 75-34-3	
,2-Dichloroethane	ND	ug/L	2.0	2		12/02/20 22:5	0 107-06-2	
,1-Dichloroethene	179	ug/L	2.0	2		12/02/20 22:5	0 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	2.0	2		12/02/20 22:5	0 156-59-2	
rans-1,2-Dichloroethene	ND	ug/L	2.0	2		12/02/20 22:5	0 156-60-5	
,2-Dichloropropane	ND	ug/L	2.0	2		12/02/20 22:5	0 78-87-5	
,3-Dichloropropane	ND	ug/L	2.0	2		12/02/20 22:5	0 142-28-9	
2,2-Dichloropropane	ND	ug/L	2.0	2		12/02/20 22:5	0 594-20-7	
,1-Dichloropropene	ND	ug/L	2.0	2		12/02/20 22:5	0 563-58-6	
sis-1,3-Dichloropropene	ND	ug/L	2.0	2			0 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	2.0	2			0 10061-02-6	
Diisopropyl ether	ND	ug/L	2.0	2		12/02/20 22:5		
Ethylbenzene	ND	ug/L	2.0	2		12/02/20 22:5		
Hexachloro-1,3-butadiene	ND	ug/L	2.0	2		12/02/20 22:5		
2-Hexanone	ND	ug/L	10.0	2		12/02/20 22:5		
p-Isopropyltoluene	ND	ug/L	2.0	2		12/02/20 22:5		
	ND ND	_	10.0	2		12/02/20 22:5		v2
Methylene Chloride		ug/L						v2
I-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	2		12/02/20 22:5		v2
Methyl-tert-butyl ether	ND	ug/L	2.0	2		12/02/20 22:5		
Naphthalene	ND	ug/L	2.0	2		12/02/20 22:5		
Styrene	ND	ug/L	2.0	2		12/02/20 22:5		
1,1,1,2-Tetrachloroethane	ND	ug/L	2.0	2		12/02/20 22:5		
1,1,2,2-Tetrachloroethane	ND	ug/L	2.0	2		12/02/20 22:5	0 79-34-5	



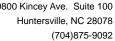
Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

Sample: RW-1D	Lab ID: 9250	07929004	Collected: 11/22/2	0 14:20	Received: 1	1/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	2.0	2		12/02/20 22:50	127-18-4	
Toluene	ND	ug/L	2.0	2		12/02/20 22:50	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	2.0	2		12/02/20 22:50	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	2.0	2		12/02/20 22:50	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	2.0	2		12/02/20 22:50	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	2.0	2		12/02/20 22:50	79-00-5	
Trichloroethene	ND	ug/L	2.0	2		12/02/20 22:50	79-01-6	
Trichlorofluoromethane	ND	ug/L	2.0	2		12/02/20 22:50	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	2.0	2		12/02/20 22:50	96-18-4	
Vinyl acetate	ND	ug/L	4.0	2		12/02/20 22:50	108-05-4	
Vinyl chloride	ND	ug/L	2.0	2		12/02/20 22:50	75-01-4	
Xylene (Total)	ND	ug/L	2.0	2		12/02/20 22:50	1330-20-7	
m&p-Xylene	ND	ug/L	4.0	2		12/02/20 22:50	179601-23-1	
o-Xylene	ND	ug/L	2.0	2		12/02/20 22:50	95-47-6	
Surrogates		•						
4-Bromofluorobenzene (S)	100	%	70-130	2		12/02/20 22:50	460-00-4	
1,2-Dichloroethane-d4 (S)	94	%	70-130	2		12/02/20 22:50	17060-07-0	
Toluene-d8 (S)	101	%	70-130	2		12/02/20 22:50	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	90.9	ug/L	2.0	1		11/25/20 20:52	123-91-1	
1,2-Dichloroethane-d4 (S)	97	%	70-130	1		11/25/20 20:52	17060-07-0	
Toluene-d8 (S)	94	%	66-133	1		11/25/20 20:52	2037-26-5	

Project: Kop Flex
Pace Project No.: 92507929

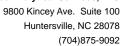
Date: 12/03/2020 04:07 PM


Sample: RW-2D	Lab ID: 925	07929005	Collected: 11/22	20 14:50	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytic	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/26/20 04:3	9 67-64-1	
Benzene	ND	ug/L	1.0	1		11/26/20 04:3		
Bromobenzene	ND	ug/L	1.0	1		11/26/20 04:3	9 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/26/20 04:3	9 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/26/20 04:3		
Bromoform	ND	ug/L	1.0	1		11/26/20 04:3		
Bromomethane	ND	ug/L	2.0	1		11/26/20 04:3	9 74-83-9	v2
2-Butanone (MEK)	ND	ug/L	5.0	1		11/26/20 04:3		
Carbon tetrachloride	ND	ug/L	1.0	1		11/26/20 04:3		
Chlorobenzene	ND	ug/L	1.0	1		11/26/20 04:3		
Chloroethane	ND	ug/L	1.0	1		11/26/20 04:3		
Chloroform	ND	ug/L	5.0	1		11/26/20 04:3		
Chloromethane	ND	ug/L	1.0	1		11/26/20 04:3		
2-Chlorotoluene	ND	ug/L	1.0	1		11/26/20 04:3		
4-Chlorotoluene	ND	ug/L	1.0	1		11/26/20 04:3		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/26/20 04:3		
Dibromochloromethane	ND	ug/L	1.0	1		11/26/20 04:3		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/26/20 04:3		
Dibromomethane	ND ND	ug/L	1.0	1		11/26/20 04:3		
1,2-Dichlorobenzene	ND ND	ug/L ug/L	1.0	1		11/26/20 04:3		
1,3-Dichlorobenzene	ND ND	-	1.0	1		11/26/20 04:3		
1,4-Dichlorobenzene	ND ND	ug/L ug/L	1.0	1		11/26/20 04:3		
Dichlorodifluoromethane	ND ND	ug/L ug/L	1.0	1		11/26/20 04:3		
1,1-Dichloroethane	17.9	_	1.0	1		11/26/20 04:3		
•		ug/L						
1,2-Dichloroethane	ND	ug/L	1.0	1		11/26/20 04:3		
1,1-Dichloroethene	131	ug/L	1.0	1		11/26/20 04:3		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/26/20 04:3		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/26/20 04:3		
1,2-Dichloropropane	ND	ug/L	1.0	1		11/26/20 04:3		
1,3-Dichloropropane	ND	ug/L	1.0	1		11/26/20 04:3		
2,2-Dichloropropane	ND	ug/L	1.0	1		11/26/20 04:3		
1,1-Dichloropropene	ND	ug/L	1.0	1		11/26/20 04:3		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			9 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1			9 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		11/26/20 04:3		
Ethylbenzene	ND	ug/L	1.0	1		11/26/20 04:3		
Hexachloro-1,3-butadiene	ND	ug/L	1.0			11/26/20 04:3		
2-Hexanone	ND	ug/L	5.0	1		11/26/20 04:3		
o-Isopropyltoluene	ND	ug/L	1.0	1		11/26/20 04:3	9 99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		11/26/20 04:3	9 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/26/20 04:3	9 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/26/20 04:3	9 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		11/26/20 04:3	9 91-20-3	
Styrene	ND	ug/L	1.0	1		11/26/20 04:3	9 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/26/20 04:3	9 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0			11/26/20 04:3		

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

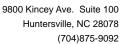
Sample: RW-2D	Lab ID: 9250	7929005	Collected: 11/22/2	0 14:50	Received: 1	11/24/20 11:00 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	od: EPA 82	260D					
	Pace Analytical	Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/26/20 04:39	127-18-4	
Toluene	ND	ug/L	1.0	1		11/26/20 04:39	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/26/20 04:39	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/26/20 04:39	120-82-1	
1,1,1-Trichloroethane	5.5	ug/L	1.0	1		11/26/20 04:39	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/26/20 04:39	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/26/20 04:39	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/26/20 04:39	75-69-4	v1
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/26/20 04:39	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		11/26/20 04:39	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		11/26/20 04:39	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		11/26/20 04:39	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		11/26/20 04:39	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/26/20 04:39	95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	101	%	70-130	1		11/26/20 04:39	460-00-4	
1,2-Dichloroethane-d4 (S)	119	%	70-130	1		11/26/20 04:39	17060-07-0	
Toluene-d8 (S)	100	%	70-130	1		11/26/20 04:39	2037-26-5	
8260D MSV SIM	Analytical Meth	od: EPA 82	260D Mod.					
	Pace Analytical	Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	74.5	ug/L	2.0	1		11/25/20 21:11	123-91-1	
1,2-Dichloroethane-d4 (S)	92	%	70-130	1		11/25/20 21:11	17060-07-0	
Toluene-d8 (S)	94	%	66-133	1		11/25/20 21:11	2037-26-5	



Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

Sample: Trip Blank A	Lab ID: 925	07929006	Collected: 11/22/2	00:00	Received:	11/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260D MSV Low Level	Analytical Met	hod: EPA 82	260D					
	Pace Analytica	al Services -	Charlotte					
Acetone	ND	ug/L	25.0	1		11/25/20 12:4	5 67-64-1	
Benzene	ND	ug/L	1.0	1		11/25/20 12:4	5 71-43-2	
Bromobenzene	ND	ug/L	1.0	1		11/25/20 12:4	5 108-86-1	
Bromochloromethane	ND	ug/L	1.0	1		11/25/20 12:4	5 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		11/25/20 12:4	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		11/25/20 12:4	5 75-25-2	
Bromomethane	ND	ug/L	2.0	1		11/25/20 12:4	5 74-83-9	IK
2-Butanone (MEK)	ND	ug/L	5.0	1		11/25/20 12:4	5 78-93-3	
Carbon tetrachloride	ND	ug/L	1.0	1		11/25/20 12:4		
Chlorobenzene	ND	ug/L	1.0	1		11/25/20 12:4		
Chloroethane	ND	ug/L	1.0	1		11/25/20 12:4		
Chloroform	ND	ug/L	5.0	1		11/25/20 12:4		
Chloromethane	ND	ug/L	1.0	1		11/25/20 12:4		
2-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 12:4		
4-Chlorotoluene	ND	ug/L	1.0	1		11/25/20 12:4		
1,2-Dibromo-3-chloropropane	ND	ug/L	5.0	1		11/25/20 12:4		
Dibromochloromethane	ND	ug/L	1.0	1		11/25/20 12:4		
1,2-Dibromoethane (EDB)	ND	ug/L	1.0	1		11/25/20 12:4		
Dibromomethane	ND	ug/L	1.0	1		11/25/20 12:4		
1,2-Dichlorobenzene	ND	ug/L ug/L	1.0	1		11/25/20 12:4		
1,3-Dichlorobenzene	ND	_	1.0	1		11/25/20 12:4		
1,4-Dichlorobenzene	ND ND	ug/L	1.0	1		11/25/20 12:4		
Dichlorodifluoromethane	ND ND	ug/L	1.0	1		11/25/20 12:4		
		ug/L						
1,1-Dichloroethane	ND	ug/L	1.0	1		11/25/20 12:4		
1,2-Dichloroethane	ND	ug/L	1.0	1		11/25/20 12:4		
1,1-Dichloroethene	ND	ug/L	1.0	1		11/25/20 12:4		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 12:4		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		11/25/20 12:4		
1,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 12:4		
1,3-Dichloropropane	ND	ug/L	1.0	1		11/25/20 12:4		
2,2-Dichloropropane	ND	ug/L	1.0	1		11/25/20 12:4		
1,1-Dichloropropene	ND	ug/L	1.0	1		11/25/20 12:4		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-02-6	
Diisopropyl ether	ND	ug/L	1.0	1		11/25/20 12:4		
Ethylbenzene	ND	ug/L	1.0	1		11/25/20 12:4		
Hexachloro-1,3-butadiene	ND	ug/L	1.0	1		11/25/20 12:4		
2-Hexanone	ND	ug/L	5.0	1		11/25/20 12:4		
p-Isopropyltoluene	ND	ug/L	1.0	1		11/25/20 12:4	5 99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		11/25/20 12:4	5 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	5.0	1		11/25/20 12:4		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		11/25/20 12:4	5 1634-04-4	
Naphthalene	ND	ug/L	1.0	1		11/25/20 12:4	5 91-20-3	
Styrene	ND	ug/L	1.0	1		11/25/20 12:4	5 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 12:4	5 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		11/25/20 12:4	5 79-34-5	



Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

Sample: Trip Blank A	Lab ID: 9250	07929006	Collected: 11/22/2	0 00:00	Received: 1	1/24/20 11:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260D MSV Low Level	Analytical Meth	nod: EPA 82	260D					
	Pace Analytica	l Services -	Charlotte					
Tetrachloroethene	ND	ug/L	1.0	1		11/25/20 12:45	127-18-4	
Toluene	ND	ug/L	1.0	1		11/25/20 12:45	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 12:45	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		11/25/20 12:45	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		11/25/20 12:45	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		11/25/20 12:45	79-00-5	
Trichloroethene	ND	ug/L	1.0	1		11/25/20 12:45	79-01-6	
Trichlorofluoromethane	ND	ug/L	1.0	1		11/25/20 12:45	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	1.0	1		11/25/20 12:45	96-18-4	
Vinyl acetate	ND	ug/L	2.0	1		11/25/20 12:45	108-05-4	
Vinyl chloride	ND	ug/L	1.0	1		11/25/20 12:45	75-01-4	
Xylene (Total)	ND	ug/L	1.0	1		11/25/20 12:45	1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		11/25/20 12:45	179601-23-1	
o-Xylene	ND	ug/L	1.0	1		11/25/20 12:45	95-47-6	
Surrogates		_						
4-Bromofluorobenzene (S)	101	%	70-130	1		11/25/20 12:45	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-130	1		11/25/20 12:45	17060-07-0	
Toluene-d8 (S)	98	%	70-130	1		11/25/20 12:45	2037-26-5	
B260D MSV SIM	Analytical Meth	nod: EPA 82	260D Mod.					
	Pace Analytica	l Services -	Charlotte					
1,4-Dioxane (p-Dioxane) Surrogates	ND	ug/L	2.0	1		11/24/20 16:39	123-91-1	
1,2-Dichloroethane-d4 (S)	95	%	70-130	1		11/24/20 16:39	17060-07-0	
Toluene-d8 (S)	92	%	66-133	1		11/24/20 16:39	2037-26-5	

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

QC Batch: 582948 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92507929003, 92507929006

METHOD BLANK: 3082529 Matrix: Water

Associated Lab Samples: 92507929003, 92507929006

0200		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane		ND	1.0	11/25/20 12:10	-
1,1,1-Trichloroethane	ug/L	ND	1.0	11/25/20 12:10	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	11/25/20 12:10	
1,1,2-Trichloroethane	ug/L	ND	1.0	11/25/20 12:10	
1,1-Dichloroethane	ug/L	ND	1.0	11/25/20 12:10	
1,1-Dichloroethene	ug/L	ND	1.0	11/25/20 12:10	
1,1-Dichloropropene	ug/L	ND	1.0	11/25/20 12:10	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	11/25/20 12:10	
1,2,3-Trichloropropane	ug/L	ND	1.0	11/25/20 12:10	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	11/25/20 12:10	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	11/25/20 12:10	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	11/25/20 12:10	
1,2-Dichlorobenzene	ug/L	ND	1.0	11/25/20 12:10	
1,2-Dichloroethane	ug/L	ND	1.0	11/25/20 12:10	
1,2-Dichloropropane	ug/L	ND	1.0	11/25/20 12:10	
1,3-Dichlorobenzene	ug/L	ND	1.0	11/25/20 12:10	
1,3-Dichloropropane	ug/L	ND	1.0	11/25/20 12:10	
1,4-Dichlorobenzene	ug/L	ND	1.0	11/25/20 12:10	
2,2-Dichloropropane	ug/L	ND	1.0	11/25/20 12:10	
2-Butanone (MEK)	ug/L	ND	5.0	11/25/20 12:10	
2-Chlorotoluene	ug/L	ND	1.0	11/25/20 12:10	
2-Hexanone	ug/L	ND	5.0	11/25/20 12:10	
4-Chlorotoluene	ug/L	ND	1.0	11/25/20 12:10	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	11/25/20 12:10	
Acetone	ug/L	ND	25.0	11/25/20 12:10	
Benzene	ug/L	ND	1.0	11/25/20 12:10	
Bromobenzene	ug/L	ND	1.0	11/25/20 12:10	
Bromochloromethane	ug/L	ND	1.0	11/25/20 12:10	
Bromodichloromethane	ug/L	ND	1.0	11/25/20 12:10	
Bromoform	ug/L	ND	1.0	11/25/20 12:10	
Bromomethane	ug/L	ND	2.0	11/25/20 12:10	IK
Carbon tetrachloride	ug/L	ND	1.0	11/25/20 12:10	
Chlorobenzene	ug/L	ND	1.0	11/25/20 12:10	
Chloroethane	ug/L	ND	1.0	11/25/20 12:10	
Chloroform	ug/L	ND	5.0	11/25/20 12:10	
Chloromethane	ug/L	ND	1.0	11/25/20 12:10	
cis-1,2-Dichloroethene	ug/L	ND	1.0	11/25/20 12:10	
cis-1,3-Dichloropropene	ug/L	ND	1.0	11/25/20 12:10	
Dibromochloromethane	ug/L	ND	1.0	11/25/20 12:10	
Dibromomethane	ug/L	ND	1.0	11/25/20 12:10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

METHOD BLANK: 3082529 Matrix: Water

Associated Lab Samples: 92507929003, 92507929006

Parameter	Units	Blank Result	Reporting Limit	Analyzad	Qualifiers
Parameter	Units	Result		Analyzed	Quailliers
Dichlorodifluoromethane	ug/L	ND	1.0	11/25/20 12:10	
Diisopropyl ether	ug/L	ND	1.0	11/25/20 12:10	
Ethylbenzene	ug/L	ND	1.0	11/25/20 12:10	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	11/25/20 12:10	
m&p-Xylene	ug/L	ND	2.0	11/25/20 12:10	
Methyl-tert-butyl ether	ug/L	ND	1.0	11/25/20 12:10	
Methylene Chloride	ug/L	ND	5.0	11/25/20 12:10	
Naphthalene	ug/L	ND	1.0	11/25/20 12:10	
o-Xylene	ug/L	ND	1.0	11/25/20 12:10	
p-Isopropyltoluene	ug/L	ND	1.0	11/25/20 12:10	
Styrene	ug/L	ND	1.0	11/25/20 12:10	
Tetrachloroethene	ug/L	ND	1.0	11/25/20 12:10	
Toluene	ug/L	ND	1.0	11/25/20 12:10	
trans-1,2-Dichloroethene	ug/L	ND	1.0	11/25/20 12:10	
trans-1,3-Dichloropropene	ug/L	ND	1.0	11/25/20 12:10	
Trichloroethene	ug/L	ND	1.0	11/25/20 12:10	
Trichlorofluoromethane	ug/L	ND	1.0	11/25/20 12:10	
Vinyl acetate	ug/L	ND	2.0	11/25/20 12:10	
Vinyl chloride	ug/L	ND	1.0	11/25/20 12:10	
Xylene (Total)	ug/L	ND	1.0	11/25/20 12:10	
1,2-Dichloroethane-d4 (S)	%	96	70-130	11/25/20 12:10	
4-Bromofluorobenzene (S)	%	101	70-130	11/25/20 12:10	
Toluene-d8 (S)	%	100	70-130	11/25/20 12:10	

LABORATORY CONTROL SAMPLE:	3082530					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	48.0	96	70-130	
1,1,1-Trichloroethane	ug/L	50	47.8	96	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	46.5	93	70-130	
1,1,2-Trichloroethane	ug/L	50	43.6	87	70-130	
1,1-Dichloroethane	ug/L	50	48.5	97	70-130	
1,1-Dichloroethene	ug/L	50	50.9	102	70-132	
1,1-Dichloropropene	ug/L	50	49.9	100	70-131	
1,2,3-Trichlorobenzene	ug/L	50	48.9	98	70-134	
1,2,3-Trichloropropane	ug/L	50	47.8	96	70-130	
1,2,4-Trichlorobenzene	ug/L	50	50.9	102	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	48.0	96	70-132	
1,2-Dibromoethane (EDB)	ug/L	50	48.0	96	70-130	
1,2-Dichlorobenzene	ug/L	50	49.6	99	70-130	
1,2-Dichloroethane	ug/L	50	45.5	91	70-130	
1,2-Dichloropropane	ug/L	50	48.1	96	70-130	
1,3-Dichlorobenzene	ug/L	50	46.7	93	70-130	
1,3-Dichloropropane	ug/L	50	50.9	102	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

QUALITY CONTROL DATA

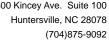
Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

ABORATORY CONTROL SAMPLE:	3082530					
Parameter		Spike	LCS	LCS	% Rec	
	Units	Conc.	Result	% Rec	Limits	Qualifier
,4-Dichlorobenzene	ug/L	50	48.2	96	70-130	
2,2-Dichloropropane	ug/L	50	55.4	111	70-130	
P-Butanone (MEK)	ug/L	100	93.4	93	70-133	
-Chlorotoluene	ug/L	50	47.6	95	70-130	
-Hexanone	ug/L	100	88.1	88	70-130	
-Chlorotoluene	ug/L	50	46.8	94	70-130	
-Methyl-2-pentanone (MIBK)	ug/L	100	87.8	88	70-130	
cetone	ug/L	100	94.7	95	70-144	
enzene	ug/L	50	47.6	95	70-130	
romobenzene	ug/L	50	47.5	95	70-130	
romochloromethane	ug/L	50	48.1	96	70-130	
romodichloromethane	ug/L	50	43.6	87	70-130	
romoform	ug/L	50	49.1	98	70-131	
Bromomethane	ug/L	50	54.5	109	30-177	K
arbon tetrachloride	ug/L	50	48.3	97	70-130	
Chlorobenzene	ug/L	50	47.2	94	70-130	
hloroethane	ug/L	50	42.9	86	46-131	
hloroform	ug/L	50	48.9	98	70-130	
hloromethane	ug/L	50	50.2	100	49-130	
s-1,2-Dichloroethene	ug/L	50	47.5	95	70-130	
s-1,3-Dichloropropene	ug/L	50	49.5	99	70-130	
ibromochloromethane	ug/L	50	51.3	103	70-130	
ibromomethane	ug/L	50	46.5	93	70-130	
ichlorodifluoromethane	ug/L	50	48.0	96	52-134	
iisopropyl ether	ug/L	50	45.3	91	70-131	
thylbenzene	ug/L	50	47.2	94	70-130	
lexachloro-1,3-butadiene	ug/L	50	50.6	101	70-131	
n&p-Xylene	ug/L	100	93.8	94	70-130	
lethyl-tert-butyl ether	ug/L	50	46.4	93	70-130	
Methylene Chloride	ug/L	50	45.9	92	68-130	
laphthalene	ug/L	50	48.3	97	70-133	
-Xylene	ug/L	50	47.1	94	70-130	
-Isopropyltoluene	ug/L	50	48.8	98	70-130	
Styrene	ug/L	50	46.6	93	70-130	
etrachloroethene	ug/L	50	47.2	94	70-130	
oluene	ug/L	50	45.9	92	70-130	
ans-1,2-Dichloroethene	ug/L	50	50.0	100	70-130	
ans-1,3-Dichloropropene	ug/L	50	50.6	101	70-130	
richloroethene	ug/L	50	49.0	98	70-130	
richlorofluoromethane	ug/L	50	48.2	96	61-130	
inyl acetate	ug/L	100	119	119	70-140	
inyl chloride	ug/L	50	48.0	96	59-142	
ylene (Total)	ug/L	150	141	94	70-130	
,2-Dichloroethane-d4 (S)	%	100	171	98	70-130	
-Bromofluorobenzene (S)	% %			101	70-130	
oluene-d8 (S)	% %			98	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(704)875-9092

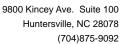

QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

MATRIX SPIKE & MATRIX SI												
			MS	MSD								
		2507532001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
,1,1,2-Tetrachloroethane	ug/L	ND	20	20	20.8	24.1	104	120	70-135	14	30	
,1,1-Trichloroethane	ug/L	ND	20	20	21.0	25.4	105	127	70-148	19	30	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	20.8	24.3	104	122	70-131	16	30	
1,1,2-Trichloroethane	ug/L	ND	20	20	20.1	24.3	100	122	70-136	19	30	
I,1-Dichloroethane	ug/L	ND	20	20	22.9	26.7	114	134	70-147	16	30	
1,1-Dichloroethene	ug/L	ND	20	20	23.1	26.7	116	134	70-158	14	30	
,1-Dichloropropene	ug/L	ND	20	20	23.1	27.2	115	136	70-149	16	30	
,2,3-Trichlorobenzene	ug/L	ND	20	20	20.8	22.6	104	113	68-140	9	30	
,2,3-Trichloropropane	ug/L	ND	20	20	20.5	25.5	102	128	67-137	22	30	
,2,4-Trichlorobenzene	ug/L	ND	20	20	22.0	24.2	110	121	70-139	10	30	
,2-Dibromo-3-	ug/L	ND	20	20	19.6	23.6	98	118	69-136	18	30	
chloropropane												
,2-Dibromoethane (EDB)	ug/L	ND	20	20	21.5	26.1	108	130	70-137	19		
,2-Dichlorobenzene	ug/L	ND	20	20	21.3	23.7	106	118	70-133	11	30	
,2-Dichloroethane	ug/L	ND	20	20	20.8	24.6	104	123	67-138	17		
,2-Dichloropropane	ug/L	ND	20	20	22.3	26.9	112	135	70-138	19		
,3-Dichlorobenzene	ug/L	ND	20	20	20.4	22.2	102	111	70-133	8		
,3-Dichloropropane	ug/L	ND	20	20	24.0	27.9	120	139	70-136	15		M1
,4-Dichlorobenzene	ug/L	ND	20	20	20.8	22.9	104	115	70-133	10		
2,2-Dichloropropane	ug/L	ND	20	20	23.8	28.5	119	143	52-155	18		
2-Butanone (MEK)	ug/L	ND	40	40	39.9	44.6	100	112	61-147	11	30	
2-Chlorotoluene	ug/L	ND	20	20	21.2	22.3	106	111	70-141	5		
2-Hexanone	ug/L	ND	40	40	37.6	43.9	94	110	67-139	15		
1-Chlorotoluene	ug/L	ND	20	20	20.5	22.2	103	111	70-135	8		
4-Methyl-2-pentanone MIBK)	ug/L	ND	40	40	38.9	44.2	97	111	67-136	13		
Acetone	ug/L	ND	40	40	42.6	41.4	106	103	55-159	3		
Benzene	ug/L	ND	20	20	23.2	26.3	116	132	67-150	13		
Bromobenzene	ug/L	ND	20	20	20.8	22.4	104	112	70-134	7		
Bromochloromethane	ug/L	ND	20	20	23.1	26.5	115	133	70-146	14		
Bromodichloromethane	ug/L	ND	20	20	20.2	23.2	101	116	70-138	14		
Bromoform	ug/L	ND	20	20	19.5	24.6	97	123	57-138	23		
Bromomethane	ug/L	ND	20	20	29.5	35.1	147	176	10-200	17		IK
Carbon tetrachloride	ug/L	ND	20	20	21.4	26.0	107	130	70-147	20		
Chlorobenzene	ug/L	ND	20	20	21.4	24.8	107	124	70-137	15		
Chloroethane	ug/L	ND	20	20	22.8	36.2	114	181	51-166	45		M1, F
Chloroform	ug/L	ND	20	20	22.2	26.2	111	131	70-144	16		
Chloromethane	ug/L	ND	20	20	22.6	337	113	1680	24-161	175	30	E,M1 R1
is-1,2-Dichloroethene	ug/L	ND	20	20	22.3	25.5	112	128	67-148	13	30	
is-1,3-Dichloropropene	ug/L	ND	20	20	23.4	21.5	117	108	70-142	9	30	
Dibromochloromethane	ug/L	ND	20	20	21.9	27.0	109	135	68-138	21	30	
Dibromomethane	ug/L	ND	20	20	21.4	25.1	107	126	70-134	16	30	
Dichlorodifluoromethane	ug/L	ND	20	20	20.9	25.8	104	129	43-155	21	30	
Diisopropyl ether	ug/L	ND	20	20	20.4	23.3	102	116	65-146	13	30	
Ethylbenzene	ug/L	ND	20	20	20.8	24.2	104	121	68-143	15		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 3082	531		3082532							
			MS	MSD								
	9	2507532001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Hexachloro-1,3-butadiene	ug/L	ND	20	20	21.2	23.7	106	119	62-151	11	30	
m&p-Xylene	ug/L	ND	40	40	41.1	47.3	103	118	53-157	14	30	
Methyl-tert-butyl ether	ug/L	ND	20	20	20.9	24.1	104	121	59-156	15	30	
Methylene Chloride	ug/L	ND	20	20	21.5	24.7	107	124	64-148	14	30	
Naphthalene	ug/L	ND	20	20	20.9	22.5	104	112	57-150	7	30	
o-Xylene	ug/L	ND	20	20	20.7	23.8	103	119	68-143	14	30	
p-Isopropyltoluene	ug/L	ND	20	20	20.4	23.6	102	118	70-141	14	30	
Styrene	ug/L	ND	20	20	21.2	24.3	106	122	70-136	13	30	
Tetrachloroethene	ug/L	ND	20	20	20.0	23.4	100	117	70-139	16	30	
Toluene	ug/L	ND	20	20	21.6	24.5	108	122	47-157	12	30	
trans-1,2-Dichloroethene	ug/L	ND	20	20	22.7	26.7	114	133	70-149	16	30	
trans-1,3-Dichloropropene	ug/L	ND	20	20	22.3	24.5	111	123	70-138	10	30	
Trichloroethene	ug/L	ND	20	20	22.0	25.7	110	128	70-149	15	30	
Trichlorofluoromethane	ug/L	ND	20	20	21.4	24.4	107	122	61-154	13	30	
Vinyl acetate	ug/L	ND	40	40	52.6	62.3	132	156	48-156	17	30	
Vinyl chloride	ug/L	ND	20	20	20.7	23.8	103	119	55-172	14	30	
Xylene (Total)	ug/L	ND	60	60	61.8	71.1	103	119	66-145	14	30	
1,2-Dichloroethane-d4 (S)	%						96	99	70-130			
4-Bromofluorobenzene (S)	%						100	101	70-130			
Toluene-d8 (S)	%						100	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

QC Batch: 582949 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92507929001

METHOD BLANK: 3082534 Matrix: Water

Associated Lab Samples: 92507929001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	 ug/L	ND	1.0	11/25/20 12:48	
1,1,1-Trichloroethane	ug/L	ND	1.0	11/25/20 12:48	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	11/25/20 12:48	
1,1,2-Trichloroethane	ug/L	ND	1.0	11/25/20 12:48	
1,1-Dichloroethane	ug/L	ND	1.0	11/25/20 12:48	
1,1-Dichloroethene	ug/L	ND	1.0	11/25/20 12:48	
1,1-Dichloropropene	ug/L	ND	1.0	11/25/20 12:48	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	11/25/20 12:48	
1,2,3-Trichloropropane	ug/L	ND	1.0	11/25/20 12:48	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	11/25/20 12:48	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	11/25/20 12:48	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	11/25/20 12:48	
1,2-Dichlorobenzene	ug/L	ND	1.0	11/25/20 12:48	
1,2-Dichloroethane	ug/L	ND	1.0	11/25/20 12:48	
1,2-Dichloropropane	ug/L	ND	1.0	11/25/20 12:48	
1,3-Dichlorobenzene	ug/L	ND	1.0	11/25/20 12:48	
1,3-Dichloropropane	ug/L	ND	1.0	11/25/20 12:48	
1,4-Dichlorobenzene	ug/L	ND	1.0	11/25/20 12:48	
2,2-Dichloropropane	ug/L	ND	1.0	11/25/20 12:48	
2-Butanone (MEK)	ug/L	ND	5.0	11/25/20 12:48	
2-Chlorotoluene	ug/L	ND	1.0	11/25/20 12:48	
2-Hexanone	ug/L	ND	5.0	11/25/20 12:48	
4-Chlorotoluene	ug/L	ND	1.0	11/25/20 12:48	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	11/25/20 12:48	
Acetone	ug/L	ND	25.0	11/25/20 12:48	
Benzene	ug/L	ND	1.0	11/25/20 12:48	
Bromobenzene	ug/L	ND	1.0	11/25/20 12:48	
Bromochloromethane	ug/L	ND	1.0	11/25/20 12:48	
Bromodichloromethane	ug/L	ND	1.0	11/25/20 12:48	
Bromoform	ug/L	ND	1.0	11/25/20 12:48	
Bromomethane	ug/L	ND	2.0	11/25/20 12:48	v2
Carbon tetrachloride	ug/L	ND	1.0	11/25/20 12:48	
Chlorobenzene	ug/L	ND	1.0	11/25/20 12:48	
Chloroethane	ug/L	ND	1.0	11/25/20 12:48	
Chloroform	ug/L	ND	5.0	11/25/20 12:48	
Chloromethane	ug/L	ND	1.0	11/25/20 12:48	v2
cis-1,2-Dichloroethene	ug/L	ND	1.0	11/25/20 12:48	
cis-1,3-Dichloropropene	ug/L	ND	1.0	11/25/20 12:48	
Dibromochloromethane	ug/L	ND	1.0	11/25/20 12:48	
Dibromomethane	ug/L	ND	1.0	11/25/20 12:48	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

METHOD BLANK: 3082534 Matrix: Water

Associated Lab Samples: 92507929001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Dichlorodifluoromethane	ug/L	ND	1.0	11/25/20 12:48	
Diisopropyl ether	ug/L	ND	1.0	11/25/20 12:48	
Ethylbenzene	ug/L	ND	1.0	11/25/20 12:48	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	11/25/20 12:48	
m&p-Xylene	ug/L	ND	2.0	11/25/20 12:48	
Methyl-tert-butyl ether	ug/L	ND	1.0	11/25/20 12:48	
Methylene Chloride	ug/L	ND	5.0	11/25/20 12:48	
Naphthalene	ug/L	ND	1.0	11/25/20 12:48	
o-Xylene	ug/L	ND	1.0	11/25/20 12:48	
p-Isopropyltoluene	ug/L	ND	1.0	11/25/20 12:48	
Styrene	ug/L	ND	1.0	11/25/20 12:48	
Tetrachloroethene	ug/L	ND	1.0	11/25/20 12:48	
Toluene	ug/L	ND	1.0	11/25/20 12:48	
trans-1,2-Dichloroethene	ug/L	ND	1.0	11/25/20 12:48	
trans-1,3-Dichloropropene	ug/L	ND	1.0	11/25/20 12:48	
Trichloroethene	ug/L	ND	1.0	11/25/20 12:48	
Trichlorofluoromethane	ug/L	ND	1.0	11/25/20 12:48	
Vinyl acetate	ug/L	ND	2.0	11/25/20 12:48	
Vinyl chloride	ug/L	ND	1.0	11/25/20 12:48	
Xylene (Total)	ug/L	ND	1.0	11/25/20 12:48	
1,2-Dichloroethane-d4 (S)	%	97	70-130	11/25/20 12:48	
4-Bromofluorobenzene (S)	%	98	70-130	11/25/20 12:48	
Toluene-d8 (S)	%	101	70-130	11/25/20 12:48	

LABORATORY CONTROL SAMPLE:	3082535					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	63.8	128	70-130	
1,1,1-Trichloroethane	ug/L	50	46.9	94	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	63.3	127	70-130	
1,1,2-Trichloroethane	ug/L	50	51.2	102	70-130	
1,1-Dichloroethane	ug/L	50	46.3	93	70-130	
1,1-Dichloroethene	ug/L	50	47.2	94	70-132	
1,1-Dichloropropene	ug/L	50	49.6	99	70-131	
1,2,3-Trichlorobenzene	ug/L	50	63.6	127	70-134	
1,2,3-Trichloropropane	ug/L	50	61.7	123	70-130	
1,2,4-Trichlorobenzene	ug/L	50	64.2	128	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	65.0	130	70-132	
1,2-Dibromoethane (EDB)	ug/L	50	64.6	129	70-130	
1,2-Dichlorobenzene	ug/L	50	63.9	128	70-130	
1,2-Dichloroethane	ug/L	50	45.3	91	70-130	
1,2-Dichloropropane	ug/L	50	51.7	103	70-130	
1,3-Dichlorobenzene	ug/L	50	64.4	129	70-130	
1,3-Dichloropropane	ug/L	50	65.6	131	70-130 L	_1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

LABORATORY CONTROL SAMPLE:	3082535					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	ug/L	50	64.3	129	70-130	
2,2-Dichloropropane	ug/L	50	47.4	95	70-130	
2-Butanone (MEK)	ug/L	100	93.7	94	70-133	
2-Chlorotoluene	ug/L	50	71.5	143	70-130	L1
2-Hexanone	ug/L	100	119	119	70-130	
l-Chlorotoluene	ug/L	50	64.3	129	70-130	
I-Methyl-2-pentanone (MIBK)	ug/L	100	95.3	95	70-130	
Acetone	ug/L	100	97.0	97	70-144	
Benzene	ug/L	50	50.0	100	70-130	
Bromobenzene	ug/L	50	64.7	129	70-130	
Bromochloromethane	ug/L	50	46.2	92	70-130	
Bromodichloromethane	ug/L	50	47.7	95	70-130	
Bromoform	ug/L	50	61.5	123	70-131	
Bromomethane	ug/L	50	43.1	86	30-177	v3
Carbon tetrachloride	ug/L	50	48.4	97	70-130	
Chlorobenzene	ug/L	50	60.7	121	70-130	
Chloroethane	ug/L	50	41.4	83	46-131	
Chloroform	ug/L	50	47.1	94	70-130	
Chloromethane	ug/L	50	43.2	86	49-130	v3
is-1,2-Dichloroethene	ug/L	50	45.2	90	70-130	
is-1,3-Dichloropropene	ug/L	50	54.8	110	70-130	
Dibromochloromethane	ug/L	50	66.3	133	70-130	L1
Dibromomethane	ug/L	50	48.7	97	70-130	
Dichlorodifluoromethane	ug/L	50	42.7	85	52-134	
Diisopropyl ether	ug/L	50	47.7	95	70-131	
Ethylbenzene	ug/L	50	58.9	118	70-130	
lexachloro-1,3-butadiene	ug/L	50	62.2	124	70-131	
n&p-Xylene	ug/L	100	120	120	70-130	
Methyl-tert-butyl ether	ug/L	50	48.1	96	70-130	
Methylene Chloride	ug/L	50	44.0	88	68-130	
Naphthalene	ug/L	50	64.1	128	70-133	
o-Xylene	ug/L	50	61.1	122	70-130	
o-Isopropyltoluene	ug/L	50	64.3	129	70-130	
Styrene	ug/L	50	61.8	124	70-130	
Tetrachloroethene	ug/L	50	59.6	119	70-130	
Toluene	ug/L	50	47.7	95	70-130	
rans-1,2-Dichloroethene	ug/L	50	46.2	92	70-130	
rans-1,3-Dichloropropene	ug/L	50	53.5	107	70-130	
richloroethene	ug/L	50	51.2	102	70-130	
richlorofluoromethane	ug/L	50	46.2	92	61-130	
/inyl acetate	ug/L	100	119	119	70-140	
'inyl chloride	ug/L	50	42.7	85	59-142	
(ylene (Total)	ug/L	150	181	121	70-130	
,2-Dichloroethane-d4 (S)	%	100	101	94	70-130	
I-Bromofluorobenzene (S)	% %			98	70-130	
Foluene-d8 (S)	%			93	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

MATRIX SPIKE & MATRIX SI	PIKE DUPI	LICATE: 3082			3082537	,						
			MS	MSD								
Parameter	Units	92507929001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
	-											
,1,1,2-Tetrachloroethane	ug/L	ND	50	50	54.5	52.9	109	106	70-135	3	30	N 4 4
,1,1-Trichloroethane	ug/L	65.4	50	50	115	142	100	152	70-148	20		M1
I,1,2,2-Tetrachloroethane	ug/L	ND	50	50	53.1	49.7	106	99	70-131	7	30	
1,1,2-Trichloroethane	ug/L	ND	50	50	43.8	51.8	88	104	70-136	17	30	N 1 4
,1-Dichloroethane	ug/L	81.2	50	50	138	156	114	150	70-147	12		M1
,1-Dichloroethene	ug/L	344	50	50	263	419	-162	150	70-158	46		M1, F
,1-Dichloropropene	ug/L	ND	50	50	61.4	63.8	123	128	70-149	4	30	
1,2,3-Trichlorobenzene	ug/L	ND	50	50	47.9	42.8	96	86	68-140	11	30	
,2,3-Trichloropropane	ug/L	ND	50	50	50.7	49.2	101	98	67-137	3	30	
,2,4-Trichlorobenzene	ug/L	ND	50	50	48.3	44.2	97	88	70-139	9	30	
,2-Dibromo-3-	ug/L	ND	50	50	52.8	51.7	106	103	69-136	2	30	
chloropropane ,2-Dibromoethane (EDB)	ug/L	ND	50	50	51.5	52.2	103	104	70-137	1	30	
1,2-Dibromoemane (LDB)	ug/L ug/L	ND ND	50	50	50.9	50.5	103	104	70-137	1	30	
,2-Dichloroethane	ug/L ug/L	ND ND	50	50	54.4	55.6	102	101	67-138	2	30	
,2-Dichloropropane	_	ND ND	50	50	48.0	56.4	96	113	70-138	16	30	
,3-Dichlorobenzene	ug/L	ND ND	50	50	52.5	50.4	105	102	70-138	3	30	
,3-Dichloropropane	ug/L	ND ND	50	50	51.0	52.6	103	102	70-133	3	30	
• •	ug/L	ND ND	50	50	52.4	51.2	102	103	70-136	2	30	
,4-Dichlorobenzene	ug/L											
2,2-Dichloropropane	ug/L	ND	50	50	57.9	60.0	116	120	52-155	3	30	
P-Butanone (MEK)	ug/L	ND	100	100	110	112	110	112	61-147	2	30	
2-Chlorotoluene	ug/L	ND	50	50	53.9	53.9	108	108	70-141	0	30	
2-Hexanone	ug/L	ND	100	100	98.3	99.5	98	100	67-139	1	30	
I-Chlorotoluene	ug/L	ND	50	50	58.3	52.6	117	105	70-135	10	30	
l-Methyl-2-pentanone MIBK)	ug/L	ND	100	100	81.6	96.8	82	97	67-136	17	30	
Acetone	ug/L	ND	100	100	118	112	118	112	55-159	5	30	
Benzene	ug/L	ND	50	50	55.2	53.6	108	105	67-150	3	30	
Bromobenzene	ug/L	ND	50	50	59.6	53.1	119	106	70-134	12	30	
Bromochloromethane	ug/L	ND	50	50	58.9	59.5	118	119	70-146	1	30	
Bromodichloromethane	ug/L	ND	50	50	44.8	51.5	90	103	70-138	14	30	
Bromoform	ug/L	ND	50	50	59.4	49.1	119	98	57-138	19	30	
Bromomethane	ug/L	ND	50	50	71.5	69.5	143	139	10-200	3	30	
Carbon tetrachloride	ug/L	ND	50	50	56.2	56.3	112	113	70-147	0	30	
Chlorobenzene	ug/L	ND	50	50	51.5	53.2	103	106	70-137	3	30	
Chloroethane	ug/L	12.8	50	50	69.0	74.0	112	122	51-166	7	30	
Chloroform	ug/L	ND	50	50	57.8	58.2	116	116	70-144	1	30	
Chloromethane	ug/L	ND	50	50	54.5	57.1	109	114	24-161	5	30	
is-1,2-Dichloroethene	ug/L	ND	50	50	58.2	60.9	113	118	67-148	5	30	
is-1,3-Dichloropropene	ug/L	ND	50	50	45.3	53.9	91	108	70-142	17	30	
Dibromochloromethane	ug/L	ND	50	50	56.6	54.9	113	110	68-138	3	30	
Dibromomethane	ug/L	ND	50	50	48.6	51.7	97	103	70-134	6	30	
Dichlorodifluoromethane	ug/L	ND	50	50	51.8	51.7	104	103	43-155	0	30	
Diisopropyl ether	ug/L	ND	50	50	55.1	56.7	110	113	65-146	3	30	
Ethylbenzene	ug/L	ND	50	50	56.0	53.3	112	107	68-143	5	30	
lexachloro-1,3-butadiene	ug/L	ND	50	50	54.9	50.4	110	101	62-151	8	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

MATRIX SPIKE & MATRIX SF	THE DUPLIC	CATE: 3082	MS	MSD	3082537							
	g	2507929001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
m&p-Xylene	ug/L	ND	100	100	109	105	109	105	53-157	4	30	
Methyl-tert-butyl ether	ug/L	ND	50	50	56.8	57.5	114	115	59-156	1	30	
Methylene Chloride	ug/L	ND	50	50	58.9	59.4	118	119	64-148	1	30	
Naphthalene	ug/L	ND	50	50	47.7	41.4	95	83	57-150	14	30	
o-Xylene	ug/L	ND	50	50	52.3	53.2	105	106	68-143	2	30	
o-Isopropyltoluene	ug/L	ND	50	50	53.5	54.8	107	110	70-141	2	30	
Styrene	ug/L	ND	50	50	58.6	51.8	117	104	70-136	12	30	
Tetrachloroethene	ug/L	ND	50	50	52.7	51.4	105	103	70-139	2	30	
Toluene	ug/L	ND	50	50	45.6	53.1	87	102	47-157	15	30	
rans-1,2-Dichloroethene	ug/L	ND	50	50	63.0	61.4	126	123	70-149	3	30	
trans-1,3-Dichloropropene	ug/L	ND	50	50	43.4	50.3	87	101	70-138	15	30	
Trichloroethene	ug/L	ND	50	50	57.2	57.7	111	112	70-149	1	30	
Trichlorofluoromethane	ug/L	ND	50	50	59.6	60.6	119	121	61-154	2	30	
√inyl acetate	ug/L	ND	100	100	127	129	127	129	48-156	2	30	
Vinyl chloride	ug/L	3.4	50	50	62.6	63.3	118	120	55-172	1	30	
Xylene (Total)	ug/L	ND	150	150	162	158	108	106	66-145	2	30	
1,2-Dichloroethane-d4 (S)	%						103	104	70-130			
I-Bromofluorobenzene (S)	%						103	96	70-130			
Toluene-d8 (S)	%						84	98	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

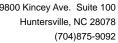
Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

QC Batch: 583045 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte


Associated Lab Samples: 92507929002, 92507929005

METHOD BLANK: 3083148 Matrix: Water

Associated Lab Samples: 92507929002, 92507929005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	11/26/20 00:23	
1,1,1-Trichloroethane	ug/L	ND	1.0	11/26/20 00:23	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	11/26/20 00:23	
1,1,2-Trichloroethane	ug/L	ND	1.0	11/26/20 00:23	
1,1-Dichloroethane	ug/L	ND	1.0	11/26/20 00:23	
1,1-Dichloroethene	ug/L	ND	1.0	11/26/20 00:23	
1,1-Dichloropropene	ug/L	ND	1.0	11/26/20 00:23	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	11/26/20 00:23	
1,2,3-Trichloropropane	ug/L	ND	1.0	11/26/20 00:23	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	11/26/20 00:23	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	11/26/20 00:23	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	11/26/20 00:23	
1,2-Dichlorobenzene	ug/L	ND	1.0	11/26/20 00:23	
1,2-Dichloroethane	ug/L	ND	1.0	11/26/20 00:23	
1,2-Dichloropropane	ug/L	ND	1.0	11/26/20 00:23	
1,3-Dichlorobenzene	ug/L	ND	1.0	11/26/20 00:23	
1,3-Dichloropropane	ug/L	ND	1.0	11/26/20 00:23	
1,4-Dichlorobenzene	ug/L	ND	1.0	11/26/20 00:23	
2,2-Dichloropropane	ug/L	ND	1.0	11/26/20 00:23	
2-Butanone (MEK)	ug/L	ND	5.0	11/26/20 00:23	
2-Chlorotoluene	ug/L	ND	1.0	11/26/20 00:23	
2-Hexanone	ug/L	ND	5.0	11/26/20 00:23	
4-Chlorotoluene	ug/L	ND	1.0	11/26/20 00:23	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	11/26/20 00:23	
Acetone	ug/L	ND	25.0	11/26/20 00:23	
Benzene	ug/L	ND	1.0	11/26/20 00:23	
Bromobenzene	ug/L	ND	1.0	11/26/20 00:23	
Bromochloromethane	ug/L	ND	1.0	11/26/20 00:23	
Bromodichloromethane	ug/L	ND	1.0	11/26/20 00:23	
Bromoform	ug/L	ND	1.0	11/26/20 00:23	
Bromomethane	ug/L	ND	2.0	11/26/20 00:23	v2
Carbon tetrachloride	ug/L	ND	1.0	11/26/20 00:23	
Chlorobenzene	ug/L	ND	1.0	11/26/20 00:23	
Chloroethane	ug/L	ND	1.0	11/26/20 00:23	
Chloroform	ug/L	ND	5.0	11/26/20 00:23	
Chloromethane	ug/L	ND	1.0	11/26/20 00:23	
cis-1,2-Dichloroethene	ug/L	ND	1.0	11/26/20 00:23	
cis-1,3-Dichloropropene	ug/L	ND	1.0	11/26/20 00:23	
Dibromochloromethane	ug/L	ND	1.0	11/26/20 00:23	
Dibromomethane	ug/L	ND	1.0	11/26/20 00:23	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

METHOD BLANK: 3083148 Matrix: Water

Associated Lab Samples: 92507929002, 92507929005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
					- Qualificis
Dichlorodifluoromethane	ug/L	ND	1.0	11/26/20 00:23	
Diisopropyl ether	ug/L	ND	1.0	11/26/20 00:23	
Ethylbenzene	ug/L	ND	1.0	11/26/20 00:23	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	11/26/20 00:23	
m&p-Xylene	ug/L	ND	2.0	11/26/20 00:23	
Methyl-tert-butyl ether	ug/L	ND	1.0	11/26/20 00:23	
Methylene Chloride	ug/L	ND	5.0	11/26/20 00:23	
Naphthalene	ug/L	ND	1.0	11/26/20 00:23	
o-Xylene	ug/L	ND	1.0	11/26/20 00:23	
p-Isopropyltoluene	ug/L	ND	1.0	11/26/20 00:23	
Styrene	ug/L	ND	1.0	11/26/20 00:23	
Tetrachloroethene	ug/L	ND	1.0	11/26/20 00:23	
Toluene	ug/L	ND	1.0	11/26/20 00:23	
trans-1,2-Dichloroethene	ug/L	ND	1.0	11/26/20 00:23	
trans-1,3-Dichloropropene	ug/L	ND	1.0	11/26/20 00:23	
Trichloroethene	ug/L	ND	1.0	11/26/20 00:23	
Trichlorofluoromethane	ug/L	ND	1.0	11/26/20 00:23	v1
Vinyl acetate	ug/L	ND	2.0	11/26/20 00:23	
Vinyl chloride	ug/L	ND	1.0	11/26/20 00:23	
Xylene (Total)	ug/L	ND	1.0	11/26/20 00:23	
1,2-Dichloroethane-d4 (S)	%	118	70-130	11/26/20 00:23	
4-Bromofluorobenzene (S)	%	100	70-130	11/26/20 00:23	
Toluene-d8 (S)	%	103	70-130	11/26/20 00:23	

LABORATORY CONTROL SAMPLE:	3083149					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	55.9	112	70-130	
1,1,1-Trichloroethane	ug/L	50	60.4	121	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	51.8	104	70-130	
1,1,2-Trichloroethane	ug/L	50	53.9	108	70-130	
1,1-Dichloroethane	ug/L	50	54.5	109	70-130	
1,1-Dichloroethene	ug/L	50	62.3	125	70-132	
1,1-Dichloropropene	ug/L	50	53.4	107	70-131	
1,2,3-Trichlorobenzene	ug/L	50	57.4	115	70-134	
1,2,3-Trichloropropane	ug/L	50	53.8	108	70-130	
1,2,4-Trichlorobenzene	ug/L	50	56.7	113	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	55.9	112	70-132	
1,2-Dibromoethane (EDB)	ug/L	50	53.9	108	70-130	
1,2-Dichlorobenzene	ug/L	50	51.1	102	70-130	
1,2-Dichloroethane	ug/L	50	59.8	120	70-130	
1,2-Dichloropropane	ug/L	50	49.8	100	70-130	
1,3-Dichlorobenzene	ug/L	50	50.5	101	70-130	
1,3-Dichloropropane	ug/L	50	51.7	103	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

LABORATORY CONTROL SAMPLE:	3083149					
_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,4-Dichlorobenzene	ug/L	50	50.2	100	70-130	
2,2-Dichloropropane	ug/L	50	59.1	118	70-130	
2-Butanone (MEK)	ug/L	100	115	115	70-133	
2-Chlorotoluene	ug/L	50	50.2	100	70-130	
2-Hexanone	ug/L	100	116	116	70-130	
4-Chlorotoluene	ug/L	50	48.6	97	70-130	
4-Methyl-2-pentanone (MIBK)	ug/L	100	112	112	70-130	
Acetone	ug/L	100	130	130	70-144	
Benzene	ug/L	50	50.5	101	70-130	
Bromobenzene	ug/L	50	50.7	101	70-130	
Bromochloromethane	ug/L	50	51.6	103	70-130	
Bromodichloromethane	ug/L	50	51.7	103	70-130	
Bromoform	ug/L	50	54.6	109	70-131	
Bromomethane	ug/L	50	47.4	95	30-177 v3	
Carbon tetrachloride	ug/L	50	62.9	126	70-130	
Chlorobenzene	ug/L	50	50.6	101	70-130	
Chloroethane	ug/L	50	54.3	109	46-131	
Chloroform	ug/L	50	52.3	105	70-130	
Chloromethane	ug/L	50	42.7	85	49-130	
is-1,2-Dichloroethene	ug/L	50	53.4	107	70-130	
is-1,3-Dichloropropene	ug/L	50	55.0	110	70-130	
Dibromochloromethane	ug/L	50	56.2	112	70-130	
Dibromomethane	ug/L	50	55.6	111	70-130	
Dichlorodifluoromethane	ug/L	50	56.0	112	52-134	
Diisopropyl ether	ug/L	50	50.1	100	70-131	
Ethylbenzene	ug/L	50	50.7	101	70-130	
Hexachloro-1,3-butadiene	ug/L	50	57.7	115	70-131	
n&p-Xylene	ug/L	100	105	105	70-130	
Methyl-tert-butyl ether	ug/L	50	54.1	108	70-130	
Methylene Chloride	ug/L	50	51.7	103	68-130	
Naphthalene	ug/L	50	56.7	113	70-133	
- p-Xylene	ug/L	50	50.2	100	70-130	
o-Isopropyltoluene	ug/L	50	49.9	100	70-130	
Styrene	ug/L	50	51.8	104	70-130	
Tetrachloroethene	ug/L	50	52.6	105	70-130	
Toluene	ug/L	50	51.6	103	70-130	
rans-1,2-Dichloroethene	ug/L	50	56.0	112	70-130	
rans-1,3-Dichloropropene	ug/L	50	55.8	112	70-130	
richloroethene	ug/L	50	56.1	112	70-130	
richlorofluoromethane	ug/L	50	61.5	123	61-130 v1	
/inyl acetate	ug/L	100	123	123	70-140	
/inyl chloride	ug/L	50	49.8	100	59-142	
(ylene (Total)	ug/L	150	155	103	70-130	
,2-Dichloroethane-d4 (S)	%		. 33	116	70-130	
I-Bromofluorobenzene (S)	%			104	70-130	
Toluene-d8 (S)	%			100	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

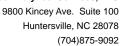
QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

MATRIX SPIKE & MATRIX SF	PIKE DUPL	LICATE: 3083			3083151							
			MS	MSD					_			
Parameter	Units	92507939009 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
1,1,1,2-Tetrachloroethane	ug/L		20	20	19.7	20.9	98	105	70-135	6	30	
1,1,1-Trichloroethane	ug/L		20	20	22.5	22.6	113	113	70-148	0	30	
,1,2,2-Tetrachloroethane	ug/L		20	20	15.7	27.0	78	135	70-131	53		M1,F
I,1,2-Trichloroethane	ug/L		20	20	26.7	21.5	134	107	70-136	22		
,1-Dichloroethane	ug/L		20	20	21.3	21.4	107	107	70-147	1		
,1-Dichloroethene	ug/L		20	20	21.0	21.3	105	107	70-158	1	30	
,1-Dichloropropene	ug/L		20	20	21.3	21.7	107	109	70-149	2	30	
,2,3-Trichlorobenzene	ug/L		20	20	18.1	17.7	90	89	68-140	2		
,2,3-Trichloropropane	ug/L		20	20	15.7	26.3	78	132	67-137	51	30	R1
,2,4-Trichlorobenzene	ug/L		20	20	17.9	17.5	89	88	70-139	2	30	
,2-Dibromo-3- chloropropane	ug/L		20	20	22.4	21.1	112	105	69-136	6	30	
,2-Dibromoethane (EDB)	ug/L		20	20	21.1	21.8	106	109	70-137	3	30	
,2-Dichlorobenzene	ug/L		20	20	20.0	19.2	100	96	70-133	4	30	
,2-Dichloroethane	ug/L		20	20	20.3	21.2	102	106	67-138	4	30	
,2-Dichloropropane	ug/L		20	20	26.4	20.9	132	105	70-138	23	30	
,3-Dichlorobenzene	ug/L		20	20	19.5	21.4	97	107	70-133	9	30	
,3-Dichloropropane	ug/L		20	20	21.4	21.7	107	109	70-136	1	30	
,4-Dichlorobenzene	ug/L		20	20	19.8	21.2	99	106	70-133	7	30	
,2-Dichloropropane	ug/L		20	20	14.6	15.1	73	75	52-155	3	30	
-Butanone (MEK)	ug/L		40	40	44.6	44.3	111	111	61-147	1	30	
-Chlorotoluene	ug/L		20	20	20.7	26.5	104	132	70-141	24	30	
-Hexanone	ug/L		40	40	40.7	40.6	102	101	67-139	0	30	
-Chlorotoluene	ug/L		20	20	19.6	23.8	98	119	70-135	19	30	
-Methyl-2-pentanone MIBK)	ug/L		40	40	51.2	41.4	128	103	67-136	21	30	
Acetone	ug/L		40	40	46.4	46.0	116	115	55-159	1	30	
Benzene	ug/L		20	20	20.9	22.4	105	112	67-150	7	30	
Bromobenzene	ug/L		20	20	21.8	25.6	109	128	70-134	16	30	
Bromochloromethane	ug/L		20	20	22.4	22.4	112	112	70-146	0	30	
Bromodichloromethane	ug/L		20	20	23.7	20.3	118	102	70-138	15	30	
Bromoform	ug/L		20	20	18.5	19.6	92	98	57-138	6	30	
Bromomethane	ug/L		20	20	23.7	23.8	119	119	10-200	0	30	
Carbon tetrachloride	ug/L		20	20	21.8	24.2	109	121	70-147	11	30	
Chlorobenzene	ug/L		20	20	21.1	21.3	106	107	70-137	1	30	
Chloroethane	ug/L		20	20	20.0	21.0	100	105	51-166	5	30	IK,v3
Chloroform	ug/L		20	20	22.4	23.2	112	116	70-144	3	30	
Chloromethane	ug/L		20	20	19.4	19.8	97	99	24-161	2	30	
is-1,2-Dichloroethene	ug/L		20	20	21.2	22.2	106	111	67-148	5	30	
is-1,3-Dichloropropene	ug/L		20	20	23.7	20.1	119	100	70-142	17	30	
Dibromochloromethane	ug/L		20	20	21.5	22.8	107	114	68-138	6	30	
Dibromomethane	ug/L		20	20	23.7	20.0	118	100	70-134	17	30	
Dichlorodifluoromethane	ug/L		20	20	14.7	15.2	74	76	43-155	3	30	
Diisopropyl ether	ug/L		20	20	19.8	19.9	99	100	65-146	1	30	
Ethylbenzene	ug/L		20	20	20.0	20.7	100	103	68-143	3	30	
Hexachloro-1,3-butadiene	ug/L		20	20	17.2	16.3	86	81	62-151	6	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 3083			3083151							
			MS	MSD								
	9	2507939009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
m&p-Xylene	ug/L		40	40	40.4	42.0	101	105	53-157	4	30	
Methyl-tert-butyl ether	ug/L		20	20	19.6	19.8	98	99	59-156	1	30	
Methylene Chloride	ug/L		20	20	20.6	20.3	103	102	64-148	1	30	
Naphthalene	ug/L		20	20	20.2	19.7	101	98	57-150	2	30	
o-Xylene	ug/L		20	20	21.5	22.0	107	110	68-143	2	30	
o-Isopropyltoluene	ug/L		20	20	19.2	21.5	96	107	70-141	11	30	
Styrene	ug/L		20	20	20.8	21.4	104	107	70-136	3	30	
Tetrachloroethene	ug/L		20	20	19.0	19.7	95	98	70-139	4	30	
Toluene	ug/L		20	20	26.5	21.8	132	109	47-157	19	30	
trans-1,2-Dichloroethene	ug/L		20	20	19.8	20.5	99	102	70-149	3	30	
trans-1,3-Dichloropropene	ug/L		20	20	24.5	21.0	123	105	70-138	15	30	
Trichloroethene	ug/L		20	20	20.8	22.2	104	111	70-149	7	30	
Trichlorofluoromethane	ug/L		20	20	20.3	20.3	101	102	61-154	0	30	
√inyl acetate	ug/L		40	40	28.1	27.6	70	69	48-156	2	30	
Vinyl chloride	ug/L		20	20	19.4	19.4	97	97	55-172	0	30	
Xylene (Total)	ug/L		60	60	61.9	63.9	103	107	66-145	3	30	
1,2-Dichloroethane-d4 (S)	%						102	103	70-130			
I-Bromofluorobenzene (S)	%						87	107	70-130			
Toluene-d8 (S)	%						125	101	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

QC Batch: 583926 Analysis Method: EPA 8260D

QC Batch Method: EPA 8260D Analysis Description: 8260D MSV Low Level

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92507929004

METHOD BLANK: 3086935 Matrix: Water

Associated Lab Samples: 92507929004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	12/02/20 21:57	
1,1,1-Trichloroethane	ug/L	ND	1.0	12/02/20 21:57	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	12/02/20 21:57	
1,1,2-Trichloroethane	ug/L	ND	1.0	12/02/20 21:57	
1,1-Dichloroethane	ug/L	ND	1.0	12/02/20 21:57	
1,1-Dichloroethene	ug/L	ND	1.0	12/02/20 21:57	
1,1-Dichloropropene	ug/L	ND	1.0	12/02/20 21:57	
1,2,3-Trichlorobenzene	ug/L	ND	1.0	12/02/20 21:57	
1,2,3-Trichloropropane	ug/L	ND	1.0	12/02/20 21:57	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	12/02/20 21:57	
1,2-Dibromo-3-chloropropane	ug/L	ND	5.0	12/02/20 21:57	
1,2-Dibromoethane (EDB)	ug/L	ND	1.0	12/02/20 21:57	
1,2-Dichlorobenzene	ug/L	ND	1.0	12/02/20 21:57	
1,2-Dichloroethane	ug/L	ND	1.0	12/02/20 21:57	
1,2-Dichloropropane	ug/L	ND	1.0	12/02/20 21:57	
1,3-Dichlorobenzene	ug/L	ND	1.0	12/02/20 21:57	
1,3-Dichloropropane	ug/L	ND	1.0	12/02/20 21:57	
1,4-Dichlorobenzene	ug/L	ND	1.0	12/02/20 21:57	
2,2-Dichloropropane	ug/L	ND	1.0	12/02/20 21:57	
2-Butanone (MEK)	ug/L	ND	5.0	12/02/20 21:57	
2-Chlorotoluene	ug/L	ND	1.0	12/02/20 21:57	
2-Hexanone	ug/L	ND	5.0	12/02/20 21:57	
4-Chlorotoluene	ug/L	ND	1.0	12/02/20 21:57	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	5.0	12/02/20 21:57	v2
Acetone	ug/L	ND	25.0	12/02/20 21:57	
Benzene	ug/L	ND	1.0	12/02/20 21:57	
Bromobenzene	ug/L	ND	1.0	12/02/20 21:57	
Bromochloromethane	ug/L	ND	1.0	12/02/20 21:57	
Bromodichloromethane	ug/L	ND	1.0	12/02/20 21:57	
Bromoform	ug/L	ND	1.0	12/02/20 21:57	
Bromomethane	ug/L	ND	2.0	12/02/20 21:57	v2
Carbon tetrachloride	ug/L	ND	1.0	12/02/20 21:57	
Chlorobenzene	ug/L	ND	1.0	12/02/20 21:57	
Chloroethane	ug/L	ND	1.0	12/02/20 21:57	v2
Chloroform	ug/L	ND	5.0	12/02/20 21:57	
Chloromethane	ug/L	ND	1.0	12/02/20 21:57	
cis-1,2-Dichloroethene	ug/L	ND	1.0	12/02/20 21:57	
cis-1,3-Dichloropropene	ug/L	ND	1.0	12/02/20 21:57	
Dibromochloromethane	ug/L	ND	1.0	12/02/20 21:57	
Dibromomethane	ug/L	ND	1.0	12/02/20 21:57	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

300 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

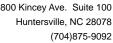
METHOD BLANK: 3086935 Matrix: Water

Associated Lab Samples: 92507929004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Dichlorodifluoromethane	ug/L	ND ND	1.0	12/02/20 21:57	
Diisopropyl ether	ug/L	ND	1.0	12/02/20 21:57	
Ethylbenzene	ug/L	ND	1.0	12/02/20 21:57	
Hexachloro-1,3-butadiene	ug/L	ND	1.0	12/02/20 21:57	
m&p-Xylene	ug/L	ND	2.0	12/02/20 21:57	
Methyl-tert-butyl ether	ug/L	ND	1.0	12/02/20 21:57	
Methylene Chloride	ug/L	ND	5.0	12/02/20 21:57	v2
Naphthalene	ug/L	ND	1.0	12/02/20 21:57	
o-Xylene	ug/L	ND	1.0	12/02/20 21:57	
p-Isopropyltoluene	ug/L	ND	1.0	12/02/20 21:57	
Styrene	ug/L	ND	1.0	12/02/20 21:57	
Tetrachloroethene	ug/L	ND	1.0	12/02/20 21:57	
Toluene	ug/L	ND	1.0	12/02/20 21:57	
trans-1,2-Dichloroethene	ug/L	ND	1.0	12/02/20 21:57	
trans-1,3-Dichloropropene	ug/L	ND	1.0	12/02/20 21:57	
Trichloroethene	ug/L	ND	1.0	12/02/20 21:57	
Trichlorofluoromethane	ug/L	ND	1.0	12/02/20 21:57	
Vinyl acetate	ug/L	ND	2.0	12/02/20 21:57	
Vinyl chloride	ug/L	ND	1.0	12/02/20 21:57	
Xylene (Total)	ug/L	ND	1.0	12/02/20 21:57	
1,2-Dichloroethane-d4 (S)	%	93	70-130	12/02/20 21:57	
4-Bromofluorobenzene (S)	%	100	70-130	12/02/20 21:57	
Toluene-d8 (S)	%	104	70-130	12/02/20 21:57	

LABORATORY CONTROL SAMPLE:	3086936					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	53.8	108	70-130	
1,1,1-Trichloroethane	ug/L	50	43.1	86	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	50.9	102	70-130	
1,1,2-Trichloroethane	ug/L	50	45.3	91	70-130	
1,1-Dichloroethane	ug/L	50	42.5	85	70-130	
1,1-Dichloroethene	ug/L	50	44.0	88	70-132	
1,1-Dichloropropene	ug/L	50	45.7	91	70-131	
1,2,3-Trichlorobenzene	ug/L	50	52.1	104	70-134	
1,2,3-Trichloropropane	ug/L	50	53.1	106	70-130	
1,2,4-Trichlorobenzene	ug/L	50	53.0	106	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	51.6	103	70-132	
1,2-Dibromoethane (EDB)	ug/L	50	55.6	111	70-130	
1,2-Dichlorobenzene	ug/L	50	53.0	106	70-130	
1,2-Dichloroethane	ug/L	50	40.6	81	70-130	
1,2-Dichloropropane	ug/L	50	46.2	92	70-130	
1,3-Dichlorobenzene	ug/L	50	54.2	108	70-130	
1,3-Dichloropropane	ug/L	50	55.7	111	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


QUALITY CONTROL DATA

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

_ABORATORY CONTROL SAMPLE:	3086936					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc	Result	% Rec	Limits Qual	fier
1,4-Dichlorobenzene	ug/L	50	53.4	107	70-130	
2,2-Dichloropropane	ug/L	50	42.9	86	70-130	
2-Butanone (MEK)	ug/L	100	83.8	84	70-133	
2-Chlorotoluene	ug/L	50	53.0	106	70-130	
2-Hexanone	ug/L	100	92.3	92	70-130	
I-Chlorotoluene	ug/L	50	52.1	104	70-130	
I-Methyl-2-pentanone (MIBK)	ug/L	100	78.0	78	70-130 v3	
cetone	ug/L	100	86.7	87	70-144	
Benzene	ug/L	50	45.5	91	70-130	
Bromobenzene	ug/L	50	52.9	106	70-130	
romochloromethane	ug/L	50	44.6	89	70-130	
Bromodichloromethane	ug/L	50	43.0	86	70-130	
Bromoform	ug/L	50	50.5	101	70-131	
Bromomethane	ug/L	50	37.0	74	30-177 v3	
Carbon tetrachloride	ug/L	50	44.5	89	70-130	
Chlorobenzene	ug/L	50	51.6	103	70-130	
Chloroethane	ug/L	50	39.4	79	46-131 v3	
Chloroform	ug/L	50	43.2	86	70-130	
Chloromethane	ug/L	50	40.2	80	49-130	
is-1,2-Dichloroethene	ug/L	50	40.8	82	70-130	
is-1,3-Dichloropropene	ug/L	50	48.6	97	70-130	
bibromochloromethane	ug/L	50	56.9	114	70-130	
ibromomethane	ug/L	50	45.3	91	70-130	
Dichlorodifluoromethane	ug/L	50	43.1	86	52-134	
iisopropyl ether	ug/L	50	42.1	84	70-131	
thylbenzene	ug/L	50	50.4	101	70-130	
lexachloro-1,3-butadiene	ug/L	50	51.6	103	70-131	
n&p-Xylene	ug/L	100	104	104	70-130	
Nethyl-tert-butyl ether	ug/L	50	44.6	89	70-130	
Nethylene Chloride	ug/L	50	39.5	79	68-130 v3	
Naphthalene	ug/L	50	52.5	105	70-133	
o-Xylene	ug/L	50	53.7	107	70-130	
-Isopropyltoluene	ug/L	50	53.5	107	70-130	
Styrene	ug/L	50	52.9	106	70-130	
etrachloroethene	ug/L	50	51.5	103	70-130	
oluene	ug/L	50	42.3	85	70-130	
rans-1,2-Dichloroethene	ug/L	50	42.1	84	70-130	
rans-1,3-Dichloropropene	ug/L	50	46.2	92	70-130	
richloroethene	ug/L	50	47.4	95	70-130	
richlorofluoromethane	ug/L	50	41.6	83	61-130	
inyl acetate	ug/L	100	106	106	70-140	
/inyl chloride	ug/L	50	40.0	80	59-142	
(ylene (Total)	ug/L	150	158	105	70-130	
,2-Dichloroethane-d4 (S)	%			93	70-130	
I-Bromofluorobenzene (S)	%			98	70-130	
Foluene-d8 (S)	%			93	70-130	

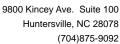
Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

MATRIX SPIKE & MATRIX SI	PIKE DUPL	ICATE: 3086	937		3086938							
			MS	MSD								
		92508563001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qu
1,1,2-Tetrachloroethane	ug/L	ND	4000	4000	4170	4230	104	106	70-135	1	30	
,1,1-Trichloroethane	ug/L	ND	4000	4000	3930	3980	98	100	70-148	1	30	
,1,2,2-Tetrachloroethane	ug/L	ND	4000	4000	4060	4090	102	102	70-131	1	30	
,1,2-Trichloroethane	ug/L	ND	4000	4000	3640	3690	91	92	70-136	2	30	
,1-Dichloroethane	ug/L	ND	4000	4000	3880	3880	97	97	70-147	0	30	
,1-Dichloroethene	ug/L	ND	4000	4000	4130	4040	103	101	70-158	2	30	
,1-Dichloropropene	ug/L	ND	4000	4000	4040	4160	101	104	70-149	3	30	
,2,3-Trichlorobenzene	ug/L	ND	4000	4000	4140	4500	103	112	68-140	8	30	
2,3-Trichloropropane	ug/L	ND	4000	4000	3800	3790	95	95	67-137	0	30	
,2,4-Trichlorobenzene	ug/L	ND	4000	4000	4200	4530	105	113	70-139	8	30	
,2-Dibromo-3-	ug/L	ND	4000	4000	4160	4260	104	107	69-136	3	30	
hloropropane	0	ND	4000	4000	4000	4400	407	440	70.407	0	00	
,2-Dibromoethane (EDB)	ug/L	ND	4000	4000	4300	4400	107	110	70-137	2		
,2-Dichlorobenzene	ug/L	ND	4000	4000	4450	4650	111	116	70-133	5		
,2-Dichloroethane	ug/L	ND	4000	4000	3560	3610	89	90	67-138	1		
,2-Dichloropropane	ug/L	ND	4000	4000	4060	4120	102	103	70-138	1		
3-Dichlorobenzene	ug/L	ND	4000	4000	4540	4630	113	116	70-133	2		
3-Dichloropropane	ug/L	ND	4000	4000	4480	4460	112	111	70-136	0		
4-Dichlorobenzene	ug/L	ND	4000	4000	4470	4570	112	114	70-133	2		
2-Dichloropropane	ug/L	ND	4000	4000	3260	3260	82	81	52-155	0		
-Butanone (MEK)	ug/L	ND	8000	8000	7080	6810	89	85	61-147	4		
-Chlorotoluene	ug/L	ND	4000	4000	4480	4560	112	114	70-141	2		
-Hexanone	ug/L	ND	8000	8000	7690	7680	96	96	67-139	0		
-Chlorotoluene -Methyl-2-pentanone	ug/L	ND	4000	4000	4460	4600	112	115	70-135	3		
MIBK)	ug/L	ND	8000	8000	6280	6420	79	80	67-136	2		V3
cetone	ug/L	ND	8000	8000	7840	7690	98	96	55-159	2		
enzene	ug/L	ND	4000	4000	4070	4050	102	101	67-150	0		
romobenzene	ug/L	ND	4000	4000	4400	4600	110	115	70-134	4		
romochloromethane	ug/L	ND	4000	4000	4020	4160	100	104	70-146	4		
romodichloromethane	ug/L	ND	4000	4000	3750	3820	94	95	70-138	2		
romoform	ug/L	ND	4000	4000	3710	3760	93	94	57-138	1		
romomethane	ug/L	ND	4000	4000	3050	3540	76	88	10-200	15		v3
arbon tetrachloride	ug/L	ND	4000	4000	4090	4160	102	104	70-147	2		
hlorobenzene	ug/L	ND	4000	4000	4460	4490	111	112	70-137	1		
hloroethane	ug/L	ND	4000	4000	4090	3950	102	99	51-166	3		v3
hloroform	ug/L	ND	4000	4000	3500	3690	87	92	70-144	5		
hloromethane	ug/L	ND	4000	4000	3730	3800	93	95	24-161	2		
s-1,2-Dichloroethene	ug/L	3240	4000	4000	6690	6720	86	87	67-148	1		
s-1,3-Dichloropropene	ug/L	ND	4000	4000	3860	3960	96	99	70-142	3		
ibromochloromethane	ug/L	ND	4000	4000	4400	4470	110	112	68-138	2		
ibromomethane	ug/L	ND	4000	4000	4010	4090	100	102	70-134	2		
ichlorodifluoromethane	ug/L	ND	4000	4000	3710	3710	93	93	43-155	0		
iisopropyl ether	ug/L	ND	4000	4000	3370	3420	84	86	65-146	1		
thylbenzene	ug/L	ND	4000	4000	4440	4450	111	111	68-143	0		
lexachloro-1,3-butadiene	ug/L	ND	4000	4000	4160	4250	104	106	62-151	2	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: Kop Flex Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3086	937 MS	MSD	3086938							
		92508563001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
m&p-Xylene	ug/L	ND	8000	8000	9260	9220	116	115	53-157		30	
Methyl-tert-butyl ether	ug/L	ND	4000	4000	3680	3730	92	93	59-156	1	30	
Methylene Chloride	ug/L	ND	4000	4000	3700	3780	92	94	64-148	2	30	v3
Naphthalene	ug/L	ND	4000	4000	4200	4540	105	114	57-150	8	30	
o-Xylene	ug/L	ND	4000	4000	4660	4600	116	115	68-143	1	30	
o-Isopropyltoluene	ug/L	ND	4000	4000	4380	4620	109	116	70-141	5	30	
Styrene	ug/L	ND	4000	4000	4600	4620	115	116	70-136	0	30	
Tetrachloroethene	ug/L	ND	4000	4000	4430	4380	111	109	70-139	1	30	
Toluene	ug/L	ND	4000	4000	3860	3930	94	96	47-157	2	30	
trans-1,2-Dichloroethene	ug/L	ND	4000	4000	3920	3990	98	100	70-149	2	30	
trans-1,3-Dichloropropene	ug/L	ND	4000	4000	3530	3590	88	90	70-138	2	30	
Trichloroethene	ug/L	19800	4000	4000	24700	24700	123	124	70-149	0	30	
Trichlorofluoromethane	ug/L	ND	4000	4000	4140	3860	104	97	61-154	7	30	
Vinyl acetate	ug/L	ND	8000	8000	8360	8520	105	106	48-156	2	30	
Vinyl chloride	ug/L	477	4000	4000	4140	4210	92	93	55-172	2	30	
Kylene (Total)	ug/L	ND	12000	12000	13900	13800	116	115	66-145	1	30	
I,2-Dichloroethane-d4 (S)	%						96	101	70-130			
4-Bromofluorobenzene (S)	%						100	99	70-130			
Toluene-d8 (S)	%						95	95	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex Pace Project No.: 92507929

QC Batch: 582772

QC Batch Method: EPA 8260D Mod. Analysis Method:

EPA 8260D Mod.

Analysis Description:

8260D MSV SIM

Laboratory:

Pace Analytical Services - Charlotte

92507929006 Associated Lab Samples:

METHOD BLANK: 3081850

Matrix: Water

Associated Lab Samples: 92507929006

Blank Reporting

		Diam	reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	ND	2.0	11/24/20 16:00	
1,2-Dichloroethane-d4 (S)	%	97	70-130	11/24/20 16:00	
Toluene-d8 (S)	%	92	66-133	11/24/20 16:00	

LABORATORY CONTROL SAMPLE: 3081851

Parameter

Date: 12/03/2020 04:07 PM

Units

LCS Spike LCS Conc. Result % Rec

18.8

% Rec Limits

70-130

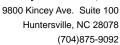
Qualifiers

1,4-Dioxane (p-Dioxane) ug/L 1,2-Dichloroethane-d4 (S) % Toluene-d8 (S) %

99 70-130 92 66-133

94

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3081852


MC

20

3081853

Parameter	Units	92507939007 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,4-Dioxane (p-Dioxane) 1,2-Dichloroethane-d4 (S) Toluene-d8 (S)	ug/L % %	ND	20	20	18.4	19.6	92 102 92	98 100 91	64-141 70-130 66-133	6	30 30 30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex Pace Project No.: 92507929

QC Batch: 582773

QC Batch Method: EPA 8260D Mod. Analysis Method:

EPA 8260D Mod.

Analysis Description:

8260D MSV SIM

Laboratory:

Pace Analytical Services - Charlotte

Qualifiers

Qualifiers

92507929003 Associated Lab Samples:

METHOD BLANK:

Matrix: Water

Associated Lab Samples:

Parameter

Parameter

Date: 12/03/2020 04:07 PM

92507929003

Blank Reporting Limit Result Analyzed

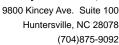
1,4-Dioxane (p-Dioxane) ug/L ND 2.0 11/24/20 16:19 1,2-Dichloroethane-d4 (S) % 96 70-130 11/24/20 16:19 Toluene-d8 (S) % 92 66-133 11/24/20 16:19

LABORATORY CONTROL SAMPLE: 3081856

Units

Units

Spike LCS LCS % Rec Conc. Result % Rec Limits


1,4-Dioxane (p-Dioxane) ug/L 20 20.5 102 70-130 1,2-Dichloroethane-d4 (S) 96 70-130 % Toluene-d8 (S) % 92 66-133

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3081857 3081858

MAC MOD

Parameter	Units	92507939013 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,4-Dioxane (p-Dioxane)	ug/L	41.5	20	20	64.4	62.3	115	104	64-141	3	30	
1,2-Dichloroethane-d4 (S)	%						103	98	70-130		30	
Toluene-d8 (S)	%						93	91	66-133		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Kop Flex Project: Pace Project No.: 92507929

QC Batch: 582774

QC Batch Method: EPA 8260D Mod. Analysis Method:

EPA 8260D Mod.

Analysis Description:

8260D MSV SIM

Laboratory:

Pace Analytical Services - Charlotte

Associated Lab Samples: 92507929001

METHOD BLANK:

Date: 12/03/2020 04:07 PM

Matrix: Water

Associated Lab Samples: 92507929001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,4-Dioxane (p-Dioxane)	ug/L	ND ND	2.0	11/25/20 04:16	
1,2-Dichloroethane-d4 (S)	%	99	70-130	11/25/20 04:16	
Toluene-d8 (S)	%	91	66-133	11/25/20 04:16	

LABORATORY CONTROL SAMPLE: 3081863 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1,4-Dioxane (p-Dioxane) ug/L 20 20.2 101 70-130 1,2-Dichloroethane-d4 (S) 100 70-130 % Toluene-d8 (S) % 93 66-133

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3081865 MS MSD 92507748001 MSD MS MSD Spike Spike MS % Rec Max Units Qual Parameter Conc. Result Result % Rec % Rec **RPD** RPD Result Conc. Limits 1,4-Dioxane (p-Dioxane) ND 99 30 ug/L 20 20 20.1 20.6 101 64-141 2 1,2-Dichloroethane-d4 (S) 70-130 30 % 98 101 Toluene-d8 (S) % 93 92 66-133 30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

QC Batch: 583085 Analysis Method: EPA 8260D Mod.

QC Batch Method: EPA 8260D Mod. Analysis Description: 8260D MSV SIM

Laboratory: Pace Analytical Services - Charlotte

Associated Lab Samples: 92507929002, 92507929004, 92507929005

METHOD BLANK: 3083365 Matrix: Water

Associated Lab Samples: 92507929002, 92507929004, 92507929005

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed 1,4-Dioxane (p-Dioxane) ND 2.0 11/25/20 15:42 ug/L 1,2-Dichloroethane-d4 (S) % 100 70-130 11/25/20 15:42 Toluene-d8 (S) % 66-133 11/25/20 15:42 89

LABORATORY CONTROL SAMPLE: 3083366 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1,4-Dioxane (p-Dioxane) 20 22.9 115 70-130 ug/L 1,2-Dichloroethane-d4 (S) 100 70-130 % Toluene-d8 (S) % 92 66-133

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3083367 3083368 MS MSD 92508101002 MSD Spike Spike MS MS MSD % Rec Max Units Qual Parameter Conc. Result % Rec % Rec **RPD** RPD Result Conc. Result Limits 128 30 1,4-Dioxane (p-Dioxane) ug/L 187 80 80 289 296 137 64-141 2 1,2-Dichloroethane-d4 (S) % 97 96 70-130 30 Toluene-d8 (S) % 93 93 66-133 30

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: Kop Flex
Pace Project No.: 92507929

DEFINITIONS

- DF Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.
- ND Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

- J Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
- MDL Adjusted Method Detection Limit.
- PQL Practical Quantitation Limit.
- RL Reporting Limit The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.
- S Surrogate
- 1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 12/03/2020 04:07 PM

E	Analyte concentration exceeded the calibration range. The reported result is estimated.

- IK The recalculated concentration of the calibration standard(s) did not meet method acceptance criteria; this result should be considered an estimated value.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.
- The continuing calibration verification was above the method acceptance limit. Any detection for the analyte in the associated samples may have a high bias.
- v2 The continuing calibration verification was below the method acceptance limit. The analyte was not detected in the associated samples and the sensitivity of the instrument was verified with a reporting limit check standard.
- The continuing calibration verification was below the method acceptance limit. Any detection for the analyte in the associated samples may have low bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: Kop Flex
Pace Project No.: 92507929

Date: 12/03/2020 04:07 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92507929001	RW-1S	EPA 8260D	582949	_	
92507929002	RW-2S	EPA 8260D	583045		
92507929003	RW-3S	EPA 8260D	582948		
92507929004	RW-1D	EPA 8260D	583926		
92507929005	RW-2D	EPA 8260D	583045		
92507929006	Trip Blank A	EPA 8260D	582948		
92507929001	RW-1S	EPA 8260D Mod.	582774		
92507929002	RW-2S	EPA 8260D Mod.	583085		
92507929003	RW-3S	EPA 8260D Mod.	582773		
92507929004 92507929005	RW-1D RW-2D	EPA 8260D Mod. EPA 8260D Mod.	583085 583085		
92507929006	Trip Blank A	EPA 8260D Mod.	582772		

Document Name:

Sample Condition Upon Receipt(SCUR)

Document Revised: October 28, 2020 Page 1 of 2

Document No.:

F-CAR-CS-033-Rev.07

Issuing Authority: Pace Carolinas Quality Office

Laboratory receiving samples: Asheville Eden Greenwood Hunt	ersville Raleigh	Mechanicsville Atlanta Kernersville
Sample Condition Upon Receipt Client Name:	Pro	Diject # WO#: 92507929
	JSPS Clien	92507929
Custody Seal Present? Yes Seals Intact?	□Yes ⊠No	Date/Initials Person Examining Contents: 11/29/20
Packing Material: Bubble Wrap Bubble Bag	s None Othe	
	of Ice:	Yes □No NNA
18/1/).1	Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process
Cooler Temp Corrected (°C): 1-8, 1-6 USDA Regulated Soil (🖾 N/A, water sample)		has begun
Did samples originate in a quarantine zone within the United States Yes No	:: CA, NY, or SC (check maps)	including Hawaii and Puerto Rico)? Yes No
		Comments/Discrepancy:
Chain of Custody Present?	res No N/A 1	
Samples Arrived within Hold Time?	es No N/A 2	
Short Hold Time Analysis (<72 hr.)?		
Rush Turn Around Time Requested?	es No NA 4	
Sufficient Volume?	es No NA 5	
Correct Containers Used? -Pace Containers Used?		
Containers Intact?	es No N/A 7	
Dissolved analysis: Samples Field Filtered?	es No NA 8	
Sample Labels Match COC?	es No N/A 9	
-Includes Date/Time/ID/Analysis Matrix:		
Headspace in VOA Vials (>5-6mm)?		0.
Trip Blank Custody Seals Present?		1.
Samples RW-25, RM		J-ZD Required? Ses No
CLIENT NOTIFICATION/RESOLUTION	h 1	Lot ID of split containers:
Person contacted:	Date/Time:	
Project Manager SCURF Review:	· ·	Date:
Project Manager SRF Review:	8	Date: ((30)20

Pace Analytical*

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020 Page 2 of 2

Issuing Authority:
Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

Project # LIO#: 925079

PM: BV

Due Date: 12/03/20

CLIENT: 92-WSP

	ltem#	8P4U-125 mL Plastic Unpreserved (N/A) (Cl-)	8P3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (CI-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (Cl-)	AG15-1 liter Amber H25O4 (pH < 2)	AG35-250 mL Amber H2504 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na252O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
	1		,														6					*							
	2				150						,						6												
	3																2	tic .									-	e e	
-	4		-							*							20						-5					in:	
	5																												
	6																				;								
ſ	7																							19					
	8										, s																		
	9									2																			
	10																					÷							
	11																											-1-4	
	12																												
Γ										рŀ	l Ad	justi	men	t Lo	g fo	r Pre	serv	ved	Sam	ples	5								
f	S	ample	Sample ID Type of Preservative						H upo	n rece				ervati				ime p	reserv	ation		Amı		f Pres	ervati	ve		Lot #	

PH Adjustment Log for Preserved Samples

Sample ID Type of Preservative pH upon receipt Date preservation adjusted Time preservation adjusted Amount of Preservative added

Lot #

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07 Document Revised: October 28, 2020
Page 1 of 2
Issuing Authority:
Pace Carolinas Quality Office

			10		1104 - 0055-
Sample Condition Upon Receipt Client Name:	¥.			Project	WO#: 92507929
Courier: Fed Ex UPS Commercial Pace	USPS		Cli	ent	PM: BV Due Date: 12/03/20 CLIENT: 92-WSP
ustody Seal Present? Yes No Seals Into	act?	Yes	□No		Date/Initials Person Examining Contents: 1991-2
acking Material: Bubble Wrap Bubble	Bags	None	: D o	ther	Biological Tissue Frozen?
nermometer:	Type of l		Wet DB	lue	☐Nane ☐Yes ☐No ☐N/A
correction Factor: Add/Subtract (°C) poler Temp Corrected (°C):	-0.1		-	- 1	Temp should be above freezing to 6°C Samples out of temp criteria. Samples on ice, cooling process has begun
SDA Regulated Soil (N/A, water sample) d samples originate in a quarantine zone within the United S Yes No	tates: CA	A, NY, or SC	C (check ma		Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? ☐ Yes ☐ No
Chair of Custo du Dancant?				1	Comments/Discrepancy:
Chain of Custody Present?	☐Yes	□No	□N/A	1.	
Samples Arrived within Hold Time? Short Hold Time Analysis (<72 hr.)?	□ yes □ Yes	□No	□N/A □N/A	3.	
Rush Turn Around Time Requested?	Yes	No	□N/A	4,	
Sufficient Volume?	Ves	□No	□N/A	5.	
Correct Containers Used? -Pace Containers Used?	□Yes □Yes	□No □No	□N/A □N/A	6.	
Containers Intact?	□Yes	□No	□N/A	7.	
Dissolved analysis: Samples Field Filtered?	Yes	□No	□N/A	8.	
Sample Labels Match COC?	Yes	□No	□n/a	9.	
-Includes Date/Time/ID/Analysis Matrix:					· · · · · · · · · · · · · · · · · · ·
Headspace in VOA Vials (>5-6mm)? Trip Blank Present?	Yes	□No	□N/A □N/A	10. 11.	
	_			11.	•
Trip Blank Custody Seals Present? COMMENTS/SAMPLE DISCREPANCY BU-25, BV-//) R	□No W-Z	DN/A	L	Field Data Required? Yes No
			TV.	Lot	ID of split containers:
CLIENT NOTIFICATION/RESOLUTION					
Person contacted:			Date/Tir	ne:	
Project Manager SCURF Review:			·		Date:
Project Manager SRF Review:					Date:

Document Name: Sample Condition Upon Receipt(SCUR)

Document No.: F-CAR-CS-033-Rev.07

Document Revised: October 28, 2020
Page 2 of 2
Issuing Authority:

Pace Carolinas Quality Office

*Check mark top half of box if pH and/or dechlorination is Project # verified and within the acceptance range for preservation

samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg

**Bottom half of box is to list number of bottles

	DU	tom.	IIaII	OID	UA 13		13611	MIIIM	CIU	1 000	ric3							L										
kem#.	BP4U-125 mL Plastic Unpreserved (N/A) (CI-)	8P3U-250 mL Plastic Unpreserved (N/A)	BP2U-500 mL Plastic Unpreserved (N/A)	BP1U-1 liter Plastic Unpreserved (N/A)	BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-)	BP3N-250 mL plastic HNO3 (pH < 2)	BP4Z-125 mL Plastic ZN Acetate & NaOH (>9)	BP4C-125 mL Plastic NaOH (pH > 12) (CI-)	WGFU-Wide-mouthed Glass jar Unpreserved	AG1U-1 liter Amber Unpreserved (N/A) (Cl-)	AG1H-1 liter Amber HCl (pH < 2)	AG3U-250 mL Amber Unpreserved (N/A) (Cl-)	AG15-1 liter Amber H2SO4 (pH < 2)	AG3S-250 mL Amber H2SO4 (pH < 2)	AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-)	DG9H-40 mL VOA HCI (N/A)	VG9T-40 mL VOA Na2S2O3 (N/A)	VG9U-40 mL VOA Unp (N/A)	DG9P-40 mL VOA H3PO4 (N/A)	VOAK (6 vials per kit)-5035 kit (N/A)	V/GK (3 vials per kit)-VPH/Gas kit (N/A)	SP5T-125 mL Sterile Plastic (N/A – lab)	SP2T-250 mL Sterile Plastic (N/A – lab)		BP3A-250 mL Plastic (NH2)25O4 (9.3-9.7)	AGOU-100 mL Amber Unpreserved vials (N/A)	VSGU-20 mL Scintillation vials (N/A)	DG9U-40 mL Amber Unpreserved vials (N/A)
1																6												
2			-			/		/					/	/		8												
3			•			/		/								6												
4						1			š			i.	/	/	1													
5	7				/	/	/	/					/															
6						/	/	(/	/	/					:	·							
7	/					/	/	/					/	/										/				
8	/					/	/	/					/	/														·
9	/				/	/		/					/	/	/	9.1									1			
10	/				/	/		/						1	/						:	٠,			7		,	
11				·	/		/	7			/		/		/													
12	/						/	/							/											~		

	pH Adjustment Log for Preserved Samples													
Sample ID	Type of Preservative	pH upon receipt	Date preservation adjusted	Time preservation adjusted	Amount of Preservative added	Lot #								
				:										
				-										

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

System CHAIN-OF-CUSTODY RECORD WSP USA Office Address

13530 DUNATE CHARLOS DE SEE 30 HEROLD VA

Project Name

WSP USA Contact Name

WSP USA Contact E-mail

WSP USA Contact E-mail

@wsp.com Requested Analyses & Preservatives No.**010005** 115]) Project Number & Task

WSP USA Contact E-mail

WSP USA Contact E-mail

WSP USA Contact E-mail

WSP USA Contact E-mail

WSP USA Contact E-mail

WSP USA Contact E-mail

WSP USA Contact E-mail

WSP USA Contact E-mail

WSP USA Contact E-mail

WSP USA Contact E-mail

WSP USA Contact E-mail

WSP USA Contact E-mail

On the second of the second 72 HR □ —HR 92307929 Sample Comments 00/ 11/22/2020 002 11/22/2020 11/22/2020 B

13 202 Time 1730 Tracking Number(s) 8160 4581 0393 Relinquished By (Signature) Received By (Signature) Date Shipment Method Time Relinquished By (Signature) Received By (Signature) Custody Seal Number(s) Page 47 of 47 *Use stop time/date for composite and/or air samples; use only start time/date for all other samples. Matrix: AQ = Aqueous, S = Soil, SE = Sediment, A = Air, W = Wipe, B = Bulk, O = Other (detail in comments)